xfs_sync.c 20.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"
C
Christoph Hellwig 已提交
46
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
47
#include "xfs_trace.h"
48

49 50 51
#include <linux/kthread.h>
#include <linux/freezer.h>

52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
STATIC xfs_inode_t *
xfs_inode_ag_lookup(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	uint32_t		*first_index,
	int			tag)
{
	int			nr_found;
	struct xfs_inode	*ip;

	/*
	 * use a gang lookup to find the next inode in the tree
	 * as the tree is sparse and a gang lookup walks to find
	 * the number of objects requested.
	 */
	if (tag == XFS_ICI_NO_TAG) {
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1);
	} else {
		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1, tag);
	}
	if (!nr_found)
76
		return NULL;
77 78 79 80 81 82 83 84 85

	/*
	 * Update the index for the next lookup. Catch overflows
	 * into the next AG range which can occur if we have inodes
	 * in the last block of the AG and we are currently
	 * pointing to the last inode.
	 */
	*first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
	if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
86
		return NULL;
87 88 89 90 91 92
	return ip;
}

STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
93
	struct xfs_perag	*pag,
94 95 96
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
97 98
	int			tag,
	int			exclusive)
99 100 101 102 103 104 105 106 107 108 109 110
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;

restart:
	skipped = 0;
	first_index = 0;
	do {
		int		error = 0;
		xfs_inode_t	*ip;

111 112 113 114
		if (exclusive)
			write_lock(&pag->pag_ici_lock);
		else
			read_lock(&pag->pag_ici_lock);
115
		ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
116 117 118 119 120
		if (!ip) {
			if (exclusive)
				write_unlock(&pag->pag_ici_lock);
			else
				read_unlock(&pag->pag_ici_lock);
121
			break;
122
		}
123

124
		/* execute releases pag->pag_ici_lock */
125 126 127 128 129 130 131
		error = execute(ip, pag, flags);
		if (error == EAGAIN) {
			skipped++;
			continue;
		}
		if (error)
			last_error = error;
132 133

		/* bail out if the filesystem is corrupted.  */
134 135 136 137 138 139 140 141 142 143 144 145
		if (error == EFSCORRUPTED)
			break;

	} while (1);

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

146
int
147 148 149 150 151
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
152 153
	int			tag,
	int			exclusive)
154 155 156 157 158 159
{
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
D
Dave Chinner 已提交
160 161 162 163 164
		struct xfs_perag	*pag;

		pag = xfs_perag_get(mp, ag);
		if (!pag->pag_ici_init) {
			xfs_perag_put(pag);
165
			continue;
D
Dave Chinner 已提交
166 167
		}
		error = xfs_inode_ag_walk(mp, pag, execute, flags, tag,
168
						exclusive);
D
Dave Chinner 已提交
169
		xfs_perag_put(pag);
170 171 172 173 174 175 176 177 178
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
	}
	return XFS_ERROR(last_error);
}

179
/* must be called with pag_ici_lock held and releases it */
180
int
181 182 183 184 185
xfs_sync_inode_valid(
	struct xfs_inode	*ip,
	struct xfs_perag	*pag)
{
	struct inode		*inode = VFS_I(ip);
186
	int			error = EFSCORRUPTED;
187 188

	/* nothing to sync during shutdown */
189 190
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		goto out_unlock;
191

192 193 194 195
	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	error = ENOENT;
	if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock;
196

197 198 199 200 201
	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
		goto out_unlock;

	if (is_bad_inode(inode)) {
202
		IRELE(ip);
203
		goto out_unlock;
204 205
	}

206 207 208 209 210
	/* inode is valid */
	error = 0;
out_unlock:
	read_unlock(&pag->pag_ici_lock);
	return error;
211 212
}

213 214 215
STATIC int
xfs_sync_inode_data(
	struct xfs_inode	*ip,
216
	struct xfs_perag	*pag,
217 218 219 220 221 222
	int			flags)
{
	struct inode		*inode = VFS_I(ip);
	struct address_space *mapping = inode->i_mapping;
	int			error = 0;

223 224 225 226
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

227 228 229 230 231 232 233 234 235 236
	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		goto out_wait;

	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
		if (flags & SYNC_TRYLOCK)
			goto out_wait;
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}

	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
237
				0 : XBF_ASYNC, FI_NONE);
238 239 240
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

 out_wait:
C
Christoph Hellwig 已提交
241
	if (flags & SYNC_WAIT)
242
		xfs_ioend_wait(ip);
243
	IRELE(ip);
244 245 246
	return error;
}

247 248 249
STATIC int
xfs_sync_inode_attr(
	struct xfs_inode	*ip,
250
	struct xfs_perag	*pag,
251 252 253 254
	int			flags)
{
	int			error = 0;

255 256 257 258
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

259 260 261 262 263 264 265 266 267 268 269 270 271 272
	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_inode_clean(ip))
		goto out_unlock;
	if (!xfs_iflock_nowait(ip)) {
		if (!(flags & SYNC_WAIT))
			goto out_unlock;
		xfs_iflock(ip);
	}

	if (xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
		goto out_unlock;
	}

273
	error = xfs_iflush(ip, flags);
274 275 276

 out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
277
	IRELE(ip);
278 279 280
	return error;
}

C
Christoph Hellwig 已提交
281 282 283
/*
 * Write out pagecache data for the whole filesystem.
 */
284
int
C
Christoph Hellwig 已提交
285 286 287
xfs_sync_data(
	struct xfs_mount	*mp,
	int			flags)
288
{
C
Christoph Hellwig 已提交
289
	int			error;
290

C
Christoph Hellwig 已提交
291
	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
292

C
Christoph Hellwig 已提交
293
	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
294
				      XFS_ICI_NO_TAG, 0);
C
Christoph Hellwig 已提交
295 296
	if (error)
		return XFS_ERROR(error);
297

298
	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
C
Christoph Hellwig 已提交
299 300
	return 0;
}
301

C
Christoph Hellwig 已提交
302 303 304 305 306 307 308 309 310
/*
 * Write out inode metadata (attributes) for the whole filesystem.
 */
int
xfs_sync_attr(
	struct xfs_mount	*mp,
	int			flags)
{
	ASSERT((flags & ~SYNC_WAIT) == 0);
311

C
Christoph Hellwig 已提交
312
	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
313
				     XFS_ICI_NO_TAG, 0);
314 315
}

316 317 318
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
319
	uint			flags)
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	error = xfs_trans_commit(tp, 0);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

344
	/* the log force ensures this transaction is pushed to disk */
345
	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
346
	return error;
347 348
}

349
STATIC int
350 351 352 353 354 355 356 357 358 359 360 361
xfs_sync_fsdata(
	struct xfs_mount	*mp,
	int			flags)
{
	struct xfs_buf		*bp;
	struct xfs_buf_log_item	*bip;
	int			error = 0;

	/*
	 * If this is xfssyncd() then only sync the superblock if we can
	 * lock it without sleeping and it is not pinned.
	 */
C
Christoph Hellwig 已提交
362
	if (flags & SYNC_TRYLOCK) {
363 364
		ASSERT(!(flags & SYNC_WAIT));

365
		bp = xfs_getsb(mp, XBF_TRYLOCK);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
		if (!bp)
			goto out;

		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
			goto out_brelse;
	} else {
		bp = xfs_getsb(mp, 0);

		/*
		 * If the buffer is pinned then push on the log so we won't
		 * get stuck waiting in the write for someone, maybe
		 * ourselves, to flush the log.
		 *
		 * Even though we just pushed the log above, we did not have
		 * the superblock buffer locked at that point so it can
		 * become pinned in between there and here.
		 */
		if (XFS_BUF_ISPINNED(bp))
385
			xfs_log_force(mp, 0);
386 387 388 389 390 391 392 393
	}


	if (flags & SYNC_WAIT)
		XFS_BUF_UNASYNC(bp);
	else
		XFS_BUF_ASYNC(bp);

394 395 396 397 398 399 400 401 402 403 404 405 406 407
	error = xfs_bwrite(mp, bp);
	if (error)
		return error;

	/*
	 * If this is a data integrity sync make sure all pending buffers
	 * are flushed out for the log coverage check below.
	 */
	if (flags & SYNC_WAIT)
		xfs_flush_buftarg(mp->m_ddev_targp, 1);

	if (xfs_log_need_covered(mp))
		error = xfs_commit_dummy_trans(mp, flags);
	return error;
408 409 410 411 412

 out_brelse:
	xfs_buf_relse(bp);
 out:
	return error;
413 414 415
}

/*
D
David Chinner 已提交
416 417 418 419 420 421 422 423 424 425 426
 * When remounting a filesystem read-only or freezing the filesystem, we have
 * two phases to execute. This first phase is syncing the data before we
 * quiesce the filesystem, and the second is flushing all the inodes out after
 * we've waited for all the transactions created by the first phase to
 * complete. The second phase ensures that the inodes are written to their
 * location on disk rather than just existing in transactions in the log. This
 * means after a quiesce there is no log replay required to write the inodes to
 * disk (this is the main difference between a sync and a quiesce).
 */
/*
 * First stage of freeze - no writers will make progress now we are here,
427 428
 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 * complete.  Data is frozen at that point. Metadata is not frozen,
D
David Chinner 已提交
429 430
 * transactions can still occur here so don't bother flushing the buftarg
 * because it'll just get dirty again.
431 432 433 434 435 436 437 438
 */
int
xfs_quiesce_data(
	struct xfs_mount	*mp)
{
	int error;

	/* push non-blocking */
C
Christoph Hellwig 已提交
439
	xfs_sync_data(mp, 0);
C
Christoph Hellwig 已提交
440
	xfs_qm_sync(mp, SYNC_TRYLOCK);
441

D
Dave Chinner 已提交
442
	/* push and block till complete */
C
Christoph Hellwig 已提交
443
	xfs_sync_data(mp, SYNC_WAIT);
C
Christoph Hellwig 已提交
444
	xfs_qm_sync(mp, SYNC_WAIT);
445

D
David Chinner 已提交
446
	/* write superblock and hoover up shutdown errors */
D
Dave Chinner 已提交
447
	error = xfs_sync_fsdata(mp, SYNC_WAIT);
448

D
David Chinner 已提交
449
	/* flush data-only devices */
450 451 452 453
	if (mp->m_rtdev_targp)
		XFS_bflush(mp->m_rtdev_targp);

	return error;
454 455
}

D
David Chinner 已提交
456 457 458 459 460 461
STATIC void
xfs_quiesce_fs(
	struct xfs_mount	*mp)
{
	int	count = 0, pincount;

462
	xfs_reclaim_inodes(mp, 0);
D
David Chinner 已提交
463 464 465 466 467 468
	xfs_flush_buftarg(mp->m_ddev_targp, 0);

	/*
	 * This loop must run at least twice.  The first instance of the loop
	 * will flush most meta data but that will generate more meta data
	 * (typically directory updates).  Which then must be flushed and
469 470
	 * logged before we can write the unmount record. We also so sync
	 * reclaim of inodes to catch any that the above delwri flush skipped.
D
David Chinner 已提交
471 472
	 */
	do {
473
		xfs_reclaim_inodes(mp, SYNC_WAIT);
C
Christoph Hellwig 已提交
474
		xfs_sync_attr(mp, SYNC_WAIT);
D
David Chinner 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
		if (!pincount) {
			delay(50);
			count++;
		}
	} while (count < 2);
}

/*
 * Second stage of a quiesce. The data is already synced, now we have to take
 * care of the metadata. New transactions are already blocked, so we need to
 * wait for any remaining transactions to drain out before proceding.
 */
void
xfs_quiesce_attr(
	struct xfs_mount	*mp)
{
	int	error = 0;

	/* wait for all modifications to complete */
	while (atomic_read(&mp->m_active_trans) > 0)
		delay(100);

	/* flush inodes and push all remaining buffers out to disk */
	xfs_quiesce_fs(mp);

501 502 503 504 505
	/*
	 * Just warn here till VFS can correctly support
	 * read-only remount without racing.
	 */
	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
D
David Chinner 已提交
506 507 508 509 510 511 512 513 514 515 516

	/* Push the superblock and write an unmount record */
	error = xfs_log_sbcount(mp, 1);
	if (error)
		xfs_fs_cmn_err(CE_WARN, mp,
				"xfs_attr_quiesce: failed to log sb changes. "
				"Frozen image may not be consistent.");
	xfs_log_unmount_write(mp);
	xfs_unmountfs_writesb(mp);
}

517 518 519 520 521 522 523 524 525 526 527
/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct xfs_mount *mp,
	void		*data,
528 529
	void		(*syncer)(struct xfs_mount *, void *),
	struct completion *completion)
530
{
531
	struct xfs_sync_work *work;
532

533
	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
534 535 536 537
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_mount = mp;
538
	work->w_completion = completion;
539 540 541 542 543 544 545 546 547 548 549 550 551
	spin_lock(&mp->m_sync_lock);
	list_add_tail(&work->w_list, &mp->m_sync_list);
	spin_unlock(&mp->m_sync_lock);
	wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
552
xfs_flush_inodes_work(
553 554 555 556
	struct xfs_mount *mp,
	void		*arg)
{
	struct inode	*inode = arg;
C
Christoph Hellwig 已提交
557
	xfs_sync_data(mp, SYNC_TRYLOCK);
C
Christoph Hellwig 已提交
558
	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
559 560 561 562
	iput(inode);
}

void
563
xfs_flush_inodes(
564 565 566
	xfs_inode_t	*ip)
{
	struct inode	*inode = VFS_I(ip);
567
	DECLARE_COMPLETION_ONSTACK(completion);
568 569

	igrab(inode);
570 571
	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
	wait_for_completion(&completion);
572
	xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
573 574
}

575 576 577 578 579
/*
 * Every sync period we need to unpin all items, reclaim inodes, sync
 * quota and write out the superblock. We might need to cover the log
 * to indicate it is idle.
 */
580 581 582 583 584 585 586
STATIC void
xfs_sync_worker(
	struct xfs_mount *mp,
	void		*unused)
{
	int		error;

587
	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
588
		xfs_log_force(mp, 0);
589
		xfs_reclaim_inodes(mp, 0);
590
		/* dgc: errors ignored here */
C
Christoph Hellwig 已提交
591 592
		error = xfs_qm_sync(mp, SYNC_TRYLOCK);
		error = xfs_sync_fsdata(mp, SYNC_TRYLOCK);
593
	}
594 595 596 597 598 599 600 601 602 603
	mp->m_sync_seq++;
	wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
	void			*arg)
{
	struct xfs_mount	*mp = arg;
	long			timeleft;
604
	xfs_sync_work_t		*work, *n;
605 606 607 608 609
	LIST_HEAD		(tmp);

	set_freezable();
	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
	for (;;) {
610 611
		if (list_empty(&mp->m_sync_list))
			timeleft = schedule_timeout_interruptible(timeleft);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
		/* swsusp */
		try_to_freeze();
		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
			break;

		spin_lock(&mp->m_sync_lock);
		/*
		 * We can get woken by laptop mode, to do a sync -
		 * that's the (only!) case where the list would be
		 * empty with time remaining.
		 */
		if (!timeleft || list_empty(&mp->m_sync_list)) {
			if (!timeleft)
				timeleft = xfs_syncd_centisecs *
							msecs_to_jiffies(10);
			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
			list_add_tail(&mp->m_sync_work.w_list,
					&mp->m_sync_list);
		}
631
		list_splice_init(&mp->m_sync_list, &tmp);
632 633 634 635 636 637 638
		spin_unlock(&mp->m_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(mp, work->w_data);
			list_del(&work->w_list);
			if (work == &mp->m_sync_work)
				continue;
639 640
			if (work->w_completion)
				complete(work->w_completion);
641 642 643 644 645 646 647 648 649 650 651 652 653
			kmem_free(work);
		}
	}

	return 0;
}

int
xfs_syncd_init(
	struct xfs_mount	*mp)
{
	mp->m_sync_work.w_syncer = xfs_sync_worker;
	mp->m_sync_work.w_mount = mp;
654
	mp->m_sync_work.w_completion = NULL;
655 656 657 658 659 660 661 662 663 664 665 666 667
	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
	if (IS_ERR(mp->m_sync_task))
		return -PTR_ERR(mp->m_sync_task);
	return 0;
}

void
xfs_syncd_stop(
	struct xfs_mount	*mp)
{
	kthread_stop(mp->m_sync_task);
}

668 669 670 671 672 673 674 675 676 677
void
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
}

D
David Chinner 已提交
678 679 680 681 682
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
683 684 685 686
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
D
Dave Chinner 已提交
687 688
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
689

D
Dave Chinner 已提交
690
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
691
	write_lock(&pag->pag_ici_lock);
692
	spin_lock(&ip->i_flags_lock);
693
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
694
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
695
	spin_unlock(&ip->i_flags_lock);
696
	write_unlock(&pag->pag_ici_lock);
D
Dave Chinner 已提交
697
	xfs_perag_put(pag);
698 699 700 701 702 703 704 705 706 707 708 709
}

void
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
}

710 711 712 713 714 715 716 717 718 719 720 721 722
/*
 * Inodes in different states need to be treated differently, and the return
 * value of xfs_iflush is not sufficient to get this right. The following table
 * lists the inode states and the reclaim actions necessary for non-blocking
 * reclaim:
 *
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
723 724 725 726 727
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
 *	dirty, delwri ok	0		requeue
 *	dirty, delwri blocked	EAGAIN		requeue
 *	dirty, sync flush	0		reclaim
728 729 730 731
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
 * As can be seen from the table, the return value of xfs_iflush() is not
 * sufficient to correctly decide the reclaim action here. The checks in
 * xfs_iflush() might look like duplicates, but they are not.
 *
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
 * the inode is clean. The clean inode check needs to be done before flushing
 * the inode delwri otherwise we would loop forever requeuing clean inodes as
 * we cannot tell apart a successful delwri flush and a clean inode from the
 * return value of xfs_iflush().
 *
 * Note that because the inode is flushed delayed write by background
 * writeback, the flush lock may already be held here and waiting on it can
 * result in very long latencies. Hence for sync reclaims, where we wait on the
 * flush lock, the caller should push out delayed write inodes first before
 * trying to reclaim them to minimise the amount of time spent waiting. For
 * background relaim, we just requeue the inode for the next pass.
 *
750 751 752
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
753 754
 *	pinned, delwri	=> requeue
 *	pinned, sync	=> unpin
755 756
 *	stale		=> reclaim
 *	clean		=> reclaim
757 758
 *	dirty, delwri	=> flush and requeue
 *	dirty, sync	=> flush, wait and reclaim
759
 */
760
STATIC int
761
xfs_reclaim_inode(
762 763
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
764
	int			sync_mode)
765
{
766
	int	error = 0;
767

768 769 770 771 772 773 774 775 776 777 778
	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
	 */
	spin_lock(&ip->i_flags_lock);
	ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
	if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* ignore as it is already under reclaim */
		spin_unlock(&ip->i_flags_lock);
		write_unlock(&pag->pag_ici_lock);
779
		return 0;
780
	}
781 782 783 784 785
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	write_unlock(&pag->pag_ici_lock);

	xfs_ilock(ip, XFS_ILOCK_EXCL);
786 787 788 789 790
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
791

792 793 794 795 796 797
	if (is_bad_inode(VFS_I(ip)))
		goto reclaim;
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
		goto reclaim;
	}
798 799 800 801 802
	if (xfs_ipincount(ip)) {
		if (!(sync_mode & SYNC_WAIT)) {
			xfs_ifunlock(ip);
			goto out;
		}
803
		xfs_iunpin_wait(ip);
804
	}
805 806 807 808 809 810 811
	if (xfs_iflags_test(ip, XFS_ISTALE))
		goto reclaim;
	if (xfs_inode_clean(ip))
		goto reclaim;

	/* Now we have an inode that needs flushing */
	error = xfs_iflush(ip, sync_mode);
812 813 814
	if (sync_mode & SYNC_WAIT) {
		xfs_iflock(ip);
		goto reclaim;
815 816
	}

817 818 819 820 821 822
	/*
	 * When we have to flush an inode but don't have SYNC_WAIT set, we
	 * flush the inode out using a delwri buffer and wait for the next
	 * call into reclaim to find it in a clean state instead of waiting for
	 * it now. We also don't return errors here - if the error is transient
	 * then the next reclaim pass will flush the inode, and if the error
823
	 * is permanent then the next sync reclaim will reclaim the inode and
824 825
	 * pass on the error.
	 */
826
	if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
			"inode 0x%llx background reclaim flush failed with %d",
			(long long)ip->i_ino, error);
	}
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
	 * We could return EAGAIN here to make reclaim rescan the inode tree in
	 * a short while. However, this just burns CPU time scanning the tree
	 * waiting for IO to complete and xfssyncd never goes back to the idle
	 * state. Instead, return 0 to let the next scheduled background reclaim
	 * attempt to reclaim the inode again.
	 */
	return 0;

843 844
reclaim:
	xfs_ifunlock(ip);
845 846
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_ireclaim(ip);
847 848
	return error;

849 850 851 852 853 854 855
}

int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
856 857
	return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
					XFS_ICI_RECLAIM_TAG, 1);
858
}