xfs_sync.c 23.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"
C
Christoph Hellwig 已提交
46
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
47
#include "xfs_trace.h"
48

49 50 51
#include <linux/kthread.h>
#include <linux/freezer.h>

52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
STATIC xfs_inode_t *
xfs_inode_ag_lookup(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	uint32_t		*first_index,
	int			tag)
{
	int			nr_found;
	struct xfs_inode	*ip;

	/*
	 * use a gang lookup to find the next inode in the tree
	 * as the tree is sparse and a gang lookup walks to find
	 * the number of objects requested.
	 */
	if (tag == XFS_ICI_NO_TAG) {
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1);
	} else {
		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1, tag);
	}
	if (!nr_found)
76
		return NULL;
77 78 79 80 81 82 83 84 85

	/*
	 * Update the index for the next lookup. Catch overflows
	 * into the next AG range which can occur if we have inodes
	 * in the last block of the AG and we are currently
	 * pointing to the last inode.
	 */
	*first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
	if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
86
		return NULL;
87 88 89 90 91 92
	return ip;
}

STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
93
	struct xfs_perag	*pag,
94 95 96
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
97
	int			tag,
98 99
	int			exclusive,
	int			*nr_to_scan)
100 101 102 103 104 105 106 107 108 109 110 111
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;

restart:
	skipped = 0;
	first_index = 0;
	do {
		int		error = 0;
		xfs_inode_t	*ip;

112 113 114 115
		if (exclusive)
			write_lock(&pag->pag_ici_lock);
		else
			read_lock(&pag->pag_ici_lock);
116
		ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
117 118 119 120 121
		if (!ip) {
			if (exclusive)
				write_unlock(&pag->pag_ici_lock);
			else
				read_unlock(&pag->pag_ici_lock);
122
			break;
123
		}
124

125
		/* execute releases pag->pag_ici_lock */
126 127 128 129 130 131 132
		error = execute(ip, pag, flags);
		if (error == EAGAIN) {
			skipped++;
			continue;
		}
		if (error)
			last_error = error;
133 134

		/* bail out if the filesystem is corrupted.  */
135 136 137
		if (error == EFSCORRUPTED)
			break;

138
	} while ((*nr_to_scan)--);
139 140 141 142 143 144 145 146

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

147
int
148 149 150 151 152
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
153
	int			tag,
154 155
	int			exclusive,
	int			*nr_to_scan)
156 157 158 159
{
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
160
	int			nr;
161

162
	nr = nr_to_scan ? *nr_to_scan : INT_MAX;
163
	for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
D
Dave Chinner 已提交
164 165 166 167 168
		struct xfs_perag	*pag;

		pag = xfs_perag_get(mp, ag);
		if (!pag->pag_ici_init) {
			xfs_perag_put(pag);
169
			continue;
D
Dave Chinner 已提交
170 171
		}
		error = xfs_inode_ag_walk(mp, pag, execute, flags, tag,
172
						exclusive, &nr);
D
Dave Chinner 已提交
173
		xfs_perag_put(pag);
174 175 176 177 178
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
179 180
		if (nr <= 0)
			break;
181
	}
182 183
	if (nr_to_scan)
		*nr_to_scan = nr;
184 185 186
	return XFS_ERROR(last_error);
}

187
/* must be called with pag_ici_lock held and releases it */
188
int
189 190 191 192 193
xfs_sync_inode_valid(
	struct xfs_inode	*ip,
	struct xfs_perag	*pag)
{
	struct inode		*inode = VFS_I(ip);
194
	int			error = EFSCORRUPTED;
195 196

	/* nothing to sync during shutdown */
197 198
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		goto out_unlock;
199

200 201 202 203
	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	error = ENOENT;
	if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock;
204

205 206 207 208 209
	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
		goto out_unlock;

	if (is_bad_inode(inode)) {
210
		IRELE(ip);
211
		goto out_unlock;
212 213
	}

214 215 216 217 218
	/* inode is valid */
	error = 0;
out_unlock:
	read_unlock(&pag->pag_ici_lock);
	return error;
219 220
}

221 222 223
STATIC int
xfs_sync_inode_data(
	struct xfs_inode	*ip,
224
	struct xfs_perag	*pag,
225 226 227 228 229 230
	int			flags)
{
	struct inode		*inode = VFS_I(ip);
	struct address_space *mapping = inode->i_mapping;
	int			error = 0;

231 232 233 234
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

235 236 237 238 239 240 241 242 243 244
	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		goto out_wait;

	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
		if (flags & SYNC_TRYLOCK)
			goto out_wait;
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}

	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
245
				0 : XBF_ASYNC, FI_NONE);
246 247 248
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

 out_wait:
C
Christoph Hellwig 已提交
249
	if (flags & SYNC_WAIT)
250
		xfs_ioend_wait(ip);
251
	IRELE(ip);
252 253 254
	return error;
}

255 256 257
STATIC int
xfs_sync_inode_attr(
	struct xfs_inode	*ip,
258
	struct xfs_perag	*pag,
259 260 261 262
	int			flags)
{
	int			error = 0;

263 264 265 266
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

267 268 269 270 271 272 273 274 275 276 277 278 279 280
	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_inode_clean(ip))
		goto out_unlock;
	if (!xfs_iflock_nowait(ip)) {
		if (!(flags & SYNC_WAIT))
			goto out_unlock;
		xfs_iflock(ip);
	}

	if (xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
		goto out_unlock;
	}

281
	error = xfs_iflush(ip, flags);
282 283 284

 out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
285
	IRELE(ip);
286 287 288
	return error;
}

C
Christoph Hellwig 已提交
289 290 291
/*
 * Write out pagecache data for the whole filesystem.
 */
292
int
C
Christoph Hellwig 已提交
293 294 295
xfs_sync_data(
	struct xfs_mount	*mp,
	int			flags)
296
{
C
Christoph Hellwig 已提交
297
	int			error;
298

C
Christoph Hellwig 已提交
299
	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
300

C
Christoph Hellwig 已提交
301
	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
302
				      XFS_ICI_NO_TAG, 0, NULL);
C
Christoph Hellwig 已提交
303 304
	if (error)
		return XFS_ERROR(error);
305

306
	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
C
Christoph Hellwig 已提交
307 308
	return 0;
}
309

C
Christoph Hellwig 已提交
310 311 312 313 314 315 316 317 318
/*
 * Write out inode metadata (attributes) for the whole filesystem.
 */
int
xfs_sync_attr(
	struct xfs_mount	*mp,
	int			flags)
{
	ASSERT((flags & ~SYNC_WAIT) == 0);
319

C
Christoph Hellwig 已提交
320
	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
321
				     XFS_ICI_NO_TAG, 0, NULL);
322 323
}

324 325 326
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
327
	uint			flags)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	error = xfs_trans_commit(tp, 0);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

352
	/* the log force ensures this transaction is pushed to disk */
353
	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
354
	return error;
355 356
}

357
STATIC int
358 359 360 361 362 363 364 365 366 367 368 369
xfs_sync_fsdata(
	struct xfs_mount	*mp,
	int			flags)
{
	struct xfs_buf		*bp;
	struct xfs_buf_log_item	*bip;
	int			error = 0;

	/*
	 * If this is xfssyncd() then only sync the superblock if we can
	 * lock it without sleeping and it is not pinned.
	 */
C
Christoph Hellwig 已提交
370
	if (flags & SYNC_TRYLOCK) {
371 372
		ASSERT(!(flags & SYNC_WAIT));

373
		bp = xfs_getsb(mp, XBF_TRYLOCK);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
		if (!bp)
			goto out;

		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
			goto out_brelse;
	} else {
		bp = xfs_getsb(mp, 0);

		/*
		 * If the buffer is pinned then push on the log so we won't
		 * get stuck waiting in the write for someone, maybe
		 * ourselves, to flush the log.
		 *
		 * Even though we just pushed the log above, we did not have
		 * the superblock buffer locked at that point so it can
		 * become pinned in between there and here.
		 */
		if (XFS_BUF_ISPINNED(bp))
393
			xfs_log_force(mp, 0);
394 395 396 397 398 399 400 401
	}


	if (flags & SYNC_WAIT)
		XFS_BUF_UNASYNC(bp);
	else
		XFS_BUF_ASYNC(bp);

402 403 404 405 406 407 408 409 410 411 412 413 414 415
	error = xfs_bwrite(mp, bp);
	if (error)
		return error;

	/*
	 * If this is a data integrity sync make sure all pending buffers
	 * are flushed out for the log coverage check below.
	 */
	if (flags & SYNC_WAIT)
		xfs_flush_buftarg(mp->m_ddev_targp, 1);

	if (xfs_log_need_covered(mp))
		error = xfs_commit_dummy_trans(mp, flags);
	return error;
416 417 418 419 420

 out_brelse:
	xfs_buf_relse(bp);
 out:
	return error;
421 422 423
}

/*
D
David Chinner 已提交
424 425 426 427 428 429 430 431 432 433 434
 * When remounting a filesystem read-only or freezing the filesystem, we have
 * two phases to execute. This first phase is syncing the data before we
 * quiesce the filesystem, and the second is flushing all the inodes out after
 * we've waited for all the transactions created by the first phase to
 * complete. The second phase ensures that the inodes are written to their
 * location on disk rather than just existing in transactions in the log. This
 * means after a quiesce there is no log replay required to write the inodes to
 * disk (this is the main difference between a sync and a quiesce).
 */
/*
 * First stage of freeze - no writers will make progress now we are here,
435 436
 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 * complete.  Data is frozen at that point. Metadata is not frozen,
D
David Chinner 已提交
437 438
 * transactions can still occur here so don't bother flushing the buftarg
 * because it'll just get dirty again.
439 440 441 442 443 444 445 446
 */
int
xfs_quiesce_data(
	struct xfs_mount	*mp)
{
	int error;

	/* push non-blocking */
C
Christoph Hellwig 已提交
447
	xfs_sync_data(mp, 0);
C
Christoph Hellwig 已提交
448
	xfs_qm_sync(mp, SYNC_TRYLOCK);
449

D
Dave Chinner 已提交
450
	/* push and block till complete */
C
Christoph Hellwig 已提交
451
	xfs_sync_data(mp, SYNC_WAIT);
C
Christoph Hellwig 已提交
452
	xfs_qm_sync(mp, SYNC_WAIT);
453

D
David Chinner 已提交
454
	/* write superblock and hoover up shutdown errors */
D
Dave Chinner 已提交
455
	error = xfs_sync_fsdata(mp, SYNC_WAIT);
456

D
David Chinner 已提交
457
	/* flush data-only devices */
458 459 460 461
	if (mp->m_rtdev_targp)
		XFS_bflush(mp->m_rtdev_targp);

	return error;
462 463
}

D
David Chinner 已提交
464 465 466 467 468 469
STATIC void
xfs_quiesce_fs(
	struct xfs_mount	*mp)
{
	int	count = 0, pincount;

470
	xfs_reclaim_inodes(mp, 0);
D
David Chinner 已提交
471 472 473 474 475 476
	xfs_flush_buftarg(mp->m_ddev_targp, 0);

	/*
	 * This loop must run at least twice.  The first instance of the loop
	 * will flush most meta data but that will generate more meta data
	 * (typically directory updates).  Which then must be flushed and
477 478
	 * logged before we can write the unmount record. We also so sync
	 * reclaim of inodes to catch any that the above delwri flush skipped.
D
David Chinner 已提交
479 480
	 */
	do {
481
		xfs_reclaim_inodes(mp, SYNC_WAIT);
C
Christoph Hellwig 已提交
482
		xfs_sync_attr(mp, SYNC_WAIT);
D
David Chinner 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
		if (!pincount) {
			delay(50);
			count++;
		}
	} while (count < 2);
}

/*
 * Second stage of a quiesce. The data is already synced, now we have to take
 * care of the metadata. New transactions are already blocked, so we need to
 * wait for any remaining transactions to drain out before proceding.
 */
void
xfs_quiesce_attr(
	struct xfs_mount	*mp)
{
	int	error = 0;

	/* wait for all modifications to complete */
	while (atomic_read(&mp->m_active_trans) > 0)
		delay(100);

	/* flush inodes and push all remaining buffers out to disk */
	xfs_quiesce_fs(mp);

509 510 511 512 513
	/*
	 * Just warn here till VFS can correctly support
	 * read-only remount without racing.
	 */
	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
D
David Chinner 已提交
514 515 516 517 518 519 520 521 522 523 524

	/* Push the superblock and write an unmount record */
	error = xfs_log_sbcount(mp, 1);
	if (error)
		xfs_fs_cmn_err(CE_WARN, mp,
				"xfs_attr_quiesce: failed to log sb changes. "
				"Frozen image may not be consistent.");
	xfs_log_unmount_write(mp);
	xfs_unmountfs_writesb(mp);
}

525 526 527 528 529 530 531 532 533 534 535
/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct xfs_mount *mp,
	void		*data,
536 537
	void		(*syncer)(struct xfs_mount *, void *),
	struct completion *completion)
538
{
539
	struct xfs_sync_work *work;
540

541
	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
542 543 544 545
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_mount = mp;
546
	work->w_completion = completion;
547 548 549 550 551 552 553 554 555 556 557 558 559
	spin_lock(&mp->m_sync_lock);
	list_add_tail(&work->w_list, &mp->m_sync_list);
	spin_unlock(&mp->m_sync_lock);
	wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
560
xfs_flush_inodes_work(
561 562 563 564
	struct xfs_mount *mp,
	void		*arg)
{
	struct inode	*inode = arg;
C
Christoph Hellwig 已提交
565
	xfs_sync_data(mp, SYNC_TRYLOCK);
C
Christoph Hellwig 已提交
566
	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
567 568 569 570
	iput(inode);
}

void
571
xfs_flush_inodes(
572 573 574
	xfs_inode_t	*ip)
{
	struct inode	*inode = VFS_I(ip);
575
	DECLARE_COMPLETION_ONSTACK(completion);
576 577

	igrab(inode);
578 579
	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
	wait_for_completion(&completion);
580
	xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
581 582
}

583 584 585 586 587
/*
 * Every sync period we need to unpin all items, reclaim inodes, sync
 * quota and write out the superblock. We might need to cover the log
 * to indicate it is idle.
 */
588 589 590 591 592 593 594
STATIC void
xfs_sync_worker(
	struct xfs_mount *mp,
	void		*unused)
{
	int		error;

595
	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
596
		xfs_log_force(mp, 0);
597
		xfs_reclaim_inodes(mp, 0);
598
		/* dgc: errors ignored here */
C
Christoph Hellwig 已提交
599 600
		error = xfs_qm_sync(mp, SYNC_TRYLOCK);
		error = xfs_sync_fsdata(mp, SYNC_TRYLOCK);
601
	}
602 603 604 605 606 607 608 609 610 611
	mp->m_sync_seq++;
	wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
	void			*arg)
{
	struct xfs_mount	*mp = arg;
	long			timeleft;
612
	xfs_sync_work_t		*work, *n;
613 614 615 616 617
	LIST_HEAD		(tmp);

	set_freezable();
	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
	for (;;) {
618 619
		if (list_empty(&mp->m_sync_list))
			timeleft = schedule_timeout_interruptible(timeleft);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
		/* swsusp */
		try_to_freeze();
		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
			break;

		spin_lock(&mp->m_sync_lock);
		/*
		 * We can get woken by laptop mode, to do a sync -
		 * that's the (only!) case where the list would be
		 * empty with time remaining.
		 */
		if (!timeleft || list_empty(&mp->m_sync_list)) {
			if (!timeleft)
				timeleft = xfs_syncd_centisecs *
							msecs_to_jiffies(10);
			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
			list_add_tail(&mp->m_sync_work.w_list,
					&mp->m_sync_list);
		}
639
		list_splice_init(&mp->m_sync_list, &tmp);
640 641 642 643 644 645 646
		spin_unlock(&mp->m_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(mp, work->w_data);
			list_del(&work->w_list);
			if (work == &mp->m_sync_work)
				continue;
647 648
			if (work->w_completion)
				complete(work->w_completion);
649 650 651 652 653 654 655 656 657 658 659 660 661
			kmem_free(work);
		}
	}

	return 0;
}

int
xfs_syncd_init(
	struct xfs_mount	*mp)
{
	mp->m_sync_work.w_syncer = xfs_sync_worker;
	mp->m_sync_work.w_mount = mp;
662
	mp->m_sync_work.w_completion = NULL;
663
	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
664 665 666 667 668 669 670 671 672 673 674 675
	if (IS_ERR(mp->m_sync_task))
		return -PTR_ERR(mp->m_sync_task);
	return 0;
}

void
xfs_syncd_stop(
	struct xfs_mount	*mp)
{
	kthread_stop(mp->m_sync_task);
}

676 677 678 679 680 681 682 683
void
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
684
	pag->pag_ici_reclaimable++;
685 686
}

D
David Chinner 已提交
687 688 689 690 691
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
692 693 694 695
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
D
Dave Chinner 已提交
696 697
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
698

D
Dave Chinner 已提交
699
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
700
	write_lock(&pag->pag_ici_lock);
701
	spin_lock(&ip->i_flags_lock);
702
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
703
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
704
	spin_unlock(&ip->i_flags_lock);
705
	write_unlock(&pag->pag_ici_lock);
D
Dave Chinner 已提交
706
	xfs_perag_put(pag);
707 708 709 710 711 712 713 714 715 716
}

void
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
717
	pag->pag_ici_reclaimable--;
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * Inodes in different states need to be treated differently, and the return
 * value of xfs_iflush is not sufficient to get this right. The following table
 * lists the inode states and the reclaim actions necessary for non-blocking
 * reclaim:
 *
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
733 734 735 736 737
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
 *	dirty, delwri ok	0		requeue
 *	dirty, delwri blocked	EAGAIN		requeue
 *	dirty, sync flush	0		reclaim
738 739 740 741
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
 * As can be seen from the table, the return value of xfs_iflush() is not
 * sufficient to correctly decide the reclaim action here. The checks in
 * xfs_iflush() might look like duplicates, but they are not.
 *
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
 * the inode is clean. The clean inode check needs to be done before flushing
 * the inode delwri otherwise we would loop forever requeuing clean inodes as
 * we cannot tell apart a successful delwri flush and a clean inode from the
 * return value of xfs_iflush().
 *
 * Note that because the inode is flushed delayed write by background
 * writeback, the flush lock may already be held here and waiting on it can
 * result in very long latencies. Hence for sync reclaims, where we wait on the
 * flush lock, the caller should push out delayed write inodes first before
 * trying to reclaim them to minimise the amount of time spent waiting. For
 * background relaim, we just requeue the inode for the next pass.
 *
760 761 762
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
763 764
 *	pinned, delwri	=> requeue
 *	pinned, sync	=> unpin
765 766
 *	stale		=> reclaim
 *	clean		=> reclaim
767 768
 *	dirty, delwri	=> flush and requeue
 *	dirty, sync	=> flush, wait and reclaim
769
 */
770
STATIC int
771
xfs_reclaim_inode(
772 773
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
774
	int			sync_mode)
775
{
776
	int	error = 0;
777

778 779 780 781 782 783 784 785 786 787 788
	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
	 */
	spin_lock(&ip->i_flags_lock);
	ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
	if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* ignore as it is already under reclaim */
		spin_unlock(&ip->i_flags_lock);
		write_unlock(&pag->pag_ici_lock);
789
		return 0;
790
	}
791 792 793 794 795
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	write_unlock(&pag->pag_ici_lock);

	xfs_ilock(ip, XFS_ILOCK_EXCL);
796 797 798 799 800
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
801

802 803 804 805 806 807
	if (is_bad_inode(VFS_I(ip)))
		goto reclaim;
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
		goto reclaim;
	}
808 809 810 811 812
	if (xfs_ipincount(ip)) {
		if (!(sync_mode & SYNC_WAIT)) {
			xfs_ifunlock(ip);
			goto out;
		}
813
		xfs_iunpin_wait(ip);
814
	}
815 816 817 818 819 820 821
	if (xfs_iflags_test(ip, XFS_ISTALE))
		goto reclaim;
	if (xfs_inode_clean(ip))
		goto reclaim;

	/* Now we have an inode that needs flushing */
	error = xfs_iflush(ip, sync_mode);
822 823 824
	if (sync_mode & SYNC_WAIT) {
		xfs_iflock(ip);
		goto reclaim;
825 826
	}

827 828 829 830 831 832
	/*
	 * When we have to flush an inode but don't have SYNC_WAIT set, we
	 * flush the inode out using a delwri buffer and wait for the next
	 * call into reclaim to find it in a clean state instead of waiting for
	 * it now. We also don't return errors here - if the error is transient
	 * then the next reclaim pass will flush the inode, and if the error
833
	 * is permanent then the next sync reclaim will reclaim the inode and
834 835
	 * pass on the error.
	 */
836
	if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
			"inode 0x%llx background reclaim flush failed with %d",
			(long long)ip->i_ino, error);
	}
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
	 * We could return EAGAIN here to make reclaim rescan the inode tree in
	 * a short while. However, this just burns CPU time scanning the tree
	 * waiting for IO to complete and xfssyncd never goes back to the idle
	 * state. Instead, return 0 to let the next scheduled background reclaim
	 * attempt to reclaim the inode again.
	 */
	return 0;

853 854
reclaim:
	xfs_ifunlock(ip);
855 856
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_ireclaim(ip);
857 858
	return error;

859 860 861 862 863 864 865
}

int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
866
	return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
					XFS_ICI_RECLAIM_TAG, 1, NULL);
}

/*
 * Shrinker infrastructure.
 *
 * This is all far more complex than it needs to be. It adds a global list of
 * mounts because the shrinkers can only call a global context. We need to make
 * the shrinkers pass a context to avoid the need for global state.
 */
static LIST_HEAD(xfs_mount_list);
static struct rw_semaphore xfs_mount_list_lock;

static int
xfs_reclaim_inode_shrink(
	int		nr_to_scan,
	gfp_t		gfp_mask)
{
	struct xfs_mount *mp;
	struct xfs_perag *pag;
	xfs_agnumber_t	ag;
	int		reclaimable = 0;

	if (nr_to_scan) {
		if (!(gfp_mask & __GFP_FS))
			return -1;

		down_read(&xfs_mount_list_lock);
		list_for_each_entry(mp, &xfs_mount_list, m_mplist) {
			xfs_inode_ag_iterator(mp, xfs_reclaim_inode, 0,
					XFS_ICI_RECLAIM_TAG, 1, &nr_to_scan);
			if (nr_to_scan <= 0)
				break;
		}
		up_read(&xfs_mount_list_lock);
	}

	down_read(&xfs_mount_list_lock);
	list_for_each_entry(mp, &xfs_mount_list, m_mplist) {
		for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {

			pag = xfs_perag_get(mp, ag);
			if (!pag->pag_ici_init) {
				xfs_perag_put(pag);
				continue;
			}
			reclaimable += pag->pag_ici_reclaimable;
			xfs_perag_put(pag);
		}
	}
	up_read(&xfs_mount_list_lock);
	return reclaimable;
}

static struct shrinker xfs_inode_shrinker = {
	.shrink = xfs_reclaim_inode_shrink,
	.seeks = DEFAULT_SEEKS,
};

void __init
xfs_inode_shrinker_init(void)
{
	init_rwsem(&xfs_mount_list_lock);
	register_shrinker(&xfs_inode_shrinker);
}

void
xfs_inode_shrinker_destroy(void)
{
	ASSERT(list_empty(&xfs_mount_list));
	unregister_shrinker(&xfs_inode_shrinker);
}

void
xfs_inode_shrinker_register(
	struct xfs_mount	*mp)
{
	down_write(&xfs_mount_list_lock);
	list_add_tail(&mp->m_mplist, &xfs_mount_list);
	up_write(&xfs_mount_list_lock);
}

void
xfs_inode_shrinker_unregister(
	struct xfs_mount	*mp)
{
	down_write(&xfs_mount_list_lock);
	list_del(&mp->m_mplist);
	up_write(&xfs_mount_list_lock);
956
}