core.c 173.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
39
#include <linux/mm_types.h>
T
Thomas Gleixner 已提交
40

41 42
#include "internal.h"

43 44
#include <asm/irq_regs.h>

45
struct remote_function_call {
46 47 48 49
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
83 84 85 86
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
107 108 109 110
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
111 112 113 114 115 116 117
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
118 119 120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

122 123 124 125 126 127 128
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

129 130 131 132 133 134
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
135 136 137 138
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
139
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
140
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
142

143 144 145
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
146

P
Peter Zijlstra 已提交
147 148 149 150
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

151
/*
152
 * perf event paranoia level:
153 154
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
155
 *   1 - disallow cpu events for unpriv
156
 *   2 - disallow kernel profiling for unpriv
157
 */
158
int sysctl_perf_event_paranoid __read_mostly = 1;
159

160 161
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162 163

/*
164
 * max perf event sample rate
165
 */
P
Peter Zijlstra 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
184

185
static atomic64_t perf_event_id;
186

187 188 189 190
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
191 192 193 194 195
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
196

197 198 199
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

200
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
201

202
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
203
{
204
	return "pmu";
T
Thomas Gleixner 已提交
205 206
}

207 208 209 210 211
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
212 213 214 215 216 217
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
234 235
#ifdef CONFIG_CGROUP_PERF

236 237 238 239 240
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

257
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
258
{
259
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
308 309
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
310
	/*
311 312
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
313
	 */
314
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
315 316
		return;

317 318 319 320 321 322
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
323 324 325
}

static inline void
326 327
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
328 329 330 331
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

332 333 334 335 336 337
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
338 339 340 341
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
342
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
384 385
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
386 387 388 389 390 391 392 393 394 395 396

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
397
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
398 399 400 401 402 403 404
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
405 406
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

415 416
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
417
{
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
440 441
}

442 443
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
444
{
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
479 480 481 482
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
483 484 485 486

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

487
	/* must be done before we fput() the file */
488 489 490 491 492
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
493

S
Stephane Eranian 已提交
494 495 496 497 498 499 500 501 502
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
503
out:
S
Stephane Eranian 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

578 579
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
580 581 582
{
}

583 584
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592 593 594 595
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
596 597
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
628
void perf_pmu_disable(struct pmu *pmu)
629
{
P
Peter Zijlstra 已提交
630 631 632
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
633 634
}

P
Peter Zijlstra 已提交
635
void perf_pmu_enable(struct pmu *pmu)
636
{
P
Peter Zijlstra 已提交
637 638 639
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
640 641
}

642 643 644 645 646 647 648
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
649
static void perf_pmu_rotate_start(struct pmu *pmu)
650
{
P
Peter Zijlstra 已提交
651
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
652
	struct list_head *head = &__get_cpu_var(rotation_list);
653

654
	WARN_ON(!irqs_disabled());
655

656 657
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
658 659
}

660
static void get_ctx(struct perf_event_context *ctx)
661
{
662
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
663 664
}

665
static void put_ctx(struct perf_event_context *ctx)
666
{
667 668 669
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
670 671
		if (ctx->task)
			put_task_struct(ctx->task);
672
		kfree_rcu(ctx, rcu_head);
673
	}
674 675
}

676
static void unclone_ctx(struct perf_event_context *ctx)
677 678 679 680 681 682 683
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

706
/*
707
 * If we inherit events we want to return the parent event id
708 709
 * to userspace.
 */
710
static u64 primary_event_id(struct perf_event *event)
711
{
712
	u64 id = event->id;
713

714 715
	if (event->parent)
		id = event->parent->id;
716 717 718 719

	return id;
}

720
/*
721
 * Get the perf_event_context for a task and lock it.
722 723 724
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
725
static struct perf_event_context *
P
Peter Zijlstra 已提交
726
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
727
{
728
	struct perf_event_context *ctx;
729 730

	rcu_read_lock();
P
Peter Zijlstra 已提交
731
retry:
P
Peter Zijlstra 已提交
732
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
733 734 735 736
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
737
		 * perf_event_task_sched_out, though the
738 739 740 741 742 743
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
744
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
745
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
746
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 748
			goto retry;
		}
749 750

		if (!atomic_inc_not_zero(&ctx->refcount)) {
751
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
752 753
			ctx = NULL;
		}
754 755 756 757 758 759 760 761 762 763
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
764 765
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
766
{
767
	struct perf_event_context *ctx;
768 769
	unsigned long flags;

P
Peter Zijlstra 已提交
770
	ctx = perf_lock_task_context(task, ctxn, &flags);
771 772
	if (ctx) {
		++ctx->pin_count;
773
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
774 775 776 777
	}
	return ctx;
}

778
static void perf_unpin_context(struct perf_event_context *ctx)
779 780 781
{
	unsigned long flags;

782
	raw_spin_lock_irqsave(&ctx->lock, flags);
783
	--ctx->pin_count;
784
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
785 786
}

787 788 789 790 791 792 793 794 795 796 797
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

798 799 800
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
801 802 803 804

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

805 806 807
	return ctx ? ctx->time : 0;
}

808 809
/*
 * Update the total_time_enabled and total_time_running fields for a event.
810
 * The caller of this function needs to hold the ctx->lock.
811 812 813 814 815 816 817 818 819
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
820 821 822 823 824 825 826 827 828 829 830
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
831
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
832 833
	else if (ctx->is_active)
		run_end = ctx->time;
834 835 836 837
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
838 839 840 841

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
842
		run_end = perf_event_time(event);
843 844

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
845

846 847
}

848 849 850 851 852 853 854 855 856 857 858 859
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

860 861 862 863 864 865 866 867 868
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

869
/*
870
 * Add a event from the lists for its context.
871 872
 * Must be called with ctx->mutex and ctx->lock held.
 */
873
static void
874
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
875
{
876 877
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
878 879

	/*
880 881 882
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
883
	 */
884
	if (event->group_leader == event) {
885 886
		struct list_head *list;

887 888 889
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

890 891
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
892
	}
P
Peter Zijlstra 已提交
893

894
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
895 896
		ctx->nr_cgroups++;

897 898 899
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

900
	list_add_rcu(&event->event_entry, &ctx->event_list);
901
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
902
		perf_pmu_rotate_start(ctx->pmu);
903 904
	ctx->nr_events++;
	if (event->attr.inherit_stat)
905
		ctx->nr_stat++;
906 907
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

980
	event->id_header_size = size;
981 982
}

983 984
static void perf_group_attach(struct perf_event *event)
{
985
	struct perf_event *group_leader = event->group_leader, *pos;
986

P
Peter Zijlstra 已提交
987 988 989 990 991 992
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

993 994 995 996 997 998 999 1000 1001 1002 1003
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1004 1005 1006 1007 1008

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1009 1010
}

1011
/*
1012
 * Remove a event from the lists for its context.
1013
 * Must be called with ctx->mutex and ctx->lock held.
1014
 */
1015
static void
1016
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1017
{
1018
	struct perf_cpu_context *cpuctx;
1019 1020 1021 1022
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1023
		return;
1024 1025 1026

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1027
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1028
		ctx->nr_cgroups--;
1029 1030 1031 1032 1033 1034 1035 1036 1037
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1038

1039 1040 1041
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1042 1043
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1044
		ctx->nr_stat--;
1045

1046
	list_del_rcu(&event->event_entry);
1047

1048 1049
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1050

1051
	update_group_times(event);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1062 1063
}

1064
static void perf_group_detach(struct perf_event *event)
1065 1066
{
	struct perf_event *sibling, *tmp;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1083
		goto out;
1084 1085 1086 1087
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1088

1089
	/*
1090 1091
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1092
	 * to whatever list we are on.
1093
	 */
1094
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1095 1096
		if (list)
			list_move_tail(&sibling->group_entry, list);
1097
		sibling->group_leader = sibling;
1098 1099 1100

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1101
	}
1102 1103 1104 1105 1106 1107

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1108 1109
}

1110 1111 1112
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1113 1114
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1115 1116
}

1117 1118
static void
event_sched_out(struct perf_event *event,
1119
		  struct perf_cpu_context *cpuctx,
1120
		  struct perf_event_context *ctx)
1121
{
1122
	u64 tstamp = perf_event_time(event);
1123 1124 1125 1126 1127 1128 1129 1130 1131
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1132
		delta = tstamp - event->tstamp_stopped;
1133
		event->tstamp_running += delta;
1134
		event->tstamp_stopped = tstamp;
1135 1136
	}

1137
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1138
		return;
1139

1140 1141 1142 1143
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1144
	}
1145
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1146
	event->pmu->del(event, 0);
1147
	event->oncpu = -1;
1148

1149
	if (!is_software_event(event))
1150 1151
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1152 1153
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1154
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1155 1156 1157
		cpuctx->exclusive = 0;
}

1158
static void
1159
group_sched_out(struct perf_event *group_event,
1160
		struct perf_cpu_context *cpuctx,
1161
		struct perf_event_context *ctx)
1162
{
1163
	struct perf_event *event;
1164
	int state = group_event->state;
1165

1166
	event_sched_out(group_event, cpuctx, ctx);
1167 1168 1169 1170

	/*
	 * Schedule out siblings (if any):
	 */
1171 1172
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1173

1174
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1175 1176 1177
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1178
/*
1179
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1180
 *
1181
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1182 1183
 * remove it from the context list.
 */
1184
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1185
{
1186 1187
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1188
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1189

1190
	raw_spin_lock(&ctx->lock);
1191 1192
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1193 1194 1195 1196
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1197
	raw_spin_unlock(&ctx->lock);
1198 1199

	return 0;
T
Thomas Gleixner 已提交
1200 1201 1202 1203
}


/*
1204
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1205
 *
1206
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1207
 * call when the task is on a CPU.
1208
 *
1209 1210
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1211 1212
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1213
 * When called from perf_event_exit_task, it's OK because the
1214
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1215
 */
1216
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1217
{
1218
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1219 1220
	struct task_struct *task = ctx->task;

1221 1222
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1223 1224
	if (!task) {
		/*
1225
		 * Per cpu events are removed via an smp call and
1226
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1227
		 */
1228
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1229 1230 1231 1232
		return;
	}

retry:
1233 1234
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1235

1236
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1237
	/*
1238 1239
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1240
	 */
1241
	if (ctx->is_active) {
1242
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1243 1244 1245 1246
		goto retry;
	}

	/*
1247 1248
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1249
	 */
1250
	list_del_event(event, ctx);
1251
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1252 1253
}

1254
/*
1255
 * Cross CPU call to disable a performance event
1256
 */
1257
static int __perf_event_disable(void *info)
1258
{
1259 1260
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1261
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1262 1263

	/*
1264 1265
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1266 1267 1268
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1269
	 */
1270
	if (ctx->task && cpuctx->task_ctx != ctx)
1271
		return -EINVAL;
1272

1273
	raw_spin_lock(&ctx->lock);
1274 1275

	/*
1276
	 * If the event is on, turn it off.
1277 1278
	 * If it is in error state, leave it in error state.
	 */
1279
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1280
		update_context_time(ctx);
S
Stephane Eranian 已提交
1281
		update_cgrp_time_from_event(event);
1282 1283 1284
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1285
		else
1286 1287
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1288 1289
	}

1290
	raw_spin_unlock(&ctx->lock);
1291 1292

	return 0;
1293 1294 1295
}

/*
1296
 * Disable a event.
1297
 *
1298 1299
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1300
 * remains valid.  This condition is satisifed when called through
1301 1302 1303 1304
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1305
 * is the current context on this CPU and preemption is disabled,
1306
 * hence we can't get into perf_event_task_sched_out for this context.
1307
 */
1308
void perf_event_disable(struct perf_event *event)
1309
{
1310
	struct perf_event_context *ctx = event->ctx;
1311 1312 1313 1314
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1315
		 * Disable the event on the cpu that it's on
1316
		 */
1317
		cpu_function_call(event->cpu, __perf_event_disable, event);
1318 1319 1320
		return;
	}

P
Peter Zijlstra 已提交
1321
retry:
1322 1323
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1324

1325
	raw_spin_lock_irq(&ctx->lock);
1326
	/*
1327
	 * If the event is still active, we need to retry the cross-call.
1328
	 */
1329
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1330
		raw_spin_unlock_irq(&ctx->lock);
1331 1332 1333 1334 1335
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1336 1337 1338 1339 1340 1341 1342
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1343 1344 1345
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1346
	}
1347
	raw_spin_unlock_irq(&ctx->lock);
1348
}
1349
EXPORT_SYMBOL_GPL(perf_event_disable);
1350

S
Stephane Eranian 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1386 1387 1388 1389
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1390
static int
1391
event_sched_in(struct perf_event *event,
1392
		 struct perf_cpu_context *cpuctx,
1393
		 struct perf_event_context *ctx)
1394
{
1395 1396
	u64 tstamp = perf_event_time(event);

1397
	if (event->state <= PERF_EVENT_STATE_OFF)
1398 1399
		return 0;

1400
	event->state = PERF_EVENT_STATE_ACTIVE;
1401
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1413 1414 1415 1416 1417
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1418
	if (event->pmu->add(event, PERF_EF_START)) {
1419 1420
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1421 1422 1423
		return -EAGAIN;
	}

1424
	event->tstamp_running += tstamp - event->tstamp_stopped;
1425

S
Stephane Eranian 已提交
1426
	perf_set_shadow_time(event, ctx, tstamp);
1427

1428
	if (!is_software_event(event))
1429
		cpuctx->active_oncpu++;
1430
	ctx->nr_active++;
1431 1432
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1433

1434
	if (event->attr.exclusive)
1435 1436
		cpuctx->exclusive = 1;

1437 1438 1439
	return 0;
}

1440
static int
1441
group_sched_in(struct perf_event *group_event,
1442
	       struct perf_cpu_context *cpuctx,
1443
	       struct perf_event_context *ctx)
1444
{
1445
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1446
	struct pmu *pmu = group_event->pmu;
1447 1448
	u64 now = ctx->time;
	bool simulate = false;
1449

1450
	if (group_event->state == PERF_EVENT_STATE_OFF)
1451 1452
		return 0;

P
Peter Zijlstra 已提交
1453
	pmu->start_txn(pmu);
1454

1455
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1456
		pmu->cancel_txn(pmu);
1457
		return -EAGAIN;
1458
	}
1459 1460 1461 1462

	/*
	 * Schedule in siblings as one group (if any):
	 */
1463
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1464
		if (event_sched_in(event, cpuctx, ctx)) {
1465
			partial_group = event;
1466 1467 1468 1469
			goto group_error;
		}
	}

1470
	if (!pmu->commit_txn(pmu))
1471
		return 0;
1472

1473 1474 1475 1476
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1487
	 */
1488 1489
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1490 1491 1492 1493 1494 1495 1496 1497
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1498
	}
1499
	event_sched_out(group_event, cpuctx, ctx);
1500

P
Peter Zijlstra 已提交
1501
	pmu->cancel_txn(pmu);
1502

1503 1504 1505
	return -EAGAIN;
}

1506
/*
1507
 * Work out whether we can put this event group on the CPU now.
1508
 */
1509
static int group_can_go_on(struct perf_event *event,
1510 1511 1512 1513
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1514
	 * Groups consisting entirely of software events can always go on.
1515
	 */
1516
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1517 1518 1519
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1520
	 * events can go on.
1521 1522 1523 1524 1525
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1526
	 * events on the CPU, it can't go on.
1527
	 */
1528
	if (event->attr.exclusive && cpuctx->active_oncpu)
1529 1530 1531 1532 1533 1534 1535 1536
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1537 1538
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1539
{
1540 1541
	u64 tstamp = perf_event_time(event);

1542
	list_add_event(event, ctx);
1543
	perf_group_attach(event);
1544 1545 1546
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1547 1548
}

1549 1550 1551 1552 1553 1554
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1568
/*
1569
 * Cross CPU call to install and enable a performance event
1570 1571
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1572
 */
1573
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1574
{
1575 1576
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1577
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1578 1579 1580
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1581
	perf_ctx_lock(cpuctx, task_ctx);
1582
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1583 1584

	/*
1585
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1586
	 */
1587
	if (task_ctx)
1588
		task_ctx_sched_out(task_ctx);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1603 1604
		task = task_ctx->task;
	}
1605

1606
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1607

1608
	update_context_time(ctx);
S
Stephane Eranian 已提交
1609 1610 1611 1612 1613 1614
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1615

1616
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1617

1618
	/*
1619
	 * Schedule everything back in
1620
	 */
1621
	perf_event_sched_in(cpuctx, task_ctx, task);
1622 1623 1624

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1625 1626

	return 0;
T
Thomas Gleixner 已提交
1627 1628 1629
}

/*
1630
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1631
 *
1632 1633
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1634
 *
1635
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1636 1637 1638 1639
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1640 1641
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1642 1643 1644 1645
			int cpu)
{
	struct task_struct *task = ctx->task;

1646 1647
	lockdep_assert_held(&ctx->mutex);

1648
	event->ctx = ctx;
1649 1650
	if (event->cpu != -1)
		event->cpu = cpu;
1651

T
Thomas Gleixner 已提交
1652 1653
	if (!task) {
		/*
1654
		 * Per cpu events are installed via an smp call and
1655
		 * the install is always successful.
T
Thomas Gleixner 已提交
1656
		 */
1657
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1658 1659 1660 1661
		return;
	}

retry:
1662 1663
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1664

1665
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1666
	/*
1667 1668
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1669
	 */
1670
	if (ctx->is_active) {
1671
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1672 1673 1674 1675
		goto retry;
	}

	/*
1676 1677
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1678
	 */
1679
	add_event_to_ctx(event, ctx);
1680
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1681 1682
}

1683
/*
1684
 * Put a event into inactive state and update time fields.
1685 1686 1687 1688 1689 1690
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1691
static void __perf_event_mark_enabled(struct perf_event *event)
1692
{
1693
	struct perf_event *sub;
1694
	u64 tstamp = perf_event_time(event);
1695

1696
	event->state = PERF_EVENT_STATE_INACTIVE;
1697
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1698
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1699 1700
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1701
	}
1702 1703
}

1704
/*
1705
 * Cross CPU call to enable a performance event
1706
 */
1707
static int __perf_event_enable(void *info)
1708
{
1709 1710 1711
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1712
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1713
	int err;
1714

1715 1716
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1717

1718
	raw_spin_lock(&ctx->lock);
1719
	update_context_time(ctx);
1720

1721
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1722
		goto unlock;
S
Stephane Eranian 已提交
1723 1724 1725 1726

	/*
	 * set current task's cgroup time reference point
	 */
1727
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1728

1729
	__perf_event_mark_enabled(event);
1730

S
Stephane Eranian 已提交
1731 1732 1733
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1734
		goto unlock;
S
Stephane Eranian 已提交
1735
	}
1736

1737
	/*
1738
	 * If the event is in a group and isn't the group leader,
1739
	 * then don't put it on unless the group is on.
1740
	 */
1741
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1742
		goto unlock;
1743

1744
	if (!group_can_go_on(event, cpuctx, 1)) {
1745
		err = -EEXIST;
1746
	} else {
1747
		if (event == leader)
1748
			err = group_sched_in(event, cpuctx, ctx);
1749
		else
1750
			err = event_sched_in(event, cpuctx, ctx);
1751
	}
1752 1753 1754

	if (err) {
		/*
1755
		 * If this event can't go on and it's part of a
1756 1757
		 * group, then the whole group has to come off.
		 */
1758
		if (leader != event)
1759
			group_sched_out(leader, cpuctx, ctx);
1760
		if (leader->attr.pinned) {
1761
			update_group_times(leader);
1762
			leader->state = PERF_EVENT_STATE_ERROR;
1763
		}
1764 1765
	}

P
Peter Zijlstra 已提交
1766
unlock:
1767
	raw_spin_unlock(&ctx->lock);
1768 1769

	return 0;
1770 1771 1772
}

/*
1773
 * Enable a event.
1774
 *
1775 1776
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1777
 * remains valid.  This condition is satisfied when called through
1778 1779
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1780
 */
1781
void perf_event_enable(struct perf_event *event)
1782
{
1783
	struct perf_event_context *ctx = event->ctx;
1784 1785 1786 1787
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1788
		 * Enable the event on the cpu that it's on
1789
		 */
1790
		cpu_function_call(event->cpu, __perf_event_enable, event);
1791 1792 1793
		return;
	}

1794
	raw_spin_lock_irq(&ctx->lock);
1795
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1796 1797 1798
		goto out;

	/*
1799 1800
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1801 1802 1803 1804
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1805 1806
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1807

P
Peter Zijlstra 已提交
1808
retry:
1809
	if (!ctx->is_active) {
1810
		__perf_event_mark_enabled(event);
1811 1812 1813
		goto out;
	}

1814
	raw_spin_unlock_irq(&ctx->lock);
1815 1816 1817

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1818

1819
	raw_spin_lock_irq(&ctx->lock);
1820 1821

	/*
1822
	 * If the context is active and the event is still off,
1823 1824
	 * we need to retry the cross-call.
	 */
1825 1826 1827 1828 1829 1830
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1831
		goto retry;
1832
	}
1833

P
Peter Zijlstra 已提交
1834
out:
1835
	raw_spin_unlock_irq(&ctx->lock);
1836
}
1837
EXPORT_SYMBOL_GPL(perf_event_enable);
1838

1839
int perf_event_refresh(struct perf_event *event, int refresh)
1840
{
1841
	/*
1842
	 * not supported on inherited events
1843
	 */
1844
	if (event->attr.inherit || !is_sampling_event(event))
1845 1846
		return -EINVAL;

1847 1848
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1849 1850

	return 0;
1851
}
1852
EXPORT_SYMBOL_GPL(perf_event_refresh);
1853

1854 1855 1856
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1857
{
1858
	struct perf_event *event;
1859
	int is_active = ctx->is_active;
1860

1861
	ctx->is_active &= ~event_type;
1862
	if (likely(!ctx->nr_events))
1863 1864
		return;

1865
	update_context_time(ctx);
S
Stephane Eranian 已提交
1866
	update_cgrp_time_from_cpuctx(cpuctx);
1867
	if (!ctx->nr_active)
1868
		return;
1869

P
Peter Zijlstra 已提交
1870
	perf_pmu_disable(ctx->pmu);
1871
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1872 1873
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1874
	}
1875

1876
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1877
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1878
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1879
	}
P
Peter Zijlstra 已提交
1880
	perf_pmu_enable(ctx->pmu);
1881 1882
}

1883 1884 1885
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1886 1887 1888 1889
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1890
 * in them directly with an fd; we can only enable/disable all
1891
 * events via prctl, or enable/disable all events in a family
1892 1893
 * via ioctl, which will have the same effect on both contexts.
 */
1894 1895
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1896 1897
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1898
		&& ctx1->parent_gen == ctx2->parent_gen
1899
		&& !ctx1->pin_count && !ctx2->pin_count;
1900 1901
}

1902 1903
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1904 1905 1906
{
	u64 value;

1907
	if (!event->attr.inherit_stat)
1908 1909 1910
		return;

	/*
1911
	 * Update the event value, we cannot use perf_event_read()
1912 1913
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1914
	 * we know the event must be on the current CPU, therefore we
1915 1916
	 * don't need to use it.
	 */
1917 1918
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1919 1920
		event->pmu->read(event);
		/* fall-through */
1921

1922 1923
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1924 1925 1926 1927 1928 1929 1930
		break;

	default:
		break;
	}

	/*
1931
	 * In order to keep per-task stats reliable we need to flip the event
1932 1933
	 * values when we flip the contexts.
	 */
1934 1935 1936
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1937

1938 1939
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1940

1941
	/*
1942
	 * Since we swizzled the values, update the user visible data too.
1943
	 */
1944 1945
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1946 1947 1948 1949 1950
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1951 1952
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1953
{
1954
	struct perf_event *event, *next_event;
1955 1956 1957 1958

	if (!ctx->nr_stat)
		return;

1959 1960
	update_context_time(ctx);

1961 1962
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1963

1964 1965
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1966

1967 1968
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1969

1970
		__perf_event_sync_stat(event, next_event);
1971

1972 1973
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1974 1975 1976
	}
}

1977 1978
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1979
{
P
Peter Zijlstra 已提交
1980
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1981 1982
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1983
	struct perf_cpu_context *cpuctx;
1984
	int do_switch = 1;
T
Thomas Gleixner 已提交
1985

P
Peter Zijlstra 已提交
1986 1987
	if (likely(!ctx))
		return;
1988

P
Peter Zijlstra 已提交
1989 1990
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1991 1992
		return;

1993 1994
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1995
	next_ctx = next->perf_event_ctxp[ctxn];
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2007 2008
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2009
		if (context_equiv(ctx, next_ctx)) {
2010 2011
			/*
			 * XXX do we need a memory barrier of sorts
2012
			 * wrt to rcu_dereference() of perf_event_ctxp
2013
			 */
P
Peter Zijlstra 已提交
2014 2015
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2016 2017 2018
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2019

2020
			perf_event_sync_stat(ctx, next_ctx);
2021
		}
2022 2023
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2024
	}
2025
	rcu_read_unlock();
2026

2027
	if (do_switch) {
2028
		raw_spin_lock(&ctx->lock);
2029
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2030
		cpuctx->task_ctx = NULL;
2031
		raw_spin_unlock(&ctx->lock);
2032
	}
T
Thomas Gleixner 已提交
2033 2034
}

P
Peter Zijlstra 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2049 2050
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2051 2052 2053 2054 2055
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2056 2057 2058 2059 2060 2061 2062

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2063
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2064 2065
}

2066
static void task_ctx_sched_out(struct perf_event_context *ctx)
2067
{
P
Peter Zijlstra 已提交
2068
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2069

2070 2071
	if (!cpuctx->task_ctx)
		return;
2072 2073 2074 2075

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2076
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2077 2078 2079
	cpuctx->task_ctx = NULL;
}

2080 2081 2082 2083 2084 2085 2086
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2087 2088
}

2089
static void
2090
ctx_pinned_sched_in(struct perf_event_context *ctx,
2091
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2092
{
2093
	struct perf_event *event;
T
Thomas Gleixner 已提交
2094

2095 2096
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2097
			continue;
2098
		if (!event_filter_match(event))
2099 2100
			continue;

S
Stephane Eranian 已提交
2101 2102 2103 2104
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2105
		if (group_can_go_on(event, cpuctx, 1))
2106
			group_sched_in(event, cpuctx, ctx);
2107 2108 2109 2110 2111

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2112 2113 2114
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2115
		}
2116
	}
2117 2118 2119 2120
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2121
		      struct perf_cpu_context *cpuctx)
2122 2123 2124
{
	struct perf_event *event;
	int can_add_hw = 1;
2125

2126 2127 2128
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2129
			continue;
2130 2131
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2132
		 * of events:
2133
		 */
2134
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2135 2136
			continue;

S
Stephane Eranian 已提交
2137 2138 2139 2140
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2141
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2142
			if (group_sched_in(event, cpuctx, ctx))
2143
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2144
		}
T
Thomas Gleixner 已提交
2145
	}
2146 2147 2148 2149 2150
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2151 2152
	     enum event_type_t event_type,
	     struct task_struct *task)
2153
{
S
Stephane Eranian 已提交
2154
	u64 now;
2155
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2156

2157
	ctx->is_active |= event_type;
2158
	if (likely(!ctx->nr_events))
2159
		return;
2160

S
Stephane Eranian 已提交
2161 2162
	now = perf_clock();
	ctx->timestamp = now;
2163
	perf_cgroup_set_timestamp(task, ctx);
2164 2165 2166 2167
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2168
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2169
		ctx_pinned_sched_in(ctx, cpuctx);
2170 2171

	/* Then walk through the lower prio flexible groups */
2172
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2173
		ctx_flexible_sched_in(ctx, cpuctx);
2174 2175
}

2176
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2177 2178
			     enum event_type_t event_type,
			     struct task_struct *task)
2179 2180 2181
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2182
	ctx_sched_in(ctx, cpuctx, event_type, task);
2183 2184
}

S
Stephane Eranian 已提交
2185 2186
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2187
{
P
Peter Zijlstra 已提交
2188
	struct perf_cpu_context *cpuctx;
2189

P
Peter Zijlstra 已提交
2190
	cpuctx = __get_cpu_context(ctx);
2191 2192 2193
	if (cpuctx->task_ctx == ctx)
		return;

2194
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2195
	perf_pmu_disable(ctx->pmu);
2196 2197 2198 2199 2200 2201 2202
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2203 2204
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2205

2206 2207
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2208 2209 2210
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2211 2212 2213 2214
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2215
	perf_pmu_rotate_start(ctx->pmu);
2216 2217
}

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2289 2290
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2300
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2301
	}
S
Stephane Eranian 已提交
2302 2303 2304 2305 2306 2307
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2308
		perf_cgroup_sched_in(prev, task);
2309 2310 2311 2312

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2313 2314
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2342
#define REDUCE_FLS(a, b)		\
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2382 2383 2384
	if (!divisor)
		return dividend;

2385 2386 2387
	return div64_u64(dividend, divisor);
}

2388 2389 2390
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2391
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2392
{
2393
	struct hw_perf_event *hwc = &event->hw;
2394
	s64 period, sample_period;
2395 2396
	s64 delta;

2397
	period = perf_calculate_period(event, nsec, count);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2408

2409
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2410 2411 2412
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2413
		local64_set(&hwc->period_left, 0);
2414 2415 2416

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2417
	}
2418 2419
}

2420 2421 2422 2423 2424 2425 2426
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2427
{
2428 2429
	struct perf_event *event;
	struct hw_perf_event *hwc;
2430
	u64 now, period = TICK_NSEC;
2431
	s64 delta;
2432

2433 2434 2435 2436 2437 2438
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2439 2440
		return;

2441
	raw_spin_lock(&ctx->lock);
2442
	perf_pmu_disable(ctx->pmu);
2443

2444
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2445
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2446 2447
			continue;

2448
		if (!event_filter_match(event))
2449 2450
			continue;

2451
		hwc = &event->hw;
2452

2453 2454
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2455
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2456
			event->pmu->start(event, 0);
2457 2458
		}

2459
		if (!event->attr.freq || !event->attr.sample_freq)
2460 2461
			continue;

2462 2463 2464 2465 2466
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2467
		now = local64_read(&event->count);
2468 2469
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2470

2471 2472 2473
		/*
		 * restart the event
		 * reload only if value has changed
2474 2475 2476
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2477
		 */
2478
		if (delta > 0)
2479
			perf_adjust_period(event, period, delta, false);
2480 2481

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2482
	}
2483

2484
	perf_pmu_enable(ctx->pmu);
2485
	raw_spin_unlock(&ctx->lock);
2486 2487
}

2488
/*
2489
 * Round-robin a context's events:
2490
 */
2491
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2492
{
2493 2494 2495 2496 2497 2498
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2499 2500
}

2501
/*
2502 2503 2504
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2505
 */
2506
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2507
{
P
Peter Zijlstra 已提交
2508
	struct perf_event_context *ctx = NULL;
2509
	int rotate = 0, remove = 1;
2510

2511
	if (cpuctx->ctx.nr_events) {
2512
		remove = 0;
2513 2514 2515
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2516

P
Peter Zijlstra 已提交
2517
	ctx = cpuctx->task_ctx;
2518
	if (ctx && ctx->nr_events) {
2519
		remove = 0;
2520 2521 2522
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2523

2524
	if (!rotate)
2525 2526
		goto done;

2527
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2528
	perf_pmu_disable(cpuctx->ctx.pmu);
2529

2530 2531 2532
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2533

2534 2535 2536
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2537

2538
	perf_event_sched_in(cpuctx, ctx, current);
2539

2540 2541
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2542
done:
2543 2544 2545 2546 2547 2548 2549 2550
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2551 2552
	struct perf_event_context *ctx;
	int throttled;
2553

2554 2555
	WARN_ON(!irqs_disabled());

2556 2557 2558
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2559
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2560 2561 2562 2563 2564 2565 2566
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2567 2568 2569 2570
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2583
	__perf_event_mark_enabled(event);
2584 2585 2586 2587

	return 1;
}

2588
/*
2589
 * Enable all of a task's events that have been marked enable-on-exec.
2590 2591
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2592
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2593
{
2594
	struct perf_event *event;
2595 2596
	unsigned long flags;
	int enabled = 0;
2597
	int ret;
2598 2599

	local_irq_save(flags);
2600
	if (!ctx || !ctx->nr_events)
2601 2602
		goto out;

2603 2604 2605 2606 2607 2608 2609
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2610
	perf_cgroup_sched_out(current, NULL);
2611

2612
	raw_spin_lock(&ctx->lock);
2613
	task_ctx_sched_out(ctx);
2614

2615
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2616 2617 2618
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2619 2620 2621
	}

	/*
2622
	 * Unclone this context if we enabled any event.
2623
	 */
2624 2625
	if (enabled)
		unclone_ctx(ctx);
2626

2627
	raw_spin_unlock(&ctx->lock);
2628

2629 2630 2631
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2632
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2633
out:
2634 2635 2636
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2637
/*
2638
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2639
 */
2640
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2641
{
2642 2643
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2644
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2645

2646 2647 2648 2649
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2650 2651
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2652 2653 2654 2655
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2656
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2657
	if (ctx->is_active) {
2658
		update_context_time(ctx);
S
Stephane Eranian 已提交
2659 2660
		update_cgrp_time_from_event(event);
	}
2661
	update_event_times(event);
2662 2663
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2664
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2665 2666
}

P
Peter Zijlstra 已提交
2667 2668
static inline u64 perf_event_count(struct perf_event *event)
{
2669
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2670 2671
}

2672
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2673 2674
{
	/*
2675 2676
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2677
	 */
2678 2679 2680 2681
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2682 2683 2684
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2685
		raw_spin_lock_irqsave(&ctx->lock, flags);
2686 2687 2688 2689 2690
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2691
		if (ctx->is_active) {
2692
			update_context_time(ctx);
S
Stephane Eranian 已提交
2693 2694
			update_cgrp_time_from_event(event);
		}
2695
		update_event_times(event);
2696
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2697 2698
	}

P
Peter Zijlstra 已提交
2699
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2700 2701
}

2702
/*
2703
 * Initialize the perf_event context in a task_struct:
2704
 */
2705
static void __perf_event_init_context(struct perf_event_context *ctx)
2706
{
2707
	raw_spin_lock_init(&ctx->lock);
2708
	mutex_init(&ctx->mutex);
2709 2710
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2711 2712
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2728
	}
2729 2730 2731
	ctx->pmu = pmu;

	return ctx;
2732 2733
}

2734 2735 2736 2737 2738
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2739 2740

	rcu_read_lock();
2741
	if (!vpid)
T
Thomas Gleixner 已提交
2742 2743
		task = current;
	else
2744
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2745 2746 2747 2748 2749 2750 2751 2752
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2753 2754 2755 2756
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2757 2758 2759 2760 2761 2762 2763
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2764 2765 2766
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2767
static struct perf_event_context *
M
Matt Helsley 已提交
2768
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2769
{
2770
	struct perf_event_context *ctx;
2771
	struct perf_cpu_context *cpuctx;
2772
	unsigned long flags;
P
Peter Zijlstra 已提交
2773
	int ctxn, err;
T
Thomas Gleixner 已提交
2774

2775
	if (!task) {
2776
		/* Must be root to operate on a CPU event: */
2777
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2778 2779 2780
			return ERR_PTR(-EACCES);

		/*
2781
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2782 2783 2784
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2785
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2786 2787
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2788
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2789
		ctx = &cpuctx->ctx;
2790
		get_ctx(ctx);
2791
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2792 2793 2794 2795

		return ctx;
	}

P
Peter Zijlstra 已提交
2796 2797 2798 2799 2800
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2801
retry:
P
Peter Zijlstra 已提交
2802
	ctx = perf_lock_task_context(task, ctxn, &flags);
2803
	if (ctx) {
2804
		unclone_ctx(ctx);
2805
		++ctx->pin_count;
2806
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2807
	} else {
2808
		ctx = alloc_perf_context(pmu, task);
2809 2810 2811
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2812

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2823
		else {
2824
			get_ctx(ctx);
2825
			++ctx->pin_count;
2826
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2827
		}
2828 2829 2830
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2831
			put_ctx(ctx);
2832 2833 2834 2835

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2836 2837 2838
		}
	}

T
Thomas Gleixner 已提交
2839
	return ctx;
2840

P
Peter Zijlstra 已提交
2841
errout:
2842
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2843 2844
}

L
Li Zefan 已提交
2845 2846
static void perf_event_free_filter(struct perf_event *event);

2847
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2848
{
2849
	struct perf_event *event;
P
Peter Zijlstra 已提交
2850

2851 2852 2853
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2854
	perf_event_free_filter(event);
2855
	kfree(event);
P
Peter Zijlstra 已提交
2856 2857
}

2858
static void ring_buffer_put(struct ring_buffer *rb);
2859

2860
static void free_event(struct perf_event *event)
2861
{
2862
	irq_work_sync(&event->pending);
2863

2864
	if (!event->parent) {
2865
		if (event->attach_state & PERF_ATTACH_TASK)
2866
			static_key_slow_dec_deferred(&perf_sched_events);
2867
		if (event->attr.mmap || event->attr.mmap_data)
2868 2869 2870 2871 2872
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2873 2874
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2875 2876
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2877
			static_key_slow_dec_deferred(&perf_sched_events);
2878
		}
2879 2880 2881 2882 2883 2884 2885 2886

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2887
	}
2888

2889 2890 2891
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2892 2893
	}

S
Stephane Eranian 已提交
2894 2895 2896
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2897 2898
	if (event->destroy)
		event->destroy(event);
2899

P
Peter Zijlstra 已提交
2900 2901 2902
	if (event->ctx)
		put_ctx(event->ctx);

2903
	call_rcu(&event->rcu_head, free_event_rcu);
2904 2905
}

2906
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2907
{
2908
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2909

2910
	WARN_ON_ONCE(ctx->parent_ctx);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2924
	raw_spin_lock_irq(&ctx->lock);
2925
	perf_group_detach(event);
2926
	raw_spin_unlock_irq(&ctx->lock);
2927
	perf_remove_from_context(event);
2928
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2929

2930
	free_event(event);
T
Thomas Gleixner 已提交
2931 2932 2933

	return 0;
}
2934
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2935

2936 2937 2938 2939
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2940
{
2941
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2942
	struct task_struct *owner;
2943

2944
	file->private_data = NULL;
2945

P
Peter Zijlstra 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2979
	return perf_event_release_kernel(event);
2980 2981
}

2982
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2983
{
2984
	struct perf_event *child;
2985 2986
	u64 total = 0;

2987 2988 2989
	*enabled = 0;
	*running = 0;

2990
	mutex_lock(&event->child_mutex);
2991
	total += perf_event_read(event);
2992 2993 2994 2995 2996 2997
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2998
		total += perf_event_read(child);
2999 3000 3001
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3002
	mutex_unlock(&event->child_mutex);
3003 3004 3005

	return total;
}
3006
EXPORT_SYMBOL_GPL(perf_event_read_value);
3007

3008
static int perf_event_read_group(struct perf_event *event,
3009 3010
				   u64 read_format, char __user *buf)
{
3011
	struct perf_event *leader = event->group_leader, *sub;
3012 3013
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3014
	u64 values[5];
3015
	u64 count, enabled, running;
3016

3017
	mutex_lock(&ctx->mutex);
3018
	count = perf_event_read_value(leader, &enabled, &running);
3019 3020

	values[n++] = 1 + leader->nr_siblings;
3021 3022 3023 3024
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3025 3026 3027
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3028 3029 3030 3031

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3032
		goto unlock;
3033

3034
	ret = size;
3035

3036
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3037
		n = 0;
3038

3039
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3040 3041 3042 3043 3044
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3045
		if (copy_to_user(buf + ret, values, size)) {
3046 3047 3048
			ret = -EFAULT;
			goto unlock;
		}
3049 3050

		ret += size;
3051
	}
3052 3053
unlock:
	mutex_unlock(&ctx->mutex);
3054

3055
	return ret;
3056 3057
}

3058
static int perf_event_read_one(struct perf_event *event,
3059 3060
				 u64 read_format, char __user *buf)
{
3061
	u64 enabled, running;
3062 3063 3064
	u64 values[4];
	int n = 0;

3065 3066 3067 3068 3069
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3070
	if (read_format & PERF_FORMAT_ID)
3071
		values[n++] = primary_event_id(event);
3072 3073 3074 3075 3076 3077 3078

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3079
/*
3080
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3081 3082
 */
static ssize_t
3083
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3084
{
3085
	u64 read_format = event->attr.read_format;
3086
	int ret;
T
Thomas Gleixner 已提交
3087

3088
	/*
3089
	 * Return end-of-file for a read on a event that is in
3090 3091 3092
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3093
	if (event->state == PERF_EVENT_STATE_ERROR)
3094 3095
		return 0;

3096
	if (count < event->read_size)
3097 3098
		return -ENOSPC;

3099
	WARN_ON_ONCE(event->ctx->parent_ctx);
3100
	if (read_format & PERF_FORMAT_GROUP)
3101
		ret = perf_event_read_group(event, read_format, buf);
3102
	else
3103
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3104

3105
	return ret;
T
Thomas Gleixner 已提交
3106 3107 3108 3109 3110
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3111
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3112

3113
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3114 3115 3116 3117
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3118
	struct perf_event *event = file->private_data;
3119
	struct ring_buffer *rb;
3120
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3121

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3139
	rcu_read_lock();
3140
	rb = rcu_dereference(event->rb);
3141 3142
	if (rb) {
		ring_buffer_attach(event, rb);
3143
		events = atomic_xchg(&rb->poll, 0);
3144
	}
P
Peter Zijlstra 已提交
3145
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3146

3147 3148
	mutex_unlock(&event->mmap_mutex);

3149
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3150 3151 3152 3153

	return events;
}

3154
static void perf_event_reset(struct perf_event *event)
3155
{
3156
	(void)perf_event_read(event);
3157
	local64_set(&event->count, 0);
3158
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3159 3160
}

3161
/*
3162 3163 3164 3165
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3166
 */
3167 3168
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3169
{
3170
	struct perf_event *child;
P
Peter Zijlstra 已提交
3171

3172 3173 3174 3175
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3176
		func(child);
3177
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3178 3179
}

3180 3181
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3182
{
3183 3184
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3185

3186 3187
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3188
	event = event->group_leader;
3189

3190 3191
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3192
		perf_event_for_each_child(sibling, func);
3193
	mutex_unlock(&ctx->mutex);
3194 3195
}

3196
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3197
{
3198
	struct perf_event_context *ctx = event->ctx;
3199 3200 3201
	int ret = 0;
	u64 value;

3202
	if (!is_sampling_event(event))
3203 3204
		return -EINVAL;

3205
	if (copy_from_user(&value, arg, sizeof(value)))
3206 3207 3208 3209 3210
		return -EFAULT;

	if (!value)
		return -EINVAL;

3211
	raw_spin_lock_irq(&ctx->lock);
3212 3213
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3214 3215 3216 3217
			ret = -EINVAL;
			goto unlock;
		}

3218
		event->attr.sample_freq = value;
3219
	} else {
3220 3221
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3222 3223
	}
unlock:
3224
	raw_spin_unlock_irq(&ctx->lock);
3225 3226 3227 3228

	return ret;
}

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3250
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3251

3252 3253
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3254 3255
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3256
	u32 flags = arg;
3257 3258

	switch (cmd) {
3259 3260
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3261
		break;
3262 3263
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3264
		break;
3265 3266
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3267
		break;
P
Peter Zijlstra 已提交
3268

3269 3270
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3271

3272 3273
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3274

3275
	case PERF_EVENT_IOC_SET_OUTPUT:
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3293

L
Li Zefan 已提交
3294 3295 3296
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3297
	default:
P
Peter Zijlstra 已提交
3298
		return -ENOTTY;
3299
	}
P
Peter Zijlstra 已提交
3300 3301

	if (flags & PERF_IOC_FLAG_GROUP)
3302
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3303
	else
3304
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3305 3306

	return 0;
3307 3308
}

3309
int perf_event_task_enable(void)
3310
{
3311
	struct perf_event *event;
3312

3313 3314 3315 3316
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3317 3318 3319 3320

	return 0;
}

3321
int perf_event_task_disable(void)
3322
{
3323
	struct perf_event *event;
3324

3325 3326 3327 3328
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3329 3330 3331 3332

	return 0;
}

3333
static int perf_event_index(struct perf_event *event)
3334
{
P
Peter Zijlstra 已提交
3335 3336 3337
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3338
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3339 3340
		return 0;

3341
	return event->pmu->event_idx(event);
3342 3343
}

3344
static void calc_timer_values(struct perf_event *event,
3345
				u64 *now,
3346 3347
				u64 *enabled,
				u64 *running)
3348
{
3349
	u64 ctx_time;
3350

3351 3352
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3353 3354 3355 3356
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3357
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3358 3359 3360
{
}

3361 3362 3363 3364 3365
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3366
void perf_event_update_userpage(struct perf_event *event)
3367
{
3368
	struct perf_event_mmap_page *userpg;
3369
	struct ring_buffer *rb;
3370
	u64 enabled, running, now;
3371 3372

	rcu_read_lock();
3373 3374 3375 3376 3377 3378 3379 3380 3381
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3382
	calc_timer_values(event, &now, &enabled, &running);
3383 3384
	rb = rcu_dereference(event->rb);
	if (!rb)
3385 3386
		goto unlock;

3387
	userpg = rb->user_page;
3388

3389 3390 3391 3392 3393
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3394
	++userpg->lock;
3395
	barrier();
3396
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3397
	userpg->offset = perf_event_count(event);
3398
	if (userpg->index)
3399
		userpg->offset -= local64_read(&event->hw.prev_count);
3400

3401
	userpg->time_enabled = enabled +
3402
			atomic64_read(&event->child_total_time_enabled);
3403

3404
	userpg->time_running = running +
3405
			atomic64_read(&event->child_total_time_running);
3406

3407
	arch_perf_update_userpage(userpg, now);
3408

3409
	barrier();
3410
	++userpg->lock;
3411
	preempt_enable();
3412
unlock:
3413
	rcu_read_unlock();
3414 3415
}

3416 3417 3418
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3419
	struct ring_buffer *rb;
3420 3421 3422 3423 3424 3425 3426 3427 3428
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3429 3430
	rb = rcu_dereference(event->rb);
	if (!rb)
3431 3432 3433 3434 3435
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3436
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3488 3489 3490 3491
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3492
		wake_up_all(&event->waitq);
3493 3494

unlock:
3495 3496 3497
	rcu_read_unlock();
}

3498
static void rb_free_rcu(struct rcu_head *rcu_head)
3499
{
3500
	struct ring_buffer *rb;
3501

3502 3503
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3504 3505
}

3506
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3507
{
3508
	struct ring_buffer *rb;
3509

3510
	rcu_read_lock();
3511 3512 3513 3514
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3515 3516 3517
	}
	rcu_read_unlock();

3518
	return rb;
3519 3520
}

3521
static void ring_buffer_put(struct ring_buffer *rb)
3522
{
3523 3524 3525
	struct perf_event *event, *n;
	unsigned long flags;

3526
	if (!atomic_dec_and_test(&rb->refcount))
3527
		return;
3528

3529 3530 3531 3532 3533 3534 3535
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3536
	call_rcu(&rb->rcu_head, rb_free_rcu);
3537 3538 3539 3540
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3541
	struct perf_event *event = vma->vm_file->private_data;
3542

3543
	atomic_inc(&event->mmap_count);
3544 3545 3546 3547
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3548
	struct perf_event *event = vma->vm_file->private_data;
3549

3550
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3551
		unsigned long size = perf_data_size(event->rb);
3552
		struct user_struct *user = event->mmap_user;
3553
		struct ring_buffer *rb = event->rb;
3554

3555
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3556
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3557
		rcu_assign_pointer(event->rb, NULL);
3558
		ring_buffer_detach(event, rb);
3559
		mutex_unlock(&event->mmap_mutex);
3560

3561
		ring_buffer_put(rb);
3562
		free_uid(user);
3563
	}
3564 3565
}

3566
static const struct vm_operations_struct perf_mmap_vmops = {
3567 3568 3569 3570
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3571 3572 3573 3574
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3575
	struct perf_event *event = file->private_data;
3576
	unsigned long user_locked, user_lock_limit;
3577
	struct user_struct *user = current_user();
3578
	unsigned long locked, lock_limit;
3579
	struct ring_buffer *rb;
3580 3581
	unsigned long vma_size;
	unsigned long nr_pages;
3582
	long user_extra, extra;
3583
	int ret = 0, flags = 0;
3584

3585 3586 3587
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3588
	 * same rb.
3589 3590 3591 3592
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3593
	if (!(vma->vm_flags & VM_SHARED))
3594
		return -EINVAL;
3595 3596 3597 3598

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3599
	/*
3600
	 * If we have rb pages ensure they're a power-of-two number, so we
3601 3602 3603
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3604 3605
		return -EINVAL;

3606
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3607 3608
		return -EINVAL;

3609 3610
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3611

3612 3613
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3614 3615 3616
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3617
		else
3618 3619 3620 3621
			ret = -EINVAL;
		goto unlock;
	}

3622
	user_extra = nr_pages + 1;
3623
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3624 3625 3626 3627 3628 3629

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3630
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3631

3632 3633 3634
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3635

3636
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3637
	lock_limit >>= PAGE_SHIFT;
3638
	locked = vma->vm_mm->pinned_vm + extra;
3639

3640 3641
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3642 3643 3644
		ret = -EPERM;
		goto unlock;
	}
3645

3646
	WARN_ON(event->rb);
3647

3648
	if (vma->vm_flags & VM_WRITE)
3649
		flags |= RING_BUFFER_WRITABLE;
3650

3651 3652 3653 3654
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3655
	if (!rb) {
3656
		ret = -ENOMEM;
3657
		goto unlock;
3658
	}
3659
	rcu_assign_pointer(event->rb, rb);
3660

3661 3662 3663
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3664
	vma->vm_mm->pinned_vm += event->mmap_locked;
3665

3666 3667
	perf_event_update_userpage(event);

3668
unlock:
3669 3670
	if (!ret)
		atomic_inc(&event->mmap_count);
3671
	mutex_unlock(&event->mmap_mutex);
3672 3673 3674

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3675 3676

	return ret;
3677 3678
}

P
Peter Zijlstra 已提交
3679 3680 3681
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3682
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3683 3684 3685
	int retval;

	mutex_lock(&inode->i_mutex);
3686
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3687 3688 3689 3690 3691 3692 3693 3694
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3695
static const struct file_operations perf_fops = {
3696
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3697 3698 3699
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3700 3701
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3702
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3703
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3704 3705
};

3706
/*
3707
 * Perf event wakeup
3708 3709 3710 3711 3712
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3713
void perf_event_wakeup(struct perf_event *event)
3714
{
3715
	ring_buffer_wakeup(event);
3716

3717 3718 3719
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3720
	}
3721 3722
}

3723
static void perf_pending_event(struct irq_work *entry)
3724
{
3725 3726
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3727

3728 3729 3730
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3731 3732
	}

3733 3734 3735
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3736 3737 3738
	}
}

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3886 3887 3888
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3916 3917 3918
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3945 3946 3947
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3948 3949 3950 3951 3952
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3953
static void perf_output_read_one(struct perf_output_handle *handle,
3954 3955
				 struct perf_event *event,
				 u64 enabled, u64 running)
3956
{
3957
	u64 read_format = event->attr.read_format;
3958 3959 3960
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3961
	values[n++] = perf_event_count(event);
3962
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3963
		values[n++] = enabled +
3964
			atomic64_read(&event->child_total_time_enabled);
3965 3966
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3967
		values[n++] = running +
3968
			atomic64_read(&event->child_total_time_running);
3969 3970
	}
	if (read_format & PERF_FORMAT_ID)
3971
		values[n++] = primary_event_id(event);
3972

3973
	__output_copy(handle, values, n * sizeof(u64));
3974 3975 3976
}

/*
3977
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3978 3979
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3980 3981
			    struct perf_event *event,
			    u64 enabled, u64 running)
3982
{
3983 3984
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3985 3986 3987 3988 3989 3990
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3991
		values[n++] = enabled;
3992 3993

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3994
		values[n++] = running;
3995

3996
	if (leader != event)
3997 3998
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3999
	values[n++] = perf_event_count(leader);
4000
	if (read_format & PERF_FORMAT_ID)
4001
		values[n++] = primary_event_id(leader);
4002

4003
	__output_copy(handle, values, n * sizeof(u64));
4004

4005
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4006 4007
		n = 0;

4008
		if (sub != event)
4009 4010
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4011
		values[n++] = perf_event_count(sub);
4012
		if (read_format & PERF_FORMAT_ID)
4013
			values[n++] = primary_event_id(sub);
4014

4015
		__output_copy(handle, values, n * sizeof(u64));
4016 4017 4018
	}
}

4019 4020 4021
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4022
static void perf_output_read(struct perf_output_handle *handle,
4023
			     struct perf_event *event)
4024
{
4025
	u64 enabled = 0, running = 0, now;
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4037
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4038
		calc_timer_values(event, &now, &enabled, &running);
4039

4040
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4041
		perf_output_read_group(handle, event, enabled, running);
4042
	else
4043
		perf_output_read_one(handle, event, enabled, running);
4044 4045
}

4046 4047 4048
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4049
			struct perf_event *event)
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4080
		perf_output_read(handle, event);
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4091
			__output_copy(handle, data->callchain, size);
4092 4093 4094 4095 4096 4097 4098 4099 4100
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4101 4102
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4163 4164 4165 4166 4167

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4168 4169 4170 4171
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4172
			 struct perf_event *event,
4173
			 struct pt_regs *regs)
4174
{
4175
	u64 sample_type = event->attr.sample_type;
4176

4177
	header->type = PERF_RECORD_SAMPLE;
4178
	header->size = sizeof(*header) + event->header_size;
4179 4180 4181

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4182

4183
	__perf_event_header__init_id(header, data, event);
4184

4185
	if (sample_type & PERF_SAMPLE_IP)
4186 4187
		data->ip = perf_instruction_pointer(regs);

4188
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4189
		int size = 1;
4190

4191
		data->callchain = perf_callchain(event, regs);
4192 4193 4194 4195 4196

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4197 4198
	}

4199
	if (sample_type & PERF_SAMPLE_RAW) {
4200 4201 4202 4203 4204 4205 4206 4207
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4208
		header->size += size;
4209
	}
4210 4211 4212 4213 4214 4215 4216 4217 4218

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4262
}
4263

4264
static void perf_event_output(struct perf_event *event,
4265 4266 4267 4268 4269
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4270

4271 4272 4273
	/* protect the callchain buffers */
	rcu_read_lock();

4274
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4275

4276
	if (perf_output_begin(&handle, event, header.size))
4277
		goto exit;
4278

4279
	perf_output_sample(&handle, &header, data, event);
4280

4281
	perf_output_end(&handle);
4282 4283 4284

exit:
	rcu_read_unlock();
4285 4286
}

4287
/*
4288
 * read event_id
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4299
perf_event_read_event(struct perf_event *event,
4300 4301 4302
			struct task_struct *task)
{
	struct perf_output_handle handle;
4303
	struct perf_sample_data sample;
4304
	struct perf_read_event read_event = {
4305
		.header = {
4306
			.type = PERF_RECORD_READ,
4307
			.misc = 0,
4308
			.size = sizeof(read_event) + event->read_size,
4309
		},
4310 4311
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4312
	};
4313
	int ret;
4314

4315
	perf_event_header__init_id(&read_event.header, &sample, event);
4316
	ret = perf_output_begin(&handle, event, read_event.header.size);
4317 4318 4319
	if (ret)
		return;

4320
	perf_output_put(&handle, read_event);
4321
	perf_output_read(&handle, event);
4322
	perf_event__output_id_sample(event, &handle, &sample);
4323

4324 4325 4326
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4327
/*
P
Peter Zijlstra 已提交
4328 4329
 * task tracking -- fork/exit
 *
4330
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4331 4332
 */

P
Peter Zijlstra 已提交
4333
struct perf_task_event {
4334
	struct task_struct		*task;
4335
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4336 4337 4338 4339 4340 4341

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4342 4343
		u32				tid;
		u32				ptid;
4344
		u64				time;
4345
	} event_id;
P
Peter Zijlstra 已提交
4346 4347
};

4348
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4349
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4350 4351
{
	struct perf_output_handle handle;
4352
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4353
	struct task_struct *task = task_event->task;
4354
	int ret, size = task_event->event_id.header.size;
4355

4356
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4357

4358
	ret = perf_output_begin(&handle, event,
4359
				task_event->event_id.header.size);
4360
	if (ret)
4361
		goto out;
P
Peter Zijlstra 已提交
4362

4363 4364
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4365

4366 4367
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4368

4369
	perf_output_put(&handle, task_event->event_id);
4370

4371 4372
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4373
	perf_output_end(&handle);
4374 4375
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4376 4377
}

4378
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4379
{
P
Peter Zijlstra 已提交
4380
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4381 4382
		return 0;

4383
	if (!event_filter_match(event))
4384 4385
		return 0;

4386 4387
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4388 4389 4390 4391 4392
		return 1;

	return 0;
}

4393
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4394
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4395
{
4396
	struct perf_event *event;
P
Peter Zijlstra 已提交
4397

4398 4399 4400
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4401 4402 4403
	}
}

4404
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4405 4406
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4407
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4408
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4409
	int ctxn;
P
Peter Zijlstra 已提交
4410

4411
	rcu_read_lock();
P
Peter Zijlstra 已提交
4412
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4413
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4414 4415
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4416
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4417 4418 4419 4420 4421

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4422
				goto next;
P
Peter Zijlstra 已提交
4423 4424 4425 4426
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4427 4428
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4429
	}
P
Peter Zijlstra 已提交
4430 4431 4432
	rcu_read_unlock();
}

4433 4434
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4435
			      int new)
P
Peter Zijlstra 已提交
4436
{
P
Peter Zijlstra 已提交
4437
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4438

4439 4440 4441
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4442 4443
		return;

P
Peter Zijlstra 已提交
4444
	task_event = (struct perf_task_event){
4445 4446
		.task	  = task,
		.task_ctx = task_ctx,
4447
		.event_id    = {
P
Peter Zijlstra 已提交
4448
			.header = {
4449
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4450
				.misc = 0,
4451
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4452
			},
4453 4454
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4455 4456
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4457
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4458 4459 4460
		},
	};

4461
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4462 4463
}

4464
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4465
{
4466
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4467 4468
}

4469 4470 4471 4472 4473
/*
 * comm tracking
 */

struct perf_comm_event {
4474 4475
	struct task_struct	*task;
	char			*comm;
4476 4477 4478 4479 4480 4481 4482
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4483
	} event_id;
4484 4485
};

4486
static void perf_event_comm_output(struct perf_event *event,
4487 4488 4489
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4490
	struct perf_sample_data sample;
4491
	int size = comm_event->event_id.header.size;
4492 4493 4494 4495
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4496
				comm_event->event_id.header.size);
4497 4498

	if (ret)
4499
		goto out;
4500

4501 4502
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4503

4504
	perf_output_put(&handle, comm_event->event_id);
4505
	__output_copy(&handle, comm_event->comm,
4506
				   comm_event->comm_size);
4507 4508 4509

	perf_event__output_id_sample(event, &handle, &sample);

4510
	perf_output_end(&handle);
4511 4512
out:
	comm_event->event_id.header.size = size;
4513 4514
}

4515
static int perf_event_comm_match(struct perf_event *event)
4516
{
P
Peter Zijlstra 已提交
4517
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4518 4519
		return 0;

4520
	if (!event_filter_match(event))
4521 4522
		return 0;

4523
	if (event->attr.comm)
4524 4525 4526 4527 4528
		return 1;

	return 0;
}

4529
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4530 4531
				  struct perf_comm_event *comm_event)
{
4532
	struct perf_event *event;
4533

4534 4535 4536
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4537 4538 4539
	}
}

4540
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4541 4542
{
	struct perf_cpu_context *cpuctx;
4543
	struct perf_event_context *ctx;
4544
	char comm[TASK_COMM_LEN];
4545
	unsigned int size;
P
Peter Zijlstra 已提交
4546
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4547
	int ctxn;
4548

4549
	memset(comm, 0, sizeof(comm));
4550
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4551
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4552 4553 4554 4555

	comm_event->comm = comm;
	comm_event->comm_size = size;

4556
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4557
	rcu_read_lock();
P
Peter Zijlstra 已提交
4558
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4559
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4560 4561
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4562
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4563 4564 4565

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4566
			goto next;
P
Peter Zijlstra 已提交
4567 4568 4569 4570

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4571 4572
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4573
	}
4574
	rcu_read_unlock();
4575 4576
}

4577
void perf_event_comm(struct task_struct *task)
4578
{
4579
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4580 4581
	struct perf_event_context *ctx;
	int ctxn;
4582

P
Peter Zijlstra 已提交
4583 4584 4585 4586
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4587

P
Peter Zijlstra 已提交
4588 4589
		perf_event_enable_on_exec(ctx);
	}
4590

4591
	if (!atomic_read(&nr_comm_events))
4592
		return;
4593

4594
	comm_event = (struct perf_comm_event){
4595
		.task	= task,
4596 4597
		/* .comm      */
		/* .comm_size */
4598
		.event_id  = {
4599
			.header = {
4600
				.type = PERF_RECORD_COMM,
4601 4602 4603 4604 4605
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4606 4607 4608
		},
	};

4609
	perf_event_comm_event(&comm_event);
4610 4611
}

4612 4613 4614 4615 4616
/*
 * mmap tracking
 */

struct perf_mmap_event {
4617 4618 4619 4620
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4621 4622 4623 4624 4625 4626 4627 4628 4629

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4630
	} event_id;
4631 4632
};

4633
static void perf_event_mmap_output(struct perf_event *event,
4634 4635 4636
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4637
	struct perf_sample_data sample;
4638
	int size = mmap_event->event_id.header.size;
4639
	int ret;
4640

4641 4642
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4643
				mmap_event->event_id.header.size);
4644
	if (ret)
4645
		goto out;
4646

4647 4648
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4649

4650
	perf_output_put(&handle, mmap_event->event_id);
4651
	__output_copy(&handle, mmap_event->file_name,
4652
				   mmap_event->file_size);
4653 4654 4655

	perf_event__output_id_sample(event, &handle, &sample);

4656
	perf_output_end(&handle);
4657 4658
out:
	mmap_event->event_id.header.size = size;
4659 4660
}

4661
static int perf_event_mmap_match(struct perf_event *event,
4662 4663
				   struct perf_mmap_event *mmap_event,
				   int executable)
4664
{
P
Peter Zijlstra 已提交
4665
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4666 4667
		return 0;

4668
	if (!event_filter_match(event))
4669 4670
		return 0;

4671 4672
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4673 4674 4675 4676 4677
		return 1;

	return 0;
}

4678
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4679 4680
				  struct perf_mmap_event *mmap_event,
				  int executable)
4681
{
4682
	struct perf_event *event;
4683

4684
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4685
		if (perf_event_mmap_match(event, mmap_event, executable))
4686
			perf_event_mmap_output(event, mmap_event);
4687 4688 4689
	}
}

4690
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4691 4692
{
	struct perf_cpu_context *cpuctx;
4693
	struct perf_event_context *ctx;
4694 4695
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4696 4697 4698
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4699
	const char *name;
P
Peter Zijlstra 已提交
4700
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4701
	int ctxn;
4702

4703 4704
	memset(tmp, 0, sizeof(tmp));

4705
	if (file) {
4706
		/*
4707
		 * d_path works from the end of the rb backwards, so we
4708 4709 4710 4711
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4712 4713 4714 4715
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4716
		name = d_path(&file->f_path, buf, PATH_MAX);
4717 4718 4719 4720 4721
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4722 4723 4724
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4725
			goto got_name;
4726
		}
4727 4728 4729 4730

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4731 4732 4733 4734 4735 4736 4737 4738
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4739 4740
		}

4741 4742 4743 4744 4745
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4746
	size = ALIGN(strlen(name)+1, sizeof(u64));
4747 4748 4749 4750

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4751
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4752

4753
	rcu_read_lock();
P
Peter Zijlstra 已提交
4754
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4755
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4756 4757
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4758 4759
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4760 4761 4762

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4763
			goto next;
P
Peter Zijlstra 已提交
4764 4765 4766 4767 4768 4769

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4770 4771
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4772
	}
4773 4774
	rcu_read_unlock();

4775 4776 4777
	kfree(buf);
}

4778
void perf_event_mmap(struct vm_area_struct *vma)
4779
{
4780 4781
	struct perf_mmap_event mmap_event;

4782
	if (!atomic_read(&nr_mmap_events))
4783 4784 4785
		return;

	mmap_event = (struct perf_mmap_event){
4786
		.vma	= vma,
4787 4788
		/* .file_name */
		/* .file_size */
4789
		.event_id  = {
4790
			.header = {
4791
				.type = PERF_RECORD_MMAP,
4792
				.misc = PERF_RECORD_MISC_USER,
4793 4794 4795 4796
				/* .size */
			},
			/* .pid */
			/* .tid */
4797 4798
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4799
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4800 4801 4802
		},
	};

4803
	perf_event_mmap_event(&mmap_event);
4804 4805
}

4806 4807 4808 4809
/*
 * IRQ throttle logging
 */

4810
static void perf_log_throttle(struct perf_event *event, int enable)
4811 4812
{
	struct perf_output_handle handle;
4813
	struct perf_sample_data sample;
4814 4815 4816 4817 4818
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4819
		u64				id;
4820
		u64				stream_id;
4821 4822
	} throttle_event = {
		.header = {
4823
			.type = PERF_RECORD_THROTTLE,
4824 4825 4826
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4827
		.time		= perf_clock(),
4828 4829
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4830 4831
	};

4832
	if (enable)
4833
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4834

4835 4836 4837
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4838
				throttle_event.header.size);
4839 4840 4841 4842
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4843
	perf_event__output_id_sample(event, &handle, &sample);
4844 4845 4846
	perf_output_end(&handle);
}

4847
/*
4848
 * Generic event overflow handling, sampling.
4849 4850
 */

4851
static int __perf_event_overflow(struct perf_event *event,
4852 4853
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4854
{
4855 4856
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4857
	u64 seq;
4858 4859
	int ret = 0;

4860 4861 4862 4863 4864 4865 4866
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4867 4868 4869 4870 4871 4872 4873 4874 4875
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4876 4877
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4878 4879
			ret = 1;
		}
4880
	}
4881

4882
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4883
		u64 now = perf_clock();
4884
		s64 delta = now - hwc->freq_time_stamp;
4885

4886
		hwc->freq_time_stamp = now;
4887

4888
		if (delta > 0 && delta < 2*TICK_NSEC)
4889
			perf_adjust_period(event, delta, hwc->last_period, true);
4890 4891
	}

4892 4893
	/*
	 * XXX event_limit might not quite work as expected on inherited
4894
	 * events
4895 4896
	 */

4897 4898
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4899
		ret = 1;
4900
		event->pending_kill = POLL_HUP;
4901 4902
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4903 4904
	}

4905
	if (event->overflow_handler)
4906
		event->overflow_handler(event, data, regs);
4907
	else
4908
		perf_event_output(event, data, regs);
4909

P
Peter Zijlstra 已提交
4910
	if (event->fasync && event->pending_kill) {
4911 4912
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4913 4914
	}

4915
	return ret;
4916 4917
}

4918
int perf_event_overflow(struct perf_event *event,
4919 4920
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4921
{
4922
	return __perf_event_overflow(event, 1, data, regs);
4923 4924
}

4925
/*
4926
 * Generic software event infrastructure
4927 4928
 */

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4940
/*
4941 4942
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4943 4944 4945 4946
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4947
static u64 perf_swevent_set_period(struct perf_event *event)
4948
{
4949
	struct hw_perf_event *hwc = &event->hw;
4950 4951 4952 4953 4954
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4955 4956

again:
4957
	old = val = local64_read(&hwc->period_left);
4958 4959
	if (val < 0)
		return 0;
4960

4961 4962 4963
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4964
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4965
		goto again;
4966

4967
	return nr;
4968 4969
}

4970
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4971
				    struct perf_sample_data *data,
4972
				    struct pt_regs *regs)
4973
{
4974
	struct hw_perf_event *hwc = &event->hw;
4975
	int throttle = 0;
4976

4977 4978
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4979

4980 4981
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4982

4983
	for (; overflow; overflow--) {
4984
		if (__perf_event_overflow(event, throttle,
4985
					    data, regs)) {
4986 4987 4988 4989 4990 4991
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4992
		throttle = 1;
4993
	}
4994 4995
}

P
Peter Zijlstra 已提交
4996
static void perf_swevent_event(struct perf_event *event, u64 nr,
4997
			       struct perf_sample_data *data,
4998
			       struct pt_regs *regs)
4999
{
5000
	struct hw_perf_event *hwc = &event->hw;
5001

5002
	local64_add(nr, &event->count);
5003

5004 5005 5006
	if (!regs)
		return;

5007
	if (!is_sampling_event(event))
5008
		return;
5009

5010 5011 5012 5013 5014 5015
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5016
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5017
		return perf_swevent_overflow(event, 1, data, regs);
5018

5019
	if (local64_add_negative(nr, &hwc->period_left))
5020
		return;
5021

5022
	perf_swevent_overflow(event, 0, data, regs);
5023 5024
}

5025 5026 5027
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5028
	if (event->hw.state & PERF_HES_STOPPED)
5029
		return 1;
P
Peter Zijlstra 已提交
5030

5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5042
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5043
				enum perf_type_id type,
L
Li Zefan 已提交
5044 5045 5046
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5047
{
5048
	if (event->attr.type != type)
5049
		return 0;
5050

5051
	if (event->attr.config != event_id)
5052 5053
		return 0;

5054 5055
	if (perf_exclude_event(event, regs))
		return 0;
5056 5057 5058 5059

	return 1;
}

5060 5061 5062 5063 5064 5065 5066
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5067 5068
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5069
{
5070 5071 5072 5073
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5074

5075 5076
/* For the read side: events when they trigger */
static inline struct hlist_head *
5077
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5078 5079
{
	struct swevent_hlist *hlist;
5080

5081
	hlist = rcu_dereference(swhash->swevent_hlist);
5082 5083 5084
	if (!hlist)
		return NULL;

5085 5086 5087 5088 5089
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5090
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5101
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5102 5103 5104 5105 5106
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5107 5108 5109
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5110
				    u64 nr,
5111 5112
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5113
{
5114
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5115
	struct perf_event *event;
5116 5117
	struct hlist_node *node;
	struct hlist_head *head;
5118

5119
	rcu_read_lock();
5120
	head = find_swevent_head_rcu(swhash, type, event_id);
5121 5122 5123 5124
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5125
		if (perf_swevent_match(event, type, event_id, data, regs))
5126
			perf_swevent_event(event, nr, data, regs);
5127
	}
5128 5129
end:
	rcu_read_unlock();
5130 5131
}

5132
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5133
{
5134
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5135

5136
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5137
}
I
Ingo Molnar 已提交
5138
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5139

5140
inline void perf_swevent_put_recursion_context(int rctx)
5141
{
5142
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5143

5144
	put_recursion_context(swhash->recursion, rctx);
5145
}
5146

5147
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5148
{
5149
	struct perf_sample_data data;
5150 5151
	int rctx;

5152
	preempt_disable_notrace();
5153 5154 5155
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5156

5157
	perf_sample_data_init(&data, addr, 0);
5158

5159
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5160 5161

	perf_swevent_put_recursion_context(rctx);
5162
	preempt_enable_notrace();
5163 5164
}

5165
static void perf_swevent_read(struct perf_event *event)
5166 5167 5168
{
}

P
Peter Zijlstra 已提交
5169
static int perf_swevent_add(struct perf_event *event, int flags)
5170
{
5171
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5172
	struct hw_perf_event *hwc = &event->hw;
5173 5174
	struct hlist_head *head;

5175
	if (is_sampling_event(event)) {
5176
		hwc->last_period = hwc->sample_period;
5177
		perf_swevent_set_period(event);
5178
	}
5179

P
Peter Zijlstra 已提交
5180 5181
	hwc->state = !(flags & PERF_EF_START);

5182
	head = find_swevent_head(swhash, event);
5183 5184 5185 5186 5187
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5188 5189 5190
	return 0;
}

P
Peter Zijlstra 已提交
5191
static void perf_swevent_del(struct perf_event *event, int flags)
5192
{
5193
	hlist_del_rcu(&event->hlist_entry);
5194 5195
}

P
Peter Zijlstra 已提交
5196
static void perf_swevent_start(struct perf_event *event, int flags)
5197
{
P
Peter Zijlstra 已提交
5198
	event->hw.state = 0;
5199
}
I
Ingo Molnar 已提交
5200

P
Peter Zijlstra 已提交
5201
static void perf_swevent_stop(struct perf_event *event, int flags)
5202
{
P
Peter Zijlstra 已提交
5203
	event->hw.state = PERF_HES_STOPPED;
5204 5205
}

5206 5207
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5208
swevent_hlist_deref(struct swevent_htable *swhash)
5209
{
5210 5211
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5212 5213
}

5214
static void swevent_hlist_release(struct swevent_htable *swhash)
5215
{
5216
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5217

5218
	if (!hlist)
5219 5220
		return;

5221
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5222
	kfree_rcu(hlist, rcu_head);
5223 5224 5225 5226
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5227
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5228

5229
	mutex_lock(&swhash->hlist_mutex);
5230

5231 5232
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5233

5234
	mutex_unlock(&swhash->hlist_mutex);
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5252
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5253 5254
	int err = 0;

5255
	mutex_lock(&swhash->hlist_mutex);
5256

5257
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5258 5259 5260 5261 5262 5263 5264
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5265
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5266
	}
5267
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5268
exit:
5269
	mutex_unlock(&swhash->hlist_mutex);
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5293
fail:
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5304
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5305

5306 5307 5308
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5309

5310 5311
	WARN_ON(event->parent);

5312
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5323 5324 5325 5326 5327 5328
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5329 5330 5331 5332 5333 5334 5335 5336 5337
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5338
	if (event_id >= PERF_COUNT_SW_MAX)
5339 5340 5341 5342 5343 5344 5345 5346 5347
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5348
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5349 5350 5351 5352 5353 5354
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5355 5356 5357 5358 5359
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5360
static struct pmu perf_swevent = {
5361
	.task_ctx_nr	= perf_sw_context,
5362

5363
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5364 5365 5366 5367
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5368
	.read		= perf_swevent_read,
5369 5370

	.event_idx	= perf_swevent_event_idx,
5371 5372
};

5373 5374
#ifdef CONFIG_EVENT_TRACING

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5389 5390
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5391 5392 5393 5394
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5395 5396 5397 5398 5399 5400 5401 5402 5403
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5404 5405
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5406 5407
{
	struct perf_sample_data data;
5408 5409 5410
	struct perf_event *event;
	struct hlist_node *node;

5411 5412 5413 5414 5415
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5416
	perf_sample_data_init(&data, addr, 0);
5417 5418
	data.raw = &raw;

5419 5420
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5421
			perf_swevent_event(event, count, &data, regs);
5422
	}
5423

5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5449
	perf_swevent_put_recursion_context(rctx);
5450 5451 5452
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5453
static void tp_perf_event_destroy(struct perf_event *event)
5454
{
5455
	perf_trace_destroy(event);
5456 5457
}

5458
static int perf_tp_event_init(struct perf_event *event)
5459
{
5460 5461
	int err;

5462 5463 5464
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5465 5466 5467 5468 5469 5470
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5471 5472
	err = perf_trace_init(event);
	if (err)
5473
		return err;
5474

5475
	event->destroy = tp_perf_event_destroy;
5476

5477 5478 5479 5480
	return 0;
}

static struct pmu perf_tracepoint = {
5481 5482
	.task_ctx_nr	= perf_sw_context,

5483
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5484 5485 5486 5487
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5488
	.read		= perf_swevent_read,
5489 5490

	.event_idx	= perf_swevent_event_idx,
5491 5492 5493 5494
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5495
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5496
}
L
Li Zefan 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5521
#else
L
Li Zefan 已提交
5522

5523
static inline void perf_tp_register(void)
5524 5525
{
}
L
Li Zefan 已提交
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5536
#endif /* CONFIG_EVENT_TRACING */
5537

5538
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5539
void perf_bp_event(struct perf_event *bp, void *data)
5540
{
5541 5542 5543
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5544
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5545

P
Peter Zijlstra 已提交
5546
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5547
		perf_swevent_event(bp, 1, &sample, regs);
5548 5549 5550
}
#endif

5551 5552 5553
/*
 * hrtimer based swevent callback
 */
5554

5555
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5556
{
5557 5558 5559 5560 5561
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5562

5563
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5564 5565 5566 5567

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5568
	event->pmu->read(event);
5569

5570
	perf_sample_data_init(&data, 0, event->hw.last_period);
5571 5572 5573
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5574
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5575
			if (__perf_event_overflow(event, 1, &data, regs))
5576 5577
				ret = HRTIMER_NORESTART;
	}
5578

5579 5580
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5581

5582
	return ret;
5583 5584
}

5585
static void perf_swevent_start_hrtimer(struct perf_event *event)
5586
{
5587
	struct hw_perf_event *hwc = &event->hw;
5588 5589 5590 5591
	s64 period;

	if (!is_sampling_event(event))
		return;
5592

5593 5594 5595 5596
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5597

5598 5599 5600 5601 5602
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5603
				ns_to_ktime(period), 0,
5604
				HRTIMER_MODE_REL_PINNED, 0);
5605
}
5606 5607

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5608
{
5609 5610
	struct hw_perf_event *hwc = &event->hw;

5611
	if (is_sampling_event(event)) {
5612
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5613
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5614 5615 5616

		hrtimer_cancel(&hwc->hrtimer);
	}
5617 5618
}

P
Peter Zijlstra 已提交
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5643 5644 5645 5646 5647
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5648
{
5649 5650 5651
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5652
	now = local_clock();
5653 5654
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5655 5656
}

P
Peter Zijlstra 已提交
5657
static void cpu_clock_event_start(struct perf_event *event, int flags)
5658
{
P
Peter Zijlstra 已提交
5659
	local64_set(&event->hw.prev_count, local_clock());
5660 5661 5662
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5663
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5664
{
5665 5666 5667
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5668

P
Peter Zijlstra 已提交
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5682 5683 5684 5685
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5686

5687 5688 5689 5690 5691 5692 5693 5694
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5695 5696 5697 5698 5699 5700
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5701 5702
	perf_swevent_init_hrtimer(event);

5703
	return 0;
5704 5705
}

5706
static struct pmu perf_cpu_clock = {
5707 5708
	.task_ctx_nr	= perf_sw_context,

5709
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5710 5711 5712 5713
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5714
	.read		= cpu_clock_event_read,
5715 5716

	.event_idx	= perf_swevent_event_idx,
5717 5718 5719 5720 5721 5722 5723
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5724
{
5725 5726
	u64 prev;
	s64 delta;
5727

5728 5729 5730 5731
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5732

P
Peter Zijlstra 已提交
5733
static void task_clock_event_start(struct perf_event *event, int flags)
5734
{
P
Peter Zijlstra 已提交
5735
	local64_set(&event->hw.prev_count, event->ctx->time);
5736 5737 5738
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5739
static void task_clock_event_stop(struct perf_event *event, int flags)
5740 5741 5742
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5743 5744 5745 5746 5747 5748
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5749

P
Peter Zijlstra 已提交
5750 5751 5752 5753 5754 5755
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5756 5757 5758 5759
}

static void task_clock_event_read(struct perf_event *event)
{
5760 5761 5762
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5763 5764 5765 5766 5767

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5768
{
5769 5770 5771 5772 5773 5774
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5775 5776 5777 5778 5779 5780
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5781 5782
	perf_swevent_init_hrtimer(event);

5783
	return 0;
L
Li Zefan 已提交
5784 5785
}

5786
static struct pmu perf_task_clock = {
5787 5788
	.task_ctx_nr	= perf_sw_context,

5789
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5790 5791 5792 5793
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5794
	.read		= task_clock_event_read,
5795 5796

	.event_idx	= perf_swevent_event_idx,
5797
};
L
Li Zefan 已提交
5798

P
Peter Zijlstra 已提交
5799
static void perf_pmu_nop_void(struct pmu *pmu)
5800 5801
{
}
L
Li Zefan 已提交
5802

P
Peter Zijlstra 已提交
5803
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5804
{
P
Peter Zijlstra 已提交
5805
	return 0;
L
Li Zefan 已提交
5806 5807
}

P
Peter Zijlstra 已提交
5808
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5809
{
P
Peter Zijlstra 已提交
5810
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5811 5812
}

P
Peter Zijlstra 已提交
5813 5814 5815 5816 5817
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5818

P
Peter Zijlstra 已提交
5819
static void perf_pmu_cancel_txn(struct pmu *pmu)
5820
{
P
Peter Zijlstra 已提交
5821
	perf_pmu_enable(pmu);
5822 5823
}

5824 5825 5826 5827 5828
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5829 5830 5831 5832 5833
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5834
{
P
Peter Zijlstra 已提交
5835
	struct pmu *pmu;
5836

P
Peter Zijlstra 已提交
5837 5838
	if (ctxn < 0)
		return NULL;
5839

P
Peter Zijlstra 已提交
5840 5841 5842 5843
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5844

P
Peter Zijlstra 已提交
5845
	return NULL;
5846 5847
}

5848
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5849
{
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5865

P
Peter Zijlstra 已提交
5866
	mutex_lock(&pmus_lock);
5867
	/*
P
Peter Zijlstra 已提交
5868
	 * Like a real lame refcount.
5869
	 */
5870 5871 5872
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5873
			goto out;
5874
		}
P
Peter Zijlstra 已提交
5875
	}
5876

5877
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5878 5879
out:
	mutex_unlock(&pmus_lock);
5880
}
P
Peter Zijlstra 已提交
5881
static struct idr pmu_idr;
5882

P
Peter Zijlstra 已提交
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5915
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5936
static struct lock_class_key cpuctx_mutex;
5937
static struct lock_class_key cpuctx_lock;
5938

P
Peter Zijlstra 已提交
5939
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5940
{
P
Peter Zijlstra 已提交
5941
	int cpu, ret;
5942

5943
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5944 5945 5946 5947
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5948

P
Peter Zijlstra 已提交
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5967 5968 5969 5970 5971 5972
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5973
skip_type:
P
Peter Zijlstra 已提交
5974 5975 5976
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5977

P
Peter Zijlstra 已提交
5978 5979
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5980
		goto free_dev;
5981

P
Peter Zijlstra 已提交
5982 5983 5984 5985
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5986
		__perf_event_init_context(&cpuctx->ctx);
5987
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5988
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5989
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5990
		cpuctx->ctx.pmu = pmu;
5991 5992
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5993
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5994
	}
5995

P
Peter Zijlstra 已提交
5996
got_cpu_context:
P
Peter Zijlstra 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6011
		}
6012
	}
6013

P
Peter Zijlstra 已提交
6014 6015 6016 6017 6018
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6019 6020 6021
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6022
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6023 6024
	ret = 0;
unlock:
6025 6026
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6027
	return ret;
P
Peter Zijlstra 已提交
6028

P
Peter Zijlstra 已提交
6029 6030 6031 6032
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6033 6034 6035 6036
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6037 6038 6039
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6040 6041
}

6042
void perf_pmu_unregister(struct pmu *pmu)
6043
{
6044 6045 6046
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6047

6048
	/*
P
Peter Zijlstra 已提交
6049 6050
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6051
	 */
6052
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6053
	synchronize_rcu();
6054

P
Peter Zijlstra 已提交
6055
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6056 6057
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6058 6059
	device_del(pmu->dev);
	put_device(pmu->dev);
6060
	free_pmu_context(pmu);
6061
}
6062

6063 6064 6065 6066
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6067
	int ret;
6068 6069

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6070 6071 6072 6073

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6074
	if (pmu) {
6075
		event->pmu = pmu;
6076 6077 6078
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6079
		goto unlock;
6080
	}
P
Peter Zijlstra 已提交
6081

6082
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6083
		event->pmu = pmu;
6084
		ret = pmu->event_init(event);
6085
		if (!ret)
P
Peter Zijlstra 已提交
6086
			goto unlock;
6087

6088 6089
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6090
			goto unlock;
6091
		}
6092
	}
P
Peter Zijlstra 已提交
6093 6094
	pmu = ERR_PTR(-ENOENT);
unlock:
6095
	srcu_read_unlock(&pmus_srcu, idx);
6096

6097
	return pmu;
6098 6099
}

T
Thomas Gleixner 已提交
6100
/*
6101
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6102
 */
6103
static struct perf_event *
6104
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6105 6106 6107
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6108 6109
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6110
{
P
Peter Zijlstra 已提交
6111
	struct pmu *pmu;
6112 6113
	struct perf_event *event;
	struct hw_perf_event *hwc;
6114
	long err;
T
Thomas Gleixner 已提交
6115

6116 6117 6118 6119 6120
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6121
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6122
	if (!event)
6123
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6124

6125
	/*
6126
	 * Single events are their own group leaders, with an
6127 6128 6129
	 * empty sibling list:
	 */
	if (!group_leader)
6130
		group_leader = event;
6131

6132 6133
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6134

6135 6136 6137
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6138 6139
	INIT_LIST_HEAD(&event->rb_entry);

6140
	init_waitqueue_head(&event->waitq);
6141
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6142

6143
	mutex_init(&event->mmap_mutex);
6144

6145 6146 6147 6148 6149
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6150

6151
	event->parent		= parent_event;
6152

6153 6154
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6155

6156
	event->state		= PERF_EVENT_STATE_INACTIVE;
6157

6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6169
	if (!overflow_handler && parent_event) {
6170
		overflow_handler = parent_event->overflow_handler;
6171 6172
		context = parent_event->overflow_handler_context;
	}
6173

6174
	event->overflow_handler	= overflow_handler;
6175
	event->overflow_handler_context = context;
6176

6177
	if (attr->disabled)
6178
		event->state = PERF_EVENT_STATE_OFF;
6179

6180
	pmu = NULL;
6181

6182
	hwc = &event->hw;
6183
	hwc->sample_period = attr->sample_period;
6184
	if (attr->freq && attr->sample_freq)
6185
		hwc->sample_period = 1;
6186
	hwc->last_period = hwc->sample_period;
6187

6188
	local64_set(&hwc->period_left, hwc->sample_period);
6189

6190
	/*
6191
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6192
	 */
6193
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6194 6195
		goto done;

6196
	pmu = perf_init_event(event);
6197

6198 6199
done:
	err = 0;
6200
	if (!pmu)
6201
		err = -EINVAL;
6202 6203
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6204

6205
	if (err) {
6206 6207 6208
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6209
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6210
	}
6211

6212
	if (!event->parent) {
6213
		if (event->attach_state & PERF_ATTACH_TASK)
6214
			static_key_slow_inc(&perf_sched_events.key);
6215
		if (event->attr.mmap || event->attr.mmap_data)
6216 6217 6218 6219 6220
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6221 6222 6223 6224 6225 6226 6227
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6228 6229 6230 6231 6232 6233
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6234
	}
6235

6236
	return event;
T
Thomas Gleixner 已提交
6237 6238
}

6239 6240
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6241 6242
{
	u32 size;
6243
	int ret;
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6268 6269 6270
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6271 6272
	 */
	if (size > sizeof(*attr)) {
6273 6274 6275
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6276

6277 6278
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6279

6280
		for (; addr < end; addr++) {
6281 6282 6283 6284 6285 6286
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6287
		size = sizeof(*attr);
6288 6289 6290 6291 6292 6293
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6294
	if (attr->__reserved_1)
6295 6296 6297 6298 6299 6300 6301 6302
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6337

6338
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6339
		ret = perf_reg_validate(attr->sample_regs_user);
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6358

6359 6360 6361 6362 6363 6364 6365 6366 6367
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6368 6369
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6370
{
6371
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6372 6373
	int ret = -EINVAL;

6374
	if (!output_event)
6375 6376
		goto set;

6377 6378
	/* don't allow circular references */
	if (event == output_event)
6379 6380
		goto out;

6381 6382 6383 6384 6385 6386 6387
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6388
	 * If its not a per-cpu rb, it must be the same task.
6389 6390 6391 6392
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6393
set:
6394
	mutex_lock(&event->mmap_mutex);
6395 6396 6397
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6398

6399
	if (output_event) {
6400 6401 6402
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6403
			goto unlock;
6404 6405
	}

6406 6407
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6408 6409
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6410
	ret = 0;
6411 6412 6413
unlock:
	mutex_unlock(&event->mmap_mutex);

6414 6415
	if (old_rb)
		ring_buffer_put(old_rb);
6416 6417 6418 6419
out:
	return ret;
}

T
Thomas Gleixner 已提交
6420
/**
6421
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6422
 *
6423
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6424
 * @pid:		target pid
I
Ingo Molnar 已提交
6425
 * @cpu:		target cpu
6426
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6427
 */
6428 6429
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6430
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6431
{
6432 6433
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6434 6435 6436
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6437
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6438
	struct task_struct *task = NULL;
6439
	struct pmu *pmu;
6440
	int event_fd;
6441
	int move_group = 0;
6442
	int fput_needed = 0;
6443
	int err;
T
Thomas Gleixner 已提交
6444

6445
	/* for future expandability... */
S
Stephane Eranian 已提交
6446
	if (flags & ~PERF_FLAG_ALL)
6447 6448
		return -EINVAL;

6449 6450 6451
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6452

6453 6454 6455 6456 6457
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6458
	if (attr.freq) {
6459
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6460 6461 6462
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6463 6464 6465 6466 6467 6468 6469 6470 6471
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6472 6473 6474 6475
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6476 6477 6478 6479
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6480
			goto err_fd;
6481 6482 6483 6484 6485 6486 6487 6488
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6489
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6490 6491 6492 6493 6494 6495 6496
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6497 6498
	get_online_cpus();

6499 6500
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6501 6502
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6503
		goto err_task;
6504 6505
	}

S
Stephane Eranian 已提交
6506 6507 6508 6509
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6510 6511 6512 6513 6514 6515
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6516
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6517 6518
	}

6519 6520 6521 6522 6523
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6547 6548 6549 6550

	/*
	 * Get the target context (task or percpu):
	 */
6551
	ctx = find_get_context(pmu, task, event->cpu);
6552 6553
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6554
		goto err_alloc;
6555 6556
	}

6557 6558 6559 6560 6561
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6562
	/*
6563
	 * Look up the group leader (we will attach this event to it):
6564
	 */
6565
	if (group_leader) {
6566
		err = -EINVAL;
6567 6568

		/*
I
Ingo Molnar 已提交
6569 6570 6571 6572
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6573
			goto err_context;
I
Ingo Molnar 已提交
6574 6575 6576
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6577
		 */
6578 6579 6580 6581 6582 6583 6584 6585
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6586 6587 6588
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6589
		if (attr.exclusive || attr.pinned)
6590
			goto err_context;
6591 6592 6593 6594 6595
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6596
			goto err_context;
6597
	}
T
Thomas Gleixner 已提交
6598

6599 6600 6601
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6602
		goto err_context;
6603
	}
6604

6605 6606 6607 6608
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6609
		perf_remove_from_context(group_leader);
6610 6611
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6612
			perf_remove_from_context(sibling);
6613 6614 6615 6616
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6617
	}
6618

6619
	event->filp = event_file;
6620
	WARN_ON_ONCE(ctx->parent_ctx);
6621
	mutex_lock(&ctx->mutex);
6622 6623

	if (move_group) {
6624
		synchronize_rcu();
6625
		perf_install_in_context(ctx, group_leader, event->cpu);
6626 6627 6628
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6629
			perf_install_in_context(ctx, sibling, event->cpu);
6630 6631 6632 6633
			get_ctx(ctx);
		}
	}

6634
	perf_install_in_context(ctx, event, event->cpu);
6635
	++ctx->generation;
6636
	perf_unpin_context(ctx);
6637
	mutex_unlock(&ctx->mutex);
6638

6639 6640
	put_online_cpus();

6641
	event->owner = current;
P
Peter Zijlstra 已提交
6642

6643 6644 6645
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6646

6647 6648 6649 6650
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6651
	perf_event__id_header_size(event);
6652

6653 6654 6655 6656 6657 6658
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6659 6660 6661
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6662

6663
err_context:
6664
	perf_unpin_context(ctx);
6665
	put_ctx(ctx);
6666
err_alloc:
6667
	free_event(event);
P
Peter Zijlstra 已提交
6668
err_task:
6669
	put_online_cpus();
P
Peter Zijlstra 已提交
6670 6671
	if (task)
		put_task_struct(task);
6672
err_group_fd:
6673
	fput_light(group_file, fput_needed);
6674 6675
err_fd:
	put_unused_fd(event_fd);
6676
	return err;
T
Thomas Gleixner 已提交
6677 6678
}

6679 6680 6681 6682 6683
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6684
 * @task: task to profile (NULL for percpu)
6685 6686 6687
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6688
				 struct task_struct *task,
6689 6690
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6691 6692
{
	struct perf_event_context *ctx;
6693
	struct perf_event *event;
6694
	int err;
6695

6696 6697 6698
	/*
	 * Get the target context (task or percpu):
	 */
6699

6700 6701
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6702 6703 6704 6705
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6706

M
Matt Helsley 已提交
6707
	ctx = find_get_context(event->pmu, task, cpu);
6708 6709
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6710
		goto err_free;
6711
	}
6712 6713 6714 6715 6716 6717

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6718
	perf_unpin_context(ctx);
6719 6720 6721 6722
	mutex_unlock(&ctx->mutex);

	return event;

6723 6724 6725
err_free:
	free_event(event);
err:
6726
	return ERR_PTR(err);
6727
}
6728
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6729

6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6763
static void sync_child_event(struct perf_event *child_event,
6764
			       struct task_struct *child)
6765
{
6766
	struct perf_event *parent_event = child_event->parent;
6767
	u64 child_val;
6768

6769 6770
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6771

P
Peter Zijlstra 已提交
6772
	child_val = perf_event_count(child_event);
6773 6774 6775 6776

	/*
	 * Add back the child's count to the parent's count:
	 */
6777
	atomic64_add(child_val, &parent_event->child_count);
6778 6779 6780 6781
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6782 6783

	/*
6784
	 * Remove this event from the parent's list
6785
	 */
6786 6787 6788 6789
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6790 6791

	/*
6792
	 * Release the parent event, if this was the last
6793 6794
	 * reference to it.
	 */
6795
	fput(parent_event->filp);
6796 6797
}

6798
static void
6799 6800
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6801
			 struct task_struct *child)
6802
{
6803 6804 6805 6806 6807
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6808

6809
	perf_remove_from_context(child_event);
6810

6811
	/*
6812
	 * It can happen that the parent exits first, and has events
6813
	 * that are still around due to the child reference. These
6814
	 * events need to be zapped.
6815
	 */
6816
	if (child_event->parent) {
6817 6818
		sync_child_event(child_event, child);
		free_event(child_event);
6819
	}
6820 6821
}

P
Peter Zijlstra 已提交
6822
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6823
{
6824 6825
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6826
	unsigned long flags;
6827

P
Peter Zijlstra 已提交
6828
	if (likely(!child->perf_event_ctxp[ctxn])) {
6829
		perf_event_task(child, NULL, 0);
6830
		return;
P
Peter Zijlstra 已提交
6831
	}
6832

6833
	local_irq_save(flags);
6834 6835 6836 6837 6838 6839
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6840
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6841 6842 6843

	/*
	 * Take the context lock here so that if find_get_context is
6844
	 * reading child->perf_event_ctxp, we wait until it has
6845 6846
	 * incremented the context's refcount before we do put_ctx below.
	 */
6847
	raw_spin_lock(&child_ctx->lock);
6848
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6849
	child->perf_event_ctxp[ctxn] = NULL;
6850 6851 6852
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6853
	 * the events from it.
6854 6855
	 */
	unclone_ctx(child_ctx);
6856
	update_context_time(child_ctx);
6857
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6858 6859

	/*
6860 6861 6862
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6863
	 */
6864
	perf_event_task(child, child_ctx, 0);
6865

6866 6867 6868
	/*
	 * We can recurse on the same lock type through:
	 *
6869 6870 6871
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6872 6873 6874 6875 6876
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6877
	mutex_lock(&child_ctx->mutex);
6878

6879
again:
6880 6881 6882 6883 6884
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6885
				 group_entry)
6886
		__perf_event_exit_task(child_event, child_ctx, child);
6887 6888

	/*
6889
	 * If the last event was a group event, it will have appended all
6890 6891 6892
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6893 6894
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6895
		goto again;
6896 6897 6898 6899

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6900 6901
}

P
Peter Zijlstra 已提交
6902 6903 6904 6905 6906
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6907
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6908 6909
	int ctxn;

P
Peter Zijlstra 已提交
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6925 6926 6927 6928
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6943
	perf_group_detach(event);
6944 6945 6946 6947
	list_del_event(event, ctx);
	free_event(event);
}

6948 6949
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6950
 * perf_event_init_task below, used by fork() in case of fail.
6951
 */
6952
void perf_event_free_task(struct task_struct *task)
6953
{
P
Peter Zijlstra 已提交
6954
	struct perf_event_context *ctx;
6955
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6956
	int ctxn;
6957

P
Peter Zijlstra 已提交
6958 6959 6960 6961
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6962

P
Peter Zijlstra 已提交
6963
		mutex_lock(&ctx->mutex);
6964
again:
P
Peter Zijlstra 已提交
6965 6966 6967
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6968

P
Peter Zijlstra 已提交
6969 6970 6971
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6972

P
Peter Zijlstra 已提交
6973 6974 6975
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6976

P
Peter Zijlstra 已提交
6977
		mutex_unlock(&ctx->mutex);
6978

P
Peter Zijlstra 已提交
6979 6980
		put_ctx(ctx);
	}
6981 6982
}

6983 6984 6985 6986 6987 6988 6989 6990
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7003
	unsigned long flags;
P
Peter Zijlstra 已提交
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7016
					   child,
P
Peter Zijlstra 已提交
7017
					   group_leader, parent_event,
7018
				           NULL, NULL);
P
Peter Zijlstra 已提交
7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7045 7046
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7047

7048 7049 7050 7051
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7052
	perf_event__id_header_size(child_event);
7053

P
Peter Zijlstra 已提交
7054 7055 7056
	/*
	 * Link it up in the child's context:
	 */
7057
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7058
	add_event_to_ctx(child_event, child_ctx);
7059
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7101 7102 7103 7104 7105
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7106
		   struct task_struct *child, int ctxn,
7107 7108 7109
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7110
	struct perf_event_context *child_ctx;
7111 7112 7113 7114

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7115 7116
	}

7117
	child_ctx = child->perf_event_ctxp[ctxn];
7118 7119 7120 7121 7122 7123 7124
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7125

7126
		child_ctx = alloc_perf_context(event->pmu, child);
7127 7128
		if (!child_ctx)
			return -ENOMEM;
7129

P
Peter Zijlstra 已提交
7130
		child->perf_event_ctxp[ctxn] = child_ctx;
7131 7132 7133 7134 7135 7136 7137 7138 7139
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7140 7141
}

7142
/*
7143
 * Initialize the perf_event context in task_struct
7144
 */
P
Peter Zijlstra 已提交
7145
int perf_event_init_context(struct task_struct *child, int ctxn)
7146
{
7147
	struct perf_event_context *child_ctx, *parent_ctx;
7148 7149
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7150
	struct task_struct *parent = current;
7151
	int inherited_all = 1;
7152
	unsigned long flags;
7153
	int ret = 0;
7154

P
Peter Zijlstra 已提交
7155
	if (likely(!parent->perf_event_ctxp[ctxn]))
7156 7157
		return 0;

7158
	/*
7159 7160
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7161
	 */
P
Peter Zijlstra 已提交
7162
	parent_ctx = perf_pin_task_context(parent, ctxn);
7163

7164 7165 7166 7167 7168 7169 7170
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7171 7172 7173 7174
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7175
	mutex_lock(&parent_ctx->mutex);
7176 7177 7178 7179 7180

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7181
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7182 7183
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7184 7185 7186
		if (ret)
			break;
	}
7187

7188 7189 7190 7191 7192 7193 7194 7195 7196
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7197
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7198 7199
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7200
		if (ret)
7201
			break;
7202 7203
	}

7204 7205 7206
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7207
	child_ctx = child->perf_event_ctxp[ctxn];
7208

7209
	if (child_ctx && inherited_all) {
7210 7211 7212
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7213 7214 7215
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7216
		 */
P
Peter Zijlstra 已提交
7217
		cloned_ctx = parent_ctx->parent_ctx;
7218 7219
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7220
			child_ctx->parent_gen = parent_ctx->parent_gen;
7221 7222 7223 7224 7225
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7226 7227
	}

P
Peter Zijlstra 已提交
7228
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7229
	mutex_unlock(&parent_ctx->mutex);
7230

7231
	perf_unpin_context(parent_ctx);
7232
	put_ctx(parent_ctx);
7233

7234
	return ret;
7235 7236
}

P
Peter Zijlstra 已提交
7237 7238 7239 7240 7241 7242 7243
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7244 7245 7246 7247
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7257 7258
static void __init perf_event_init_all_cpus(void)
{
7259
	struct swevent_htable *swhash;
7260 7261 7262
	int cpu;

	for_each_possible_cpu(cpu) {
7263 7264
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7265
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7266 7267 7268
	}
}

7269
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7270
{
P
Peter Zijlstra 已提交
7271
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7272

7273
	mutex_lock(&swhash->hlist_mutex);
7274
	if (swhash->hlist_refcount > 0) {
7275 7276
		struct swevent_hlist *hlist;

7277 7278 7279
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7280
	}
7281
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7282 7283
}

P
Peter Zijlstra 已提交
7284
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7285
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7286
{
7287 7288 7289 7290 7291 7292 7293
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7294
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7295
{
P
Peter Zijlstra 已提交
7296
	struct perf_event_context *ctx = __info;
7297
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7298

P
Peter Zijlstra 已提交
7299
	perf_pmu_rotate_stop(ctx->pmu);
7300

7301
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7302
		__perf_remove_from_context(event);
7303
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7304
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7305
}
P
Peter Zijlstra 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7315
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7316 7317 7318 7319 7320 7321 7322 7323

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7324
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7325
{
7326
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7327

7328 7329 7330
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7331

P
Peter Zijlstra 已提交
7332
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7333 7334
}
#else
7335
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7336 7337
#endif

P
Peter Zijlstra 已提交
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7358 7359 7360 7361 7362
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7363
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7364 7365

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7366
	case CPU_DOWN_FAILED:
7367
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7368 7369
		break;

P
Peter Zijlstra 已提交
7370
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7371
	case CPU_DOWN_PREPARE:
7372
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7373 7374 7375 7376 7377 7378 7379 7380 7381
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7382
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7383
{
7384 7385
	int ret;

P
Peter Zijlstra 已提交
7386 7387
	idr_init(&pmu_idr);

7388
	perf_event_init_all_cpus();
7389
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7390 7391 7392
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7393 7394
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7395
	register_reboot_notifier(&perf_reboot_notifier);
7396 7397 7398

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7399 7400 7401

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7402 7403 7404 7405 7406 7407 7408

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7409
}
P
Peter Zijlstra 已提交
7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7438 7439

#ifdef CONFIG_CGROUP_PERF
7440
static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
S
Stephane Eranian 已提交
7441 7442 7443
{
	struct perf_cgroup *jc;

7444
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7457
static void perf_cgroup_destroy(struct cgroup *cont)
S
Stephane Eranian 已提交
7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7473
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7474
{
7475 7476 7477 7478
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7479 7480
}

7481 7482
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7483 7484 7485 7486 7487 7488 7489 7490 7491
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7492
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7493 7494 7495
}

struct cgroup_subsys perf_subsys = {
7496 7497 7498 7499 7500
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7501
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7502 7503
};
#endif /* CONFIG_CGROUP_PERF */