xfs_sync.c 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"
C
Christoph Hellwig 已提交
46
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
47
#include "xfs_trace.h"
48

49 50 51
#include <linux/kthread.h>
#include <linux/freezer.h>

52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
STATIC xfs_inode_t *
xfs_inode_ag_lookup(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	uint32_t		*first_index,
	int			tag)
{
	int			nr_found;
	struct xfs_inode	*ip;

	/*
	 * use a gang lookup to find the next inode in the tree
	 * as the tree is sparse and a gang lookup walks to find
	 * the number of objects requested.
	 */
	if (tag == XFS_ICI_NO_TAG) {
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1);
	} else {
		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1, tag);
	}
	if (!nr_found)
76
		return NULL;
77 78 79 80 81 82 83 84 85

	/*
	 * Update the index for the next lookup. Catch overflows
	 * into the next AG range which can occur if we have inodes
	 * in the last block of the AG and we are currently
	 * pointing to the last inode.
	 */
	*first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
	if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
86
		return NULL;
87 88 89 90 91 92 93 94 95 96
	return ip;
}

STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
	xfs_agnumber_t		ag,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
97 98
	int			tag,
	int			exclusive)
99 100 101 102 103 104 105 106 107 108 109 110 111
{
	struct xfs_perag	*pag = &mp->m_perag[ag];
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;

restart:
	skipped = 0;
	first_index = 0;
	do {
		int		error = 0;
		xfs_inode_t	*ip;

112 113 114 115
		if (exclusive)
			write_lock(&pag->pag_ici_lock);
		else
			read_lock(&pag->pag_ici_lock);
116
		ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
117 118 119 120 121
		if (!ip) {
			if (exclusive)
				write_unlock(&pag->pag_ici_lock);
			else
				read_unlock(&pag->pag_ici_lock);
122
			break;
123
		}
124

125
		/* execute releases pag->pag_ici_lock */
126 127 128 129 130 131 132
		error = execute(ip, pag, flags);
		if (error == EAGAIN) {
			skipped++;
			continue;
		}
		if (error)
			last_error = error;
133 134

		/* bail out if the filesystem is corrupted.  */
135 136 137 138 139 140 141 142 143 144 145 146 147 148
		if (error == EFSCORRUPTED)
			break;

	} while (1);

	if (skipped) {
		delay(1);
		goto restart;
	}

	xfs_put_perag(mp, pag);
	return last_error;
}

149
int
150 151 152 153 154
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
155 156
	int			tag,
	int			exclusive)
157 158 159 160 161 162 163 164
{
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
		if (!mp->m_perag[ag].pag_ici_init)
			continue;
165 166
		error = xfs_inode_ag_walk(mp, ag, execute, flags, tag,
						exclusive);
167 168 169 170 171 172 173 174 175
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
	}
	return XFS_ERROR(last_error);
}

176
/* must be called with pag_ici_lock held and releases it */
177
int
178 179 180 181 182 183 184 185 186 187 188 189
xfs_sync_inode_valid(
	struct xfs_inode	*ip,
	struct xfs_perag	*pag)
{
	struct inode		*inode = VFS_I(ip);

	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		read_unlock(&pag->pag_ici_lock);
		return EFSCORRUPTED;
	}

190
	/* If we can't get a reference on the inode, it must be in reclaim. */
191 192 193 194 195 196 197 198 199 200 201 202 203 204
	if (!igrab(inode)) {
		read_unlock(&pag->pag_ici_lock);
		return ENOENT;
	}
	read_unlock(&pag->pag_ici_lock);

	if (is_bad_inode(inode) || xfs_iflags_test(ip, XFS_INEW)) {
		IRELE(ip);
		return ENOENT;
	}

	return 0;
}

205 206 207
STATIC int
xfs_sync_inode_data(
	struct xfs_inode	*ip,
208
	struct xfs_perag	*pag,
209 210 211 212 213 214
	int			flags)
{
	struct inode		*inode = VFS_I(ip);
	struct address_space *mapping = inode->i_mapping;
	int			error = 0;

215 216 217 218
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

219 220 221 222 223 224 225 226 227 228 229 230 231 232
	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		goto out_wait;

	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
		if (flags & SYNC_TRYLOCK)
			goto out_wait;
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}

	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
				0 : XFS_B_ASYNC, FI_NONE);
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

 out_wait:
C
Christoph Hellwig 已提交
233
	if (flags & SYNC_WAIT)
234
		xfs_ioend_wait(ip);
235
	IRELE(ip);
236 237 238
	return error;
}

239 240 241
STATIC int
xfs_sync_inode_attr(
	struct xfs_inode	*ip,
242
	struct xfs_perag	*pag,
243 244 245 246
	int			flags)
{
	int			error = 0;

247 248 249 250
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_inode_clean(ip))
		goto out_unlock;
	if (!xfs_iflock_nowait(ip)) {
		if (!(flags & SYNC_WAIT))
			goto out_unlock;
		xfs_iflock(ip);
	}

	if (xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
		goto out_unlock;
	}

	error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
			   XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);

 out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
270
	IRELE(ip);
271 272 273
	return error;
}

C
Christoph Hellwig 已提交
274 275 276
/*
 * Write out pagecache data for the whole filesystem.
 */
277
int
C
Christoph Hellwig 已提交
278 279 280
xfs_sync_data(
	struct xfs_mount	*mp,
	int			flags)
281
{
C
Christoph Hellwig 已提交
282
	int			error;
283

C
Christoph Hellwig 已提交
284
	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
285

C
Christoph Hellwig 已提交
286
	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
287
				      XFS_ICI_NO_TAG, 0);
C
Christoph Hellwig 已提交
288 289
	if (error)
		return XFS_ERROR(error);
290

C
Christoph Hellwig 已提交
291 292 293 294 295 296
	xfs_log_force(mp, 0,
		      (flags & SYNC_WAIT) ?
		       XFS_LOG_FORCE | XFS_LOG_SYNC :
		       XFS_LOG_FORCE);
	return 0;
}
297

C
Christoph Hellwig 已提交
298 299 300 301 302 303 304 305 306
/*
 * Write out inode metadata (attributes) for the whole filesystem.
 */
int
xfs_sync_attr(
	struct xfs_mount	*mp,
	int			flags)
{
	ASSERT((flags & ~SYNC_WAIT) == 0);
307

C
Christoph Hellwig 已提交
308
	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
309
				     XFS_ICI_NO_TAG, 0);
310 311
}

312 313 314
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
315
	uint			flags)
316 317 318 319
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;
320 321 322 323
	int			log_flags = XFS_LOG_FORCE;

	if (flags & SYNC_WAIT)
		log_flags |= XFS_LOG_SYNC;
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	error = xfs_trans_commit(tp, 0);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

344
	/* the log force ensures this transaction is pushed to disk */
345
	xfs_log_force(mp, 0, log_flags);
346
	return error;
347 348
}

349
int
350 351 352 353 354 355 356 357 358 359 360 361
xfs_sync_fsdata(
	struct xfs_mount	*mp,
	int			flags)
{
	struct xfs_buf		*bp;
	struct xfs_buf_log_item	*bip;
	int			error = 0;

	/*
	 * If this is xfssyncd() then only sync the superblock if we can
	 * lock it without sleeping and it is not pinned.
	 */
C
Christoph Hellwig 已提交
362
	if (flags & SYNC_TRYLOCK) {
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		ASSERT(!(flags & SYNC_WAIT));

		bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
		if (!bp)
			goto out;

		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
			goto out_brelse;
	} else {
		bp = xfs_getsb(mp, 0);

		/*
		 * If the buffer is pinned then push on the log so we won't
		 * get stuck waiting in the write for someone, maybe
		 * ourselves, to flush the log.
		 *
		 * Even though we just pushed the log above, we did not have
		 * the superblock buffer locked at that point so it can
		 * become pinned in between there and here.
		 */
		if (XFS_BUF_ISPINNED(bp))
			xfs_log_force(mp, 0, XFS_LOG_FORCE);
	}


	if (flags & SYNC_WAIT)
		XFS_BUF_UNASYNC(bp);
	else
		XFS_BUF_ASYNC(bp);

394 395 396 397 398 399 400 401 402 403 404 405 406 407
	error = xfs_bwrite(mp, bp);
	if (error)
		return error;

	/*
	 * If this is a data integrity sync make sure all pending buffers
	 * are flushed out for the log coverage check below.
	 */
	if (flags & SYNC_WAIT)
		xfs_flush_buftarg(mp->m_ddev_targp, 1);

	if (xfs_log_need_covered(mp))
		error = xfs_commit_dummy_trans(mp, flags);
	return error;
408 409 410 411 412

 out_brelse:
	xfs_buf_relse(bp);
 out:
	return error;
413 414 415
}

/*
D
David Chinner 已提交
416 417 418 419 420 421 422 423 424 425 426
 * When remounting a filesystem read-only or freezing the filesystem, we have
 * two phases to execute. This first phase is syncing the data before we
 * quiesce the filesystem, and the second is flushing all the inodes out after
 * we've waited for all the transactions created by the first phase to
 * complete. The second phase ensures that the inodes are written to their
 * location on disk rather than just existing in transactions in the log. This
 * means after a quiesce there is no log replay required to write the inodes to
 * disk (this is the main difference between a sync and a quiesce).
 */
/*
 * First stage of freeze - no writers will make progress now we are here,
427 428
 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 * complete.  Data is frozen at that point. Metadata is not frozen,
D
David Chinner 已提交
429 430
 * transactions can still occur here so don't bother flushing the buftarg
 * because it'll just get dirty again.
431 432 433 434 435 436 437 438
 */
int
xfs_quiesce_data(
	struct xfs_mount	*mp)
{
	int error;

	/* push non-blocking */
C
Christoph Hellwig 已提交
439
	xfs_sync_data(mp, 0);
C
Christoph Hellwig 已提交
440
	xfs_qm_sync(mp, SYNC_TRYLOCK);
441

D
Dave Chinner 已提交
442
	/* push and block till complete */
C
Christoph Hellwig 已提交
443
	xfs_sync_data(mp, SYNC_WAIT);
C
Christoph Hellwig 已提交
444
	xfs_qm_sync(mp, SYNC_WAIT);
445

D
Dave Chinner 已提交
446 447 448
	/* drop inode references pinned by filestreams */
	xfs_filestream_flush(mp);

D
David Chinner 已提交
449
	/* write superblock and hoover up shutdown errors */
D
Dave Chinner 已提交
450
	error = xfs_sync_fsdata(mp, SYNC_WAIT);
451

D
David Chinner 已提交
452
	/* flush data-only devices */
453 454 455 456
	if (mp->m_rtdev_targp)
		XFS_bflush(mp->m_rtdev_targp);

	return error;
457 458
}

D
David Chinner 已提交
459 460 461 462 463 464 465
STATIC void
xfs_quiesce_fs(
	struct xfs_mount	*mp)
{
	int	count = 0, pincount;

	xfs_flush_buftarg(mp->m_ddev_targp, 0);
466
	xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
D
David Chinner 已提交
467 468 469 470 471 472 473 474

	/*
	 * This loop must run at least twice.  The first instance of the loop
	 * will flush most meta data but that will generate more meta data
	 * (typically directory updates).  Which then must be flushed and
	 * logged before we can write the unmount record.
	 */
	do {
C
Christoph Hellwig 已提交
475
		xfs_sync_attr(mp, SYNC_WAIT);
D
David Chinner 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
		if (!pincount) {
			delay(50);
			count++;
		}
	} while (count < 2);
}

/*
 * Second stage of a quiesce. The data is already synced, now we have to take
 * care of the metadata. New transactions are already blocked, so we need to
 * wait for any remaining transactions to drain out before proceding.
 */
void
xfs_quiesce_attr(
	struct xfs_mount	*mp)
{
	int	error = 0;

	/* wait for all modifications to complete */
	while (atomic_read(&mp->m_active_trans) > 0)
		delay(100);

	/* flush inodes and push all remaining buffers out to disk */
	xfs_quiesce_fs(mp);

502 503 504 505 506
	/*
	 * Just warn here till VFS can correctly support
	 * read-only remount without racing.
	 */
	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
D
David Chinner 已提交
507 508 509 510 511 512 513 514 515 516 517

	/* Push the superblock and write an unmount record */
	error = xfs_log_sbcount(mp, 1);
	if (error)
		xfs_fs_cmn_err(CE_WARN, mp,
				"xfs_attr_quiesce: failed to log sb changes. "
				"Frozen image may not be consistent.");
	xfs_log_unmount_write(mp);
	xfs_unmountfs_writesb(mp);
}

518 519 520 521 522 523 524 525 526 527 528
/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct xfs_mount *mp,
	void		*data,
529 530
	void		(*syncer)(struct xfs_mount *, void *),
	struct completion *completion)
531
{
532
	struct xfs_sync_work *work;
533

534
	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
535 536 537 538
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_mount = mp;
539
	work->w_completion = completion;
540 541 542 543 544 545 546 547 548 549 550 551 552
	spin_lock(&mp->m_sync_lock);
	list_add_tail(&work->w_list, &mp->m_sync_list);
	spin_unlock(&mp->m_sync_lock);
	wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
553
xfs_flush_inodes_work(
554 555 556 557
	struct xfs_mount *mp,
	void		*arg)
{
	struct inode	*inode = arg;
C
Christoph Hellwig 已提交
558
	xfs_sync_data(mp, SYNC_TRYLOCK);
C
Christoph Hellwig 已提交
559
	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
560 561 562 563
	iput(inode);
}

void
564
xfs_flush_inodes(
565 566 567
	xfs_inode_t	*ip)
{
	struct inode	*inode = VFS_I(ip);
568
	DECLARE_COMPLETION_ONSTACK(completion);
569 570

	igrab(inode);
571 572
	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
	wait_for_completion(&completion);
573 574 575
	xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}

576 577 578 579 580
/*
 * Every sync period we need to unpin all items, reclaim inodes, sync
 * quota and write out the superblock. We might need to cover the log
 * to indicate it is idle.
 */
581 582 583 584 585 586 587
STATIC void
xfs_sync_worker(
	struct xfs_mount *mp,
	void		*unused)
{
	int		error;

588 589
	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
590
		xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
591
		/* dgc: errors ignored here */
C
Christoph Hellwig 已提交
592 593
		error = xfs_qm_sync(mp, SYNC_TRYLOCK);
		error = xfs_sync_fsdata(mp, SYNC_TRYLOCK);
594
	}
595 596 597 598 599 600 601 602 603 604
	mp->m_sync_seq++;
	wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
	void			*arg)
{
	struct xfs_mount	*mp = arg;
	long			timeleft;
605
	xfs_sync_work_t		*work, *n;
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	LIST_HEAD		(tmp);

	set_freezable();
	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
	for (;;) {
		timeleft = schedule_timeout_interruptible(timeleft);
		/* swsusp */
		try_to_freeze();
		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
			break;

		spin_lock(&mp->m_sync_lock);
		/*
		 * We can get woken by laptop mode, to do a sync -
		 * that's the (only!) case where the list would be
		 * empty with time remaining.
		 */
		if (!timeleft || list_empty(&mp->m_sync_list)) {
			if (!timeleft)
				timeleft = xfs_syncd_centisecs *
							msecs_to_jiffies(10);
			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
			list_add_tail(&mp->m_sync_work.w_list,
					&mp->m_sync_list);
		}
		list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
			list_move(&work->w_list, &tmp);
		spin_unlock(&mp->m_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(mp, work->w_data);
			list_del(&work->w_list);
			if (work == &mp->m_sync_work)
				continue;
640 641
			if (work->w_completion)
				complete(work->w_completion);
642 643 644 645 646 647 648 649 650 651 652 653 654
			kmem_free(work);
		}
	}

	return 0;
}

int
xfs_syncd_init(
	struct xfs_mount	*mp)
{
	mp->m_sync_work.w_syncer = xfs_sync_worker;
	mp->m_sync_work.w_mount = mp;
655
	mp->m_sync_work.w_completion = NULL;
656 657 658 659 660 661 662 663 664 665 666 667 668
	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
	if (IS_ERR(mp->m_sync_task))
		return -PTR_ERR(mp->m_sync_task);
	return 0;
}

void
xfs_syncd_stop(
	struct xfs_mount	*mp)
{
	kthread_stop(mp->m_sync_task);
}

669 670 671 672 673 674 675 676 677 678
void
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
}

D
David Chinner 已提交
679 680 681 682 683
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
684 685 686 687 688 689 690 691 692
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);

	read_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
693
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
694
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	spin_unlock(&ip->i_flags_lock);
	read_unlock(&pag->pag_ici_lock);
	xfs_put_perag(mp, pag);
}

void
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
}

710
STATIC int
711
xfs_reclaim_inode(
712 713
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
714
	int			sync_mode)
715
{
716 717 718 719 720 721 722 723 724 725 726
	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
	 */
	spin_lock(&ip->i_flags_lock);
	ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
	if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* ignore as it is already under reclaim */
		spin_unlock(&ip->i_flags_lock);
		write_unlock(&pag->pag_ici_lock);
727
		return 0;
728
	}
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	write_unlock(&pag->pag_ici_lock);

	/*
	 * If the inode is still dirty, then flush it out.  If the inode
	 * is not in the AIL, then it will be OK to flush it delwri as
	 * long as xfs_iflush() does not keep any references to the inode.
	 * We leave that decision up to xfs_iflush() since it has the
	 * knowledge of whether it's OK to simply do a delwri flush of
	 * the inode or whether we need to wait until the inode is
	 * pulled from the AIL.
	 * We get the flush lock regardless, though, just to make sure
	 * we don't free it while it is being flushed.
	 */
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_iflock(ip);
746

747 748 749 750 751 752 753 754 755 756 757 758 759
	/*
	 * In the case of a forced shutdown we rely on xfs_iflush() to
	 * wait for the inode to be unpinned before returning an error.
	 */
	if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
		/* synchronize with xfs_iflush_done */
		xfs_iflock(ip);
		xfs_ifunlock(ip);
	}

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_ireclaim(ip);
	return 0;
760 761 762 763 764 765 766
}

int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
767 768
	return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
					XFS_ICI_RECLAIM_TAG, 1);
769
}