fair.c 231.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
207
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 209 210 211 212
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663
/*
 * We choose a half-life close to 1 scheduling period.
664 665
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
666 667 668
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670

671 672
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
673
{
674
	struct sched_avg *sa = &se->avg;
675

676 677 678 679 680 681 682
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
683
	sa->load_avg = scale_load_down(se->load.weight);
684
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 686 687 688 689
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
690
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691
}
692

693 694
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
695
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
696 697
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
727
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
728
	u64 now = cfs_rq_clock_task(cfs_rq);
729
	int tg_update;
730 731 732 733 734 735 736 737 738 739 740 741 742

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
			se->avg.last_update_time = now;
			return;
		}
	}

762
	tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
763
	attach_entity_load_avg(cfs_rq, se);
764 765
	if (tg_update)
		update_tg_load_avg(cfs_rq, false);
766 767
}

768
#else /* !CONFIG_SMP */
769
void init_entity_runnable_average(struct sched_entity *se)
770 771
{
}
772 773 774
void post_init_entity_util_avg(struct sched_entity *se)
{
}
775 776 777
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
778
#endif /* CONFIG_SMP */
779

780
/*
781
 * Update the current task's runtime statistics.
782
 */
783
static void update_curr(struct cfs_rq *cfs_rq)
784
{
785
	struct sched_entity *curr = cfs_rq->curr;
786
	u64 now = rq_clock_task(rq_of(cfs_rq));
787
	u64 delta_exec;
788 789 790 791

	if (unlikely(!curr))
		return;

792 793
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
794
		return;
795

I
Ingo Molnar 已提交
796
	curr->exec_start = now;
797

798 799 800 801 802 803 804 805 806
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

807 808 809
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

810
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
811
		cpuacct_charge(curtask, delta_exec);
812
		account_group_exec_runtime(curtask, delta_exec);
813
	}
814 815

	account_cfs_rq_runtime(cfs_rq, delta_exec);
816 817
}

818 819 820 821 822
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

823
#ifdef CONFIG_SCHEDSTATS
824
static inline void
825
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
826
{
827 828 829 830 831 832 833
	u64 wait_start = rq_clock(rq_of(cfs_rq));

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
	    likely(wait_start > se->statistics.wait_start))
		wait_start -= se->statistics.wait_start;

	se->statistics.wait_start = wait_start;
834 835
}

836 837 838 839
static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
840 841 842
	u64 delta;

	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
			se->statistics.wait_start = delta;
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

	se->statistics.wait_max = max(se->statistics.wait_max, delta);
	se->statistics.wait_count++;
	se->statistics.wait_sum += delta;
	se->statistics.wait_start = 0;
}

864 865 866
/*
 * Task is being enqueued - update stats:
 */
867 868
static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
869 870 871 872 873
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
874
	if (se != cfs_rq->curr)
875
		update_stats_wait_start(cfs_rq, se);
876 877 878
}

static inline void
879
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
880 881 882 883 884
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
885
	if (se != cfs_rq->curr)
886
		update_stats_wait_end(cfs_rq, se);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

	if (flags & DEQUEUE_SLEEP) {
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
			if (tsk->state & TASK_UNINTERRUPTIBLE)
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
		}
	}

}
#else
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
919
}
920
#endif
921 922 923 924 925

/*
 * We are picking a new current task - update its stats:
 */
static inline void
926
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
927 928 929 930
{
	/*
	 * We are starting a new run period:
	 */
931
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
932 933 934 935 936 937
}

/**************************************************
 * Scheduling class queueing methods:
 */

938 939
#ifdef CONFIG_NUMA_BALANCING
/*
940 941 942
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
943
 */
944 945
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
946 947 948

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
949

950 951 952
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
977
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
978 979 980
	unsigned int scan, floor;
	unsigned int windows = 1;

981 982
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1011 1012 1013 1014 1015
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1016
	pid_t gid;
1017
	int active_nodes;
1018 1019

	struct rcu_head rcu;
1020
	unsigned long total_faults;
1021
	unsigned long max_faults_cpu;
1022 1023 1024 1025 1026
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1027
	unsigned long *faults_cpu;
1028
	unsigned long faults[0];
1029 1030
};

1031 1032 1033 1034 1035 1036 1037 1038 1039
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1040 1041 1042 1043 1044
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1045 1046 1047 1048 1049 1050 1051
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1052
{
1053
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1054 1055 1056 1057
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1058
	if (!p->numa_faults)
1059 1060
		return 0;

1061 1062
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1063 1064
}

1065 1066 1067 1068 1069
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1070 1071
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1072 1073
}

1074 1075
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1076 1077
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1078 1079
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1157 1158 1159 1160 1161 1162
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1163 1164
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1165
{
1166
	unsigned long faults, total_faults;
1167

1168
	if (!p->numa_faults)
1169 1170 1171 1172 1173 1174 1175
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1176
	faults = task_faults(p, nid);
1177 1178
	faults += score_nearby_nodes(p, nid, dist, true);

1179
	return 1000 * faults / total_faults;
1180 1181
}

1182 1183
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1184
{
1185 1186 1187 1188 1189 1190 1191 1192
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1193 1194
		return 0;

1195
	faults = group_faults(p, nid);
1196 1197
	faults += score_nearby_nodes(p, nid, dist, false);

1198
	return 1000 * faults / total_faults;
1199 1200
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1241 1242
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1243
	 */
1244 1245
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1246 1247 1248
		return true;

	/*
1249 1250 1251 1252 1253 1254
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1255
	 */
1256 1257
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1258 1259
}

1260
static unsigned long weighted_cpuload(const int cpu);
1261 1262
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1263
static unsigned long capacity_of(int cpu);
1264 1265
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1266
/* Cached statistics for all CPUs within a node */
1267
struct numa_stats {
1268
	unsigned long nr_running;
1269
	unsigned long load;
1270 1271

	/* Total compute capacity of CPUs on a node */
1272
	unsigned long compute_capacity;
1273 1274

	/* Approximate capacity in terms of runnable tasks on a node */
1275
	unsigned long task_capacity;
1276
	int has_free_capacity;
1277
};
1278

1279 1280 1281 1282 1283
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1284 1285
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1286 1287 1288 1289 1290 1291 1292

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1293
		ns->compute_capacity += capacity_of(cpu);
1294 1295

		cpus++;
1296 1297
	}

1298 1299 1300 1301 1302
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1303 1304
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1305 1306 1307 1308
	 */
	if (!cpus)
		return;

1309 1310 1311 1312 1313 1314
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1315
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1316 1317
}

1318 1319
struct task_numa_env {
	struct task_struct *p;
1320

1321 1322
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1323

1324
	struct numa_stats src_stats, dst_stats;
1325

1326
	int imbalance_pct;
1327
	int dist;
1328 1329 1330

	struct task_struct *best_task;
	long best_imp;
1331 1332 1333
	int best_cpu;
};

1334 1335 1336 1337 1338
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1339 1340
	if (p)
		get_task_struct(p);
1341 1342 1343 1344 1345 1346

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1347
static bool load_too_imbalanced(long src_load, long dst_load,
1348 1349
				struct task_numa_env *env)
{
1350 1351
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1363 1364

	/* We care about the slope of the imbalance, not the direction. */
1365 1366
	if (dst_load < src_load)
		swap(dst_load, src_load);
1367 1368

	/* Is the difference below the threshold? */
1369 1370
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1371 1372 1373 1374 1375
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1376
	 * Compare it with the old imbalance.
1377
	 */
1378
	orig_src_load = env->src_stats.load;
1379
	orig_dst_load = env->dst_stats.load;
1380

1381 1382
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1383

1384 1385 1386 1387 1388
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1389 1390
}

1391 1392 1393 1394 1395 1396
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1397 1398
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1399 1400 1401 1402
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1403
	long src_load, dst_load;
1404
	long load;
1405
	long imp = env->p->numa_group ? groupimp : taskimp;
1406
	long moveimp = imp;
1407
	int dist = env->dist;
1408 1409

	rcu_read_lock();
1410 1411
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1412 1413
		cur = NULL;

1414 1415 1416 1417 1418 1419 1420
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1433 1434
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1435
		 * in any group then look only at task weights.
1436
		 */
1437
		if (cur->numa_group == env->p->numa_group) {
1438 1439
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1440 1441 1442 1443 1444 1445
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1446
		} else {
1447 1448 1449 1450 1451 1452
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1453 1454
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1455
			else
1456 1457
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1458
		}
1459 1460
	}

1461
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1462 1463 1464 1465
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1466
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1467
		    !env->dst_stats.has_free_capacity)
1468 1469 1470 1471 1472 1473
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1474 1475
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1476 1477 1478 1479 1480 1481
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1482 1483 1484
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1503
	if (cur) {
1504 1505 1506
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1507 1508
	}

1509
	if (load_too_imbalanced(src_load, dst_load, env))
1510 1511
		goto unlock;

1512 1513 1514 1515 1516 1517 1518
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1519 1520 1521 1522 1523 1524
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1525 1526
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1527 1528 1529 1530 1531 1532 1533 1534 1535
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1536
		task_numa_compare(env, taskimp, groupimp);
1537 1538 1539
	}
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1557 1558 1559
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1560 1561 1562 1563 1564
		return true;

	return false;
}

1565 1566 1567 1568
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1569

1570
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1571
		.src_nid = task_node(p),
1572 1573 1574 1575 1576

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1577
		.best_cpu = -1,
1578 1579
	};
	struct sched_domain *sd;
1580
	unsigned long taskweight, groupweight;
1581
	int nid, ret, dist;
1582
	long taskimp, groupimp;
1583

1584
	/*
1585 1586 1587 1588 1589 1590
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1591 1592
	 */
	rcu_read_lock();
1593
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1594 1595
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1596 1597
	rcu_read_unlock();

1598 1599 1600 1601 1602 1603 1604
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1605
		p->numa_preferred_nid = task_node(p);
1606 1607 1608
		return -EINVAL;
	}

1609
	env.dst_nid = p->numa_preferred_nid;
1610 1611 1612 1613 1614 1615
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1616
	update_numa_stats(&env.dst_stats, env.dst_nid);
1617

1618
	/* Try to find a spot on the preferred nid. */
1619 1620
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1621

1622 1623 1624 1625 1626 1627 1628
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1629
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1630 1631 1632
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1633

1634
			dist = node_distance(env.src_nid, env.dst_nid);
1635 1636 1637 1638 1639
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1640

1641
			/* Only consider nodes where both task and groups benefit */
1642 1643
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1644
			if (taskimp < 0 && groupimp < 0)
1645 1646
				continue;

1647
			env.dist = dist;
1648 1649
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1650 1651
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1652 1653 1654
		}
	}

1655 1656 1657 1658 1659 1660 1661 1662
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1663
	if (p->numa_group) {
1664 1665
		struct numa_group *ng = p->numa_group;

1666 1667 1668 1669 1670
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1671
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1672 1673 1674 1675 1676 1677
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1678

1679 1680 1681 1682 1683 1684
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1685
	if (env.best_task == NULL) {
1686 1687 1688
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1689 1690 1691 1692
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1693 1694
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1695 1696
	put_task_struct(env.best_task);
	return ret;
1697 1698
}

1699 1700 1701
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1702 1703
	unsigned long interval = HZ;

1704
	/* This task has no NUMA fault statistics yet */
1705
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1706 1707
		return;

1708
	/* Periodically retry migrating the task to the preferred node */
1709 1710
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1711 1712

	/* Success if task is already running on preferred CPU */
1713
	if (task_node(p) == p->numa_preferred_nid)
1714 1715 1716
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1717
	task_numa_migrate(p);
1718 1719
}

1720
/*
1721
 * Find out how many nodes on the workload is actively running on. Do this by
1722 1723 1724 1725
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1726
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1727 1728
{
	unsigned long faults, max_faults = 0;
1729
	int nid, active_nodes = 0;
1730 1731 1732 1733 1734 1735 1736 1737 1738

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1739 1740
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1741
	}
1742 1743 1744

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1745 1746
}

1747 1748 1749
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1750 1751 1752
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1753 1754
 */
#define NUMA_PERIOD_SLOTS 10
1755
#define NUMA_PERIOD_THRESHOLD 7
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1776 1777 1778
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1779
	 */
1780
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1814
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1815 1816 1817 1818 1819 1820 1821 1822
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1841 1842
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1843 1844 1845 1846 1847 1848 1849 1850
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1898
		nodemask_t max_group = NODE_MASK_NONE;
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1932 1933
		if (!max_faults)
			break;
1934 1935 1936 1937 1938
		nodes = max_group;
	}
	return nid;
}

1939 1940
static void task_numa_placement(struct task_struct *p)
{
1941 1942
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1943
	unsigned long fault_types[2] = { 0, 0 };
1944 1945
	unsigned long total_faults;
	u64 runtime, period;
1946
	spinlock_t *group_lock = NULL;
1947

1948 1949 1950 1951 1952
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1953
	seq = READ_ONCE(p->mm->numa_scan_seq);
1954 1955 1956
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1957
	p->numa_scan_period_max = task_scan_max(p);
1958

1959 1960 1961 1962
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1963 1964 1965
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1966
		spin_lock_irq(group_lock);
1967 1968
	}

1969 1970
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1971 1972
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1973
		unsigned long faults = 0, group_faults = 0;
1974
		int priv;
1975

1976
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1977
			long diff, f_diff, f_weight;
1978

1979 1980 1981 1982
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1983

1984
			/* Decay existing window, copy faults since last scan */
1985 1986 1987
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1988

1989 1990 1991 1992 1993 1994 1995 1996
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1997
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1998
				   (total_faults + 1);
1999 2000
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2001

2002 2003 2004
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2005
			p->total_numa_faults += diff;
2006
			if (p->numa_group) {
2007 2008 2009 2010 2011 2012 2013 2014 2015
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2016
				p->numa_group->total_faults += diff;
2017
				group_faults += p->numa_group->faults[mem_idx];
2018
			}
2019 2020
		}

2021 2022 2023 2024
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2025 2026 2027 2028 2029 2030 2031

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2032 2033
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2034
	if (p->numa_group) {
2035
		numa_group_count_active_nodes(p->numa_group);
2036
		spin_unlock_irq(group_lock);
2037
		max_nid = preferred_group_nid(p, max_group_nid);
2038 2039
	}

2040 2041 2042 2043 2044 2045 2046
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2047
	}
2048 2049
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2061 2062
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2063 2064 2065 2066 2067 2068 2069 2070 2071
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2072
				    4*nr_node_ids*sizeof(unsigned long);
2073 2074 2075 2076 2077 2078

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2079 2080
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2081
		spin_lock_init(&grp->lock);
2082
		grp->gid = p->pid;
2083
		/* Second half of the array tracks nids where faults happen */
2084 2085
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2086

2087
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2088
			grp->faults[i] = p->numa_faults[i];
2089

2090
		grp->total_faults = p->total_numa_faults;
2091

2092 2093 2094 2095 2096
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2097
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2098 2099

	if (!cpupid_match_pid(tsk, cpupid))
2100
		goto no_join;
2101 2102 2103

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2104
		goto no_join;
2105 2106 2107

	my_grp = p->numa_group;
	if (grp == my_grp)
2108
		goto no_join;
2109 2110 2111 2112 2113 2114

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2115
		goto no_join;
2116 2117 2118 2119 2120

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2121
		goto no_join;
2122

2123 2124 2125 2126 2127 2128 2129
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2130

2131 2132 2133
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2134
	if (join && !get_numa_group(grp))
2135
		goto no_join;
2136 2137 2138 2139 2140 2141

	rcu_read_unlock();

	if (!join)
		return;

2142 2143
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2144

2145
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2146 2147
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2148
	}
2149 2150
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2151 2152 2153 2154 2155

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2156
	spin_unlock_irq(&grp->lock);
2157 2158 2159 2160

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2161 2162 2163 2164 2165
	return;

no_join:
	rcu_read_unlock();
	return;
2166 2167 2168 2169 2170
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2171
	void *numa_faults = p->numa_faults;
2172 2173
	unsigned long flags;
	int i;
2174 2175

	if (grp) {
2176
		spin_lock_irqsave(&grp->lock, flags);
2177
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2178
			grp->faults[i] -= p->numa_faults[i];
2179
		grp->total_faults -= p->total_numa_faults;
2180

2181
		grp->nr_tasks--;
2182
		spin_unlock_irqrestore(&grp->lock, flags);
2183
		RCU_INIT_POINTER(p->numa_group, NULL);
2184 2185 2186
		put_numa_group(grp);
	}

2187
	p->numa_faults = NULL;
2188
	kfree(numa_faults);
2189 2190
}

2191 2192 2193
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2194
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2195 2196
{
	struct task_struct *p = current;
2197
	bool migrated = flags & TNF_MIGRATED;
2198
	int cpu_node = task_node(current);
2199
	int local = !!(flags & TNF_FAULT_LOCAL);
2200
	struct numa_group *ng;
2201
	int priv;
2202

2203
	if (!static_branch_likely(&sched_numa_balancing))
2204 2205
		return;

2206 2207 2208 2209
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2210
	/* Allocate buffer to track faults on a per-node basis */
2211 2212
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2213
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2214

2215 2216
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2217
			return;
2218

2219
		p->total_numa_faults = 0;
2220
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2221
	}
2222

2223 2224 2225 2226 2227 2228 2229 2230
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2231
		if (!priv && !(flags & TNF_NO_GROUP))
2232
			task_numa_group(p, last_cpupid, flags, &priv);
2233 2234
	}

2235 2236 2237 2238 2239 2240
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2241 2242 2243 2244
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2245 2246
		local = 1;

2247
	task_numa_placement(p);
2248

2249 2250 2251 2252 2253
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2254 2255
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2256 2257
	if (migrated)
		p->numa_pages_migrated += pages;
2258 2259
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2260

2261 2262
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2263
	p->numa_faults_locality[local] += pages;
2264 2265
}

2266 2267
static void reset_ptenuma_scan(struct task_struct *p)
{
2268 2269 2270 2271 2272 2273 2274 2275
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2276
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2277 2278 2279
	p->mm->numa_scan_offset = 0;
}

2280 2281 2282 2283 2284 2285 2286 2287 2288
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2289
	u64 runtime = p->se.sum_exec_runtime;
2290
	struct vm_area_struct *vma;
2291
	unsigned long start, end;
2292
	unsigned long nr_pte_updates = 0;
2293
	long pages, virtpages;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2309
	if (!mm->numa_next_scan) {
2310 2311
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2312 2313
	}

2314 2315 2316 2317 2318 2319 2320
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2321 2322 2323 2324
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2325

2326
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2327 2328 2329
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2330 2331 2332 2333 2334 2335
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2336 2337 2338
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2339
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2340 2341
	if (!pages)
		return;
2342

2343

2344
	down_read(&mm->mmap_sem);
2345
	vma = find_vma(mm, start);
2346 2347
	if (!vma) {
		reset_ptenuma_scan(p);
2348
		start = 0;
2349 2350
		vma = mm->mmap;
	}
2351
	for (; vma; vma = vma->vm_next) {
2352
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2353
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2354
			continue;
2355
		}
2356

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2367 2368 2369 2370 2371 2372
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2373

2374 2375 2376 2377
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2378
			nr_pte_updates = change_prot_numa(vma, start, end);
2379 2380

			/*
2381 2382 2383 2384 2385 2386
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2387 2388 2389
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2390
			virtpages -= (end - start) >> PAGE_SHIFT;
2391

2392
			start = end;
2393
			if (pages <= 0 || virtpages <= 0)
2394
				goto out;
2395 2396

			cond_resched();
2397
		} while (end != vma->vm_end);
2398
	}
2399

2400
out:
2401
	/*
P
Peter Zijlstra 已提交
2402 2403 2404 2405
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2406 2407
	 */
	if (vma)
2408
		mm->numa_scan_offset = start;
2409 2410 2411
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2448
	if (now > curr->node_stamp + period) {
2449
		if (!curr->node_stamp)
2450
			curr->numa_scan_period = task_scan_min(curr);
2451
		curr->node_stamp += period;
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2463 2464 2465 2466 2467 2468 2469 2470

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2471 2472
#endif /* CONFIG_NUMA_BALANCING */

2473 2474 2475 2476
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2477
	if (!parent_entity(se))
2478
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2479
#ifdef CONFIG_SMP
2480 2481 2482 2483 2484 2485
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2486
#endif
2487 2488 2489 2490 2491 2492 2493
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2494
	if (!parent_entity(se))
2495
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2496
#ifdef CONFIG_SMP
2497 2498
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2499
		list_del_init(&se->group_node);
2500
	}
2501
#endif
2502 2503 2504
	cfs_rq->nr_running--;
}

2505 2506
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2507
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2508
{
2509
	long tg_weight, load, shares;
2510 2511

	/*
2512 2513 2514
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2515
	 */
2516
	load = scale_load_down(cfs_rq->load.weight);
2517

2518
	tg_weight = atomic_long_read(&tg->load_avg);
2519

2520 2521 2522
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2523 2524

	shares = (tg->shares * load);
2525 2526
	if (tg_weight)
		shares /= tg_weight;
2527 2528 2529 2530 2531 2532 2533 2534 2535

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2536
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2537 2538 2539 2540
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2541

P
Peter Zijlstra 已提交
2542 2543 2544
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2545 2546 2547 2548
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2549
		account_entity_dequeue(cfs_rq, se);
2550
	}
P
Peter Zijlstra 已提交
2551 2552 2553 2554 2555 2556 2557

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2558 2559
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2560
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2561 2562 2563
{
	struct task_group *tg;
	struct sched_entity *se;
2564
	long shares;
P
Peter Zijlstra 已提交
2565 2566 2567

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2568
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2569
		return;
2570 2571 2572 2573
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2574
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2575 2576 2577 2578

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2579
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2580 2581 2582 2583
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2584
#ifdef CONFIG_SMP
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2615 2616 2617 2618 2619 2620
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2633 2634
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2635 2636 2637 2638 2639 2640
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2641 2642
	}

2643 2644
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2663 2664 2665
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2666 2667
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2668 2669
}

2670
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2700 2701
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2702
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2703
{
2704
	u64 delta, scaled_delta, periods;
2705
	u32 contrib;
2706
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2707
	unsigned long scale_freq, scale_cpu;
2708

2709
	delta = now - sa->last_update_time;
2710 2711 2712 2713 2714
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2715
		sa->last_update_time = now;
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2726
	sa->last_update_time = now;
2727

2728 2729 2730
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2731
	/* delta_w is the amount already accumulated against our next period */
2732
	delta_w = sa->period_contrib;
2733 2734 2735
	if (delta + delta_w >= 1024) {
		decayed = 1;

2736 2737 2738
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2739 2740 2741 2742 2743 2744
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2745
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2746
		if (weight) {
2747 2748 2749 2750 2751
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2752
		}
2753
		if (running)
2754
			sa->util_sum += scaled_delta_w * scale_cpu;
2755 2756 2757 2758 2759 2760 2761

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2762
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2763 2764 2765 2766
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2767
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2768 2769

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2770
		contrib = __compute_runnable_contrib(periods);
2771
		contrib = cap_scale(contrib, scale_freq);
2772
		if (weight) {
2773
			sa->load_sum += weight * contrib;
2774 2775 2776
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2777
		if (running)
2778
			sa->util_sum += contrib * scale_cpu;
2779 2780 2781
	}

	/* Remainder of delta accrued against u_0` */
2782
	scaled_delta = cap_scale(delta, scale_freq);
2783
	if (weight) {
2784
		sa->load_sum += weight * scaled_delta;
2785
		if (cfs_rq)
2786
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2787
	}
2788
	if (running)
2789
		sa->util_sum += scaled_delta * scale_cpu;
2790

2791
	sa->period_contrib += delta;
2792

2793 2794
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2795 2796 2797 2798
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2799
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2800
	}
2801

2802
	return decayed;
2803 2804
}

2805
#ifdef CONFIG_FAIR_GROUP_SCHED
2806
/*
2807 2808
 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
 * and effective_load (which is not done because it is too costly).
2809
 */
2810
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2811
{
2812
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2813

2814 2815 2816 2817 2818 2819
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2820 2821 2822
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2823
	}
2824
}
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2872
#else /* CONFIG_FAIR_GROUP_SCHED */
2873
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2874
#endif /* CONFIG_FAIR_GROUP_SCHED */
2875

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
		unsigned long max = rq->cpu_capacity_orig;

		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_clock(rq),
				    min(cfs_rq->avg.util_avg, max), max);
	}
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
 * Returns true if the load decayed or we removed utilization. It is expected
 * that one calls update_tg_load_avg() on this condition, but after you've
 * modified the cfs_rq avg (attach/detach), such that we propagate the new
 * avg up.
 */
2939 2940
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2941
{
2942
	struct sched_avg *sa = &cfs_rq->avg;
2943
	int decayed, removed_load = 0, removed_util = 0;
2944

2945
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2946
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2947 2948
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2949
		removed_load = 1;
2950
	}
2951

2952 2953
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2954 2955
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2956
		removed_util = 1;
2957
	}
2958

2959
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2960
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2961

2962 2963 2964 2965
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2966

2967 2968
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
2969

2970
	return decayed || removed_load;
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
}

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	__update_load_avg(now, cpu, &se->avg,
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

2989
	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2990
		update_tg_load_avg(cfs_rq, 0);
2991 2992
}

2993 2994 2995 2996 2997 2998 2999 3000
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3001 3002
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3003 3004 3005
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

3006 3007 3008
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
3009 3010
	 *
	 * Or we're fresh through post_init_entity_util_avg().
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

3022
skip_aging:
3023 3024 3025 3026 3027
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3028 3029

	cfs_rq_util_change(cfs_rq);
3030 3031
}

3032 3033 3034 3035 3036 3037 3038 3039
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3040 3041 3042 3043 3044 3045
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

3046 3047 3048 3049
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3050 3051

	cfs_rq_util_change(cfs_rq);
3052 3053
}

3054 3055 3056
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3057
{
3058 3059
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
3060
	int migrated, decayed;
3061

3062 3063
	migrated = !sa->last_update_time;
	if (!migrated) {
3064
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3065 3066
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
3067
	}
3068

3069
	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3070

3071 3072 3073
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3074 3075
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
3076

3077 3078
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
3079 3080
}

3081 3082 3083 3084 3085 3086 3087 3088 3089
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3090
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3091 3092
}

3093
#ifndef CONFIG_64BIT
3094 3095
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3096
	u64 last_update_time_copy;
3097
	u64 last_update_time;
3098

3099 3100 3101 3102 3103
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3104 3105 3106

	return last_update_time;
}
3107
#else
3108 3109 3110 3111
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3112 3113
#endif

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	/*
3124 3125 3126 3127 3128 3129 3130
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3131 3132 3133 3134
	 */

	last_update_time = cfs_rq_last_update_time(cfs_rq);

3135
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3136 3137
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3138
}
3139

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3150 3151
static int idle_balance(struct rq *this_rq);

3152 3153
#else /* CONFIG_SMP */

3154 3155 3156 3157 3158 3159
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3160 3161 3162 3163 3164 3165 3166 3167
static inline void update_load_avg(struct sched_entity *se, int not_used)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct rq *rq = rq_of(cfs_rq);

	cpufreq_trigger_update(rq_clock(rq));
}

3168 3169
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3170 3171
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3172
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3173

3174 3175 3176 3177 3178
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3179 3180 3181 3182 3183
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

3184
#endif /* CONFIG_SMP */
3185

3186
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3187 3188
{
#ifdef CONFIG_SCHEDSTATS
3189 3190 3191 3192 3193
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

3194
	if (se->statistics.sleep_start) {
3195
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3196 3197 3198 3199

		if ((s64)delta < 0)
			delta = 0;

3200 3201
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
3202

3203
		se->statistics.sleep_start = 0;
3204
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
3205

3206
		if (tsk) {
3207
			account_scheduler_latency(tsk, delta >> 10, 1);
3208 3209
			trace_sched_stat_sleep(tsk, delta);
		}
3210
	}
3211
	if (se->statistics.block_start) {
3212
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3213 3214 3215 3216

		if ((s64)delta < 0)
			delta = 0;

3217 3218
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
3219

3220
		se->statistics.block_start = 0;
3221
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
3222

3223
		if (tsk) {
3224
			if (tsk->in_iowait) {
3225 3226
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
3227
				trace_sched_stat_iowait(tsk, delta);
3228 3229
			}

3230 3231
			trace_sched_stat_blocked(tsk, delta);

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
3243
		}
3244 3245 3246 3247
	}
#endif
}

P
Peter Zijlstra 已提交
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

3261 3262 3263
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3264
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3265

3266 3267 3268 3269 3270 3271
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3272
	if (initial && sched_feat(START_DEBIT))
3273
		vruntime += sched_vslice(cfs_rq, se);
3274

3275
	/* sleeps up to a single latency don't count. */
3276
	if (!initial) {
3277
		unsigned long thresh = sysctl_sched_latency;
3278

3279 3280 3281 3282 3283 3284
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3285

3286
		vruntime -= thresh;
3287 3288
	}

3289
	/* ensure we never gain time by being placed backwards. */
3290
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3291 3292
}

3293 3294
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3307
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3308 3309 3310 3311 3312 3313 3314
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3334
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3346
static void
3347
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3348
{
3349 3350 3351
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3352
	/*
3353 3354
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3355
	 */
3356
	if (renorm && curr)
3357 3358
		se->vruntime += cfs_rq->min_vruntime;

3359 3360
	update_curr(cfs_rq);

3361
	/*
3362 3363 3364 3365
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3366
	 */
3367 3368 3369
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3370
	enqueue_entity_load_avg(cfs_rq, se);
3371 3372
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3373

3374
	if (flags & ENQUEUE_WAKEUP) {
3375
		place_entity(cfs_rq, se, 0);
3376 3377
		if (schedstat_enabled())
			enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3378
	}
3379

3380 3381 3382 3383 3384
	check_schedstat_required();
	if (schedstat_enabled()) {
		update_stats_enqueue(cfs_rq, se);
		check_spread(cfs_rq, se);
	}
3385
	if (!curr)
3386
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3387
	se->on_rq = 1;
3388

3389
	if (cfs_rq->nr_running == 1) {
3390
		list_add_leaf_cfs_rq(cfs_rq);
3391 3392
		check_enqueue_throttle(cfs_rq);
	}
3393 3394
}

3395
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3396
{
3397 3398
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3399
		if (cfs_rq->last != se)
3400
			break;
3401 3402

		cfs_rq->last = NULL;
3403 3404
	}
}
P
Peter Zijlstra 已提交
3405

3406 3407 3408 3409
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3410
		if (cfs_rq->next != se)
3411
			break;
3412 3413

		cfs_rq->next = NULL;
3414
	}
P
Peter Zijlstra 已提交
3415 3416
}

3417 3418 3419 3420
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3421
		if (cfs_rq->skip != se)
3422
			break;
3423 3424

		cfs_rq->skip = NULL;
3425 3426 3427
	}
}

P
Peter Zijlstra 已提交
3428 3429
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3430 3431 3432 3433 3434
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3435 3436 3437

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3438 3439
}

3440
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3441

3442
static void
3443
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3444
{
3445 3446 3447 3448
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3449
	dequeue_entity_load_avg(cfs_rq, se);
3450

3451 3452
	if (schedstat_enabled())
		update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3453

P
Peter Zijlstra 已提交
3454
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3455

3456
	if (se != cfs_rq->curr)
3457
		__dequeue_entity(cfs_rq, se);
3458
	se->on_rq = 0;
3459
	account_entity_dequeue(cfs_rq, se);
3460 3461 3462 3463 3464 3465

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3466
	if (!(flags & DEQUEUE_SLEEP))
3467
		se->vruntime -= cfs_rq->min_vruntime;
3468

3469 3470 3471
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3472
	update_min_vruntime(cfs_rq);
3473
	update_cfs_shares(cfs_rq);
3474 3475 3476 3477 3478
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3479
static void
I
Ingo Molnar 已提交
3480
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3481
{
3482
	unsigned long ideal_runtime, delta_exec;
3483 3484
	struct sched_entity *se;
	s64 delta;
3485

P
Peter Zijlstra 已提交
3486
	ideal_runtime = sched_slice(cfs_rq, curr);
3487
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3488
	if (delta_exec > ideal_runtime) {
3489
		resched_curr(rq_of(cfs_rq));
3490 3491 3492 3493 3494
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3506 3507
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3508

3509 3510
	if (delta < 0)
		return;
3511

3512
	if (delta > ideal_runtime)
3513
		resched_curr(rq_of(cfs_rq));
3514 3515
}

3516
static void
3517
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3518
{
3519 3520 3521 3522 3523 3524 3525
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3526 3527
		if (schedstat_enabled())
			update_stats_wait_end(cfs_rq, se);
3528
		__dequeue_entity(cfs_rq, se);
3529
		update_load_avg(se, 1);
3530 3531
	}

3532
	update_stats_curr_start(cfs_rq, se);
3533
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3534 3535 3536 3537 3538 3539
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3540
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3541
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3542 3543 3544
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3545
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3546 3547
}

3548 3549 3550
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3551 3552 3553 3554 3555 3556 3557
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3558 3559
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3560
{
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3572

3573 3574 3575 3576 3577
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3588 3589 3590
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3591

3592 3593 3594 3595 3596 3597
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3598 3599 3600 3601 3602 3603
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3604
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3605 3606

	return se;
3607 3608
}

3609
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3610

3611
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3612 3613 3614 3615 3616 3617
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3618
		update_curr(cfs_rq);
3619

3620 3621 3622
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3623 3624 3625 3626 3627 3628
	if (schedstat_enabled()) {
		check_spread(cfs_rq, prev);
		if (prev->on_rq)
			update_stats_wait_start(cfs_rq, prev);
	}

3629 3630 3631
	if (prev->on_rq) {
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3632
		/* in !on_rq case, update occurred at dequeue */
3633
		update_load_avg(prev, 0);
3634
	}
3635
	cfs_rq->curr = NULL;
3636 3637
}

P
Peter Zijlstra 已提交
3638 3639
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3640 3641
{
	/*
3642
	 * Update run-time statistics of the 'current'.
3643
	 */
3644
	update_curr(cfs_rq);
3645

3646 3647 3648
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3649
	update_load_avg(curr, 1);
3650
	update_cfs_shares(cfs_rq);
3651

P
Peter Zijlstra 已提交
3652 3653 3654 3655 3656
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3657
	if (queued) {
3658
		resched_curr(rq_of(cfs_rq));
3659 3660
		return;
	}
P
Peter Zijlstra 已提交
3661 3662 3663 3664 3665 3666 3667 3668
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3669
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3670
		check_preempt_tick(cfs_rq, curr);
3671 3672
}

3673 3674 3675 3676 3677 3678

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3679 3680

#ifdef HAVE_JUMP_LABEL
3681
static struct static_key __cfs_bandwidth_used;
3682 3683 3684

static inline bool cfs_bandwidth_used(void)
{
3685
	return static_key_false(&__cfs_bandwidth_used);
3686 3687
}

3688
void cfs_bandwidth_usage_inc(void)
3689
{
3690 3691 3692 3693 3694 3695
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3696 3697 3698 3699 3700 3701 3702
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3703 3704
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3705 3706
#endif /* HAVE_JUMP_LABEL */

3707 3708 3709 3710 3711 3712 3713 3714
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3715 3716 3717 3718 3719 3720

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3721 3722 3723 3724 3725 3726 3727
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3728
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3740 3741 3742 3743 3744
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3745 3746 3747 3748
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
3749
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3750

3751
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3752 3753
}

3754 3755
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3756 3757 3758
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3759
	u64 amount = 0, min_amount, expires;
3760 3761 3762 3763 3764 3765 3766

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3767
	else {
P
Peter Zijlstra 已提交
3768
		start_cfs_bandwidth(cfs_b);
3769 3770 3771 3772 3773 3774

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3775
	}
P
Paul Turner 已提交
3776
	expires = cfs_b->runtime_expires;
3777 3778 3779
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3780 3781 3782 3783 3784 3785 3786
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3787 3788

	return cfs_rq->runtime_remaining > 0;
3789 3790
}

P
Paul Turner 已提交
3791 3792 3793 3794 3795
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3796
{
P
Paul Turner 已提交
3797 3798 3799
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3800
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3801 3802
		return;

P
Paul Turner 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3812 3813 3814
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3815 3816
	 */

3817
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3818 3819 3820 3821 3822 3823 3824 3825
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3826
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3827 3828
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3829
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3830 3831 3832
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3833 3834
		return;

3835 3836 3837 3838 3839
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3840
		resched_curr(rq_of(cfs_rq));
3841 3842
}

3843
static __always_inline
3844
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3845
{
3846
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3847 3848 3849 3850 3851
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3852 3853
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3854
	return cfs_bandwidth_used() && cfs_rq->throttled;
3855 3856
}

3857 3858 3859
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3860
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
3888
		/* adjust cfs_rq_clock_task() */
3889
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3890
					     cfs_rq->throttled_clock_task;
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3901 3902
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3903
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3904 3905 3906 3907 3908
	cfs_rq->throttle_count++;

	return 0;
}

3909
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3910 3911 3912 3913 3914
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3915
	bool empty;
3916 3917 3918

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3919
	/* freeze hierarchy runnable averages while throttled */
3920 3921 3922
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3940
		sub_nr_running(rq, task_delta);
3941 3942

	cfs_rq->throttled = 1;
3943
	cfs_rq->throttled_clock = rq_clock(rq);
3944
	raw_spin_lock(&cfs_b->lock);
3945
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3946

3947 3948 3949 3950 3951
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3952 3953 3954 3955 3956 3957 3958 3959

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3960 3961 3962
	raw_spin_unlock(&cfs_b->lock);
}

3963
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3964 3965 3966 3967 3968 3969 3970
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3971
	se = cfs_rq->tg->se[cpu_of(rq)];
3972 3973

	cfs_rq->throttled = 0;
3974 3975 3976

	update_rq_clock(rq);

3977
	raw_spin_lock(&cfs_b->lock);
3978
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3979 3980 3981
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3982 3983 3984
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4003
		add_nr_running(rq, task_delta);
4004 4005 4006

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4007
		resched_curr(rq);
4008 4009 4010 4011 4012 4013
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4014 4015
	u64 runtime;
	u64 starting_runtime = remaining;
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4046
	return starting_runtime - remaining;
4047 4048
}

4049 4050 4051 4052 4053 4054 4055 4056
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4057
	u64 runtime, runtime_expires;
4058
	int throttled;
4059 4060 4061

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4062
		goto out_deactivate;
4063

4064
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4065
	cfs_b->nr_periods += overrun;
4066

4067 4068 4069 4070 4071 4072
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4073 4074 4075

	__refill_cfs_bandwidth_runtime(cfs_b);

4076 4077 4078
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4079
		return 0;
4080 4081
	}

4082 4083 4084
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4085 4086 4087
	runtime_expires = cfs_b->runtime_expires;

	/*
4088 4089 4090 4091 4092
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4093
	 */
4094 4095
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4096 4097 4098 4099 4100 4101 4102
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4103 4104

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4105
	}
4106

4107 4108 4109 4110 4111 4112 4113
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4114

4115 4116 4117 4118
	return 0;

out_deactivate:
	return 1;
4119
}
4120

4121 4122 4123 4124 4125 4126 4127
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4128 4129 4130 4131
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4132
 * hrtimer base being cleared by hrtimer_start. In the case of
4133 4134
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4160 4161 4162
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4192 4193 4194
	if (!cfs_bandwidth_used())
		return;

4195
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4211 4212 4213
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4214
		return;
4215
	}
4216

4217
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4218
		runtime = cfs_b->runtime;
4219

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4230
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4231 4232 4233
	raw_spin_unlock(&cfs_b->lock);
}

4234 4235 4236 4237 4238 4239 4240
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4241 4242 4243
	if (!cfs_bandwidth_used())
		return;

4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4272
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4273 4274
}

4275
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4276
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4277
{
4278
	if (!cfs_bandwidth_used())
4279
		return false;
4280

4281
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4282
		return false;
4283 4284 4285 4286 4287 4288

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4289
		return true;
4290 4291

	throttle_cfs_rq(cfs_rq);
4292
	return true;
4293
}
4294 4295 4296 4297 4298

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4299

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4312
	raw_spin_lock(&cfs_b->lock);
4313
	for (;;) {
P
Peter Zijlstra 已提交
4314
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4315 4316 4317 4318 4319
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4320 4321
	if (idle)
		cfs_b->period_active = 0;
4322
	raw_spin_unlock(&cfs_b->lock);
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4335
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4347
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4348
{
P
Peter Zijlstra 已提交
4349
	lockdep_assert_held(&cfs_b->lock);
4350

P
Peter Zijlstra 已提交
4351 4352 4353 4354 4355
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4356 4357 4358 4359
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4360 4361 4362 4363
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4364 4365 4366 4367
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4381
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4393
		cfs_rq->runtime_remaining = 1;
4394 4395 4396 4397 4398 4399
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4400 4401 4402 4403 4404 4405
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4406 4407
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4408
	return rq_clock_task(rq_of(cfs_rq));
4409 4410
}

4411
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4412
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4413
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4414
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4415
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4416 4417 4418 4419 4420

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4432 4433 4434 4435 4436

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4437 4438
#endif

4439 4440 4441 4442 4443
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4444
static inline void update_runtime_enabled(struct rq *rq) {}
4445
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4446 4447 4448

#endif /* CONFIG_CFS_BANDWIDTH */

4449 4450 4451 4452
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4453 4454 4455 4456 4457 4458 4459 4460
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4461
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4462 4463 4464 4465 4466 4467
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4468
				resched_curr(rq);
P
Peter Zijlstra 已提交
4469 4470
			return;
		}
4471
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4472 4473
	}
}
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4484
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4485 4486 4487 4488 4489
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4490
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4491 4492 4493 4494
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4495 4496 4497 4498

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4499 4500
#endif

4501 4502 4503 4504 4505
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4506
static void
4507
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4508 4509
{
	struct cfs_rq *cfs_rq;
4510
	struct sched_entity *se = &p->se;
4511 4512

	for_each_sched_entity(se) {
4513
		if (se->on_rq)
4514 4515
			break;
		cfs_rq = cfs_rq_of(se);
4516
		enqueue_entity(cfs_rq, se, flags);
4517 4518 4519 4520 4521 4522

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4523
		 */
4524 4525
		if (cfs_rq_throttled(cfs_rq))
			break;
4526
		cfs_rq->h_nr_running++;
4527

4528
		flags = ENQUEUE_WAKEUP;
4529
	}
P
Peter Zijlstra 已提交
4530

P
Peter Zijlstra 已提交
4531
	for_each_sched_entity(se) {
4532
		cfs_rq = cfs_rq_of(se);
4533
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4534

4535 4536 4537
		if (cfs_rq_throttled(cfs_rq))
			break;

4538
		update_load_avg(se, 1);
4539
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4540 4541
	}

Y
Yuyang Du 已提交
4542
	if (!se)
4543
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4544

4545
	hrtick_update(rq);
4546 4547
}

4548 4549
static void set_next_buddy(struct sched_entity *se);

4550 4551 4552 4553 4554
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4555
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4556 4557
{
	struct cfs_rq *cfs_rq;
4558
	struct sched_entity *se = &p->se;
4559
	int task_sleep = flags & DEQUEUE_SLEEP;
4560 4561 4562

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4563
		dequeue_entity(cfs_rq, se, flags);
4564 4565 4566 4567 4568 4569 4570 4571 4572

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4573
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4574

4575
		/* Don't dequeue parent if it has other entities besides us */
4576
		if (cfs_rq->load.weight) {
4577 4578
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4579 4580 4581 4582
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4583 4584
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4585
			break;
4586
		}
4587
		flags |= DEQUEUE_SLEEP;
4588
	}
P
Peter Zijlstra 已提交
4589

P
Peter Zijlstra 已提交
4590
	for_each_sched_entity(se) {
4591
		cfs_rq = cfs_rq_of(se);
4592
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4593

4594 4595 4596
		if (cfs_rq_throttled(cfs_rq))
			break;

4597
		update_load_avg(se, 1);
4598
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4599 4600
	}

Y
Yuyang Du 已提交
4601
	if (!se)
4602
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4603

4604
	hrtick_update(rq);
4605 4606
}

4607
#ifdef CONFIG_SMP
4608
#ifdef CONFIG_NO_HZ_COMMON
4609 4610 4611 4612 4613
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4614
 * The exact cpuload calculated at every tick would be:
4615
 *
4616 4617 4618 4619 4620 4621 4622
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4623 4624 4625
 *
 * decay_load_missed() below does efficient calculation of
 *
4626 4627 4628 4629 4630 4631
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4632
 *
4633
 * The calculation is approximated on a 128 point scale.
4634 4635
 */
#define DEGRADE_SHIFT		7
4636 4637 4638 4639 4640 4641 4642 4643 4644

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4674
#endif /* CONFIG_NO_HZ_COMMON */
4675

4676
/**
4677
 * __cpu_load_update - update the rq->cpu_load[] statistics
4678 4679 4680 4681
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4682
 * Update rq->cpu_load[] statistics. This function is usually called every
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4709
 * term.
4710
 */
4711 4712
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4713
{
4714
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4726
		old_load = this_rq->cpu_load[i];
4727
#ifdef CONFIG_NO_HZ_COMMON
4728
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4729 4730 4731 4732 4733 4734 4735 4736 4737
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4738
#endif
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4754 4755 4756 4757 4758 4759
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4760
#ifdef CONFIG_NO_HZ_COMMON
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
4789
		cpu_load_update(this_rq, load, pending_updates);
4790 4791 4792
	}
}

4793 4794 4795 4796
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
4797
static void cpu_load_update_idle(struct rq *this_rq)
4798 4799 4800 4801
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
4802
	if (weighted_cpuload(cpu_of(this_rq)))
4803 4804
		return;

4805
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4806 4807 4808
}

/*
4809 4810 4811 4812
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
4813
 */
4814
void cpu_load_update_nohz_start(void)
4815 4816
{
	struct rq *this_rq = this_rq();
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
4831
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4832 4833
	struct rq *this_rq = this_rq();
	unsigned long load;
4834 4835 4836 4837

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

4838
	load = weighted_cpuload(cpu_of(this_rq));
4839
	raw_spin_lock(&this_rq->lock);
4840
	update_rq_clock(this_rq);
4841
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
4842 4843
	raw_spin_unlock(&this_rq->lock);
}
4844 4845 4846 4847 4848 4849 4850 4851
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
4852
#ifdef CONFIG_NO_HZ_COMMON
4853 4854
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
4855
#endif
4856 4857
	cpu_load_update(this_rq, load, 1);
}
4858 4859 4860 4861

/*
 * Called from scheduler_tick()
 */
4862
void cpu_load_update_active(struct rq *this_rq)
4863
{
4864
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4865 4866 4867 4868 4869

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
4870 4871
}

4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4905
static unsigned long capacity_of(int cpu)
4906
{
4907
	return cpu_rq(cpu)->cpu_capacity;
4908 4909
}

4910 4911 4912 4913 4914
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4915 4916 4917
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4918
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4919
	unsigned long load_avg = weighted_cpuload(cpu);
4920 4921

	if (nr_running)
4922
		return load_avg / nr_running;
4923 4924 4925 4926

	return 0;
}

4927
#ifdef CONFIG_FAIR_GROUP_SCHED
4928 4929 4930 4931 4932 4933
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4977
 */
P
Peter Zijlstra 已提交
4978
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4979
{
P
Peter Zijlstra 已提交
4980
	struct sched_entity *se = tg->se[cpu];
4981

4982
	if (!tg->parent)	/* the trivial, non-cgroup case */
4983 4984
		return wl;

P
Peter Zijlstra 已提交
4985
	for_each_sched_entity(se) {
4986 4987
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
4988

4989
		tg = cfs_rq->tg;
4990

4991 4992 4993
		/*
		 * W = @wg + \Sum rw_j
		 */
4994 4995 4996 4997 4998
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
4999

5000 5001 5002
		/*
		 * w = rw_i + @wl
		 */
5003
		w += wl;
5004

5005 5006 5007 5008
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5009
			wl = (w * (long)tg->shares) / W;
5010 5011
		else
			wl = tg->shares;
5012

5013 5014 5015 5016 5017
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5018 5019
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5020 5021 5022 5023

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5024
		wl -= se->avg.load_avg;
5025 5026 5027 5028 5029 5030 5031 5032

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5033 5034
		wg = 0;
	}
5035

P
Peter Zijlstra 已提交
5036
	return wl;
5037 5038
}
#else
P
Peter Zijlstra 已提交
5039

5040
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5041
{
5042
	return wl;
5043
}
P
Peter Zijlstra 已提交
5044

5045 5046
#endif

P
Peter Zijlstra 已提交
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5064 5065
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5066
 *
M
Mike Galbraith 已提交
5067
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5080
 */
5081 5082
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5083 5084
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5085
	int factor = this_cpu_read(sd_llc_size);
5086

M
Mike Galbraith 已提交
5087 5088 5089 5090 5091
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5092 5093
}

5094
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5095
{
5096
	s64 this_load, load;
5097
	s64 this_eff_load, prev_eff_load;
5098 5099
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
5100
	unsigned long weight;
5101
	int balanced;
5102

5103 5104 5105 5106 5107
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5108

5109 5110 5111 5112 5113
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5114 5115
	if (sync) {
		tg = task_group(current);
5116
		weight = current->se.avg.load_avg;
5117

5118
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5119 5120
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5121

5122
	tg = task_group(p);
5123
	weight = p->se.avg.load_avg;
5124

5125 5126
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5127 5128 5129
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5130 5131 5132 5133
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5134 5135
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5136

5137 5138
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5139

5140
	if (this_load > 0) {
5141 5142 5143 5144
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5145
	}
5146

5147
	balanced = this_eff_load <= prev_eff_load;
5148

5149
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5150

5151 5152
	if (!balanced)
		return 0;
5153

5154 5155 5156 5157
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
5158 5159
}

5160 5161 5162 5163 5164
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5165
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5166
		  int this_cpu, int sd_flag)
5167
{
5168
	struct sched_group *idlest = NULL, *group = sd->groups;
5169
	unsigned long min_load = ULONG_MAX, this_load = 0;
5170
	int load_idx = sd->forkexec_idx;
5171
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
5172

5173 5174 5175
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5176 5177 5178 5179
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
5180

5181 5182
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5183
					tsk_cpus_allowed(p)))
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

5202
		/* Adjust by relative CPU capacity of the group */
5203
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5225 5226 5227 5228
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5229 5230 5231
	int i;

	/* Traverse only the allowed CPUs */
5232
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5255
		} else if (shallowest_idle_cpu == -1) {
5256 5257 5258 5259 5260
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5261 5262 5263
		}
	}

5264
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5265
}
5266

5267 5268 5269
/*
 * Try and locate an idle CPU in the sched_domain.
 */
5270
static int select_idle_sibling(struct task_struct *p, int target)
5271
{
5272
	struct sched_domain *sd;
5273
	struct sched_group *sg;
5274
	int i = task_cpu(p);
5275

5276 5277
	if (idle_cpu(target))
		return target;
5278 5279

	/*
5280
	 * If the prevous cpu is cache affine and idle, don't be stupid.
5281
	 */
5282 5283
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
5284 5285

	/*
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
	 * Otherwise, iterate the domains and find an eligible idle cpu.
	 *
	 * A completely idle sched group at higher domains is more
	 * desirable than an idle group at a lower level, because lower
	 * domains have smaller groups and usually share hardware
	 * resources which causes tasks to contend on them, e.g. x86
	 * hyperthread siblings in the lowest domain (SMT) can contend
	 * on the shared cpu pipeline.
	 *
	 * However, while we prefer idle groups at higher domains
	 * finding an idle cpu at the lowest domain is still better than
	 * returning 'target', which we've already established, isn't
	 * idle.
5299
	 */
5300
	sd = rcu_dereference(per_cpu(sd_llc, target));
5301
	for_each_lower_domain(sd) {
5302 5303 5304 5305 5306 5307
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

5308
			/* Ensure the entire group is idle */
5309
			for_each_cpu(i, sched_group_cpus(sg)) {
5310
				if (i == target || !idle_cpu(i))
5311 5312
					goto next;
			}
5313

5314 5315 5316 5317
			/*
			 * It doesn't matter which cpu we pick, the
			 * whole group is idle.
			 */
5318 5319 5320 5321 5322 5323 5324 5325
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
5326 5327
	return target;
}
5328

5329
/*
5330
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5331
 * tasks. The unit of the return value must be the one of capacity so we can
5332 5333
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5354
 */
5355
static int cpu_util(int cpu)
5356
{
5357
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5358 5359
	unsigned long capacity = capacity_orig_of(cpu);

5360
	return (util >= capacity) ? capacity : util;
5361
}
5362

5363
/*
5364 5365 5366
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5367
 *
5368 5369
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5370
 *
5371
 * Returns the target cpu number.
5372 5373 5374
 *
 * preempt must be disabled.
 */
5375
static int
5376
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5377
{
5378
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5379
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5380
	int new_cpu = prev_cpu;
5381
	int want_affine = 0;
5382
	int sync = wake_flags & WF_SYNC;
5383

P
Peter Zijlstra 已提交
5384 5385
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
M
Mike Galbraith 已提交
5386
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
P
Peter Zijlstra 已提交
5387
	}
5388

5389
	rcu_read_lock();
5390
	for_each_domain(cpu, tmp) {
5391
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5392
			break;
5393

5394
		/*
5395 5396
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5397
		 */
5398 5399 5400
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5401
			break;
5402
		}
5403

5404
		if (tmp->flags & sd_flag)
5405
			sd = tmp;
M
Mike Galbraith 已提交
5406 5407
		else if (!want_affine)
			break;
5408 5409
	}

M
Mike Galbraith 已提交
5410 5411 5412 5413
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
5414
	}
5415

M
Mike Galbraith 已提交
5416 5417 5418 5419 5420
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
5421
		struct sched_group *group;
5422
		int weight;
5423

5424
		if (!(sd->flags & sd_flag)) {
5425 5426 5427
			sd = sd->child;
			continue;
		}
5428

5429
		group = find_idlest_group(sd, p, cpu, sd_flag);
5430 5431 5432 5433
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5434

5435
		new_cpu = find_idlest_cpu(group, p, cpu);
5436 5437 5438 5439
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5440
		}
5441 5442 5443

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5444
		weight = sd->span_weight;
5445 5446
		sd = NULL;
		for_each_domain(cpu, tmp) {
5447
			if (weight <= tmp->span_weight)
5448
				break;
5449
			if (tmp->flags & sd_flag)
5450 5451 5452
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5453
	}
5454
	rcu_read_unlock();
5455

5456
	return new_cpu;
5457
}
5458 5459 5460 5461

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5462
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5463
 */
5464
static void migrate_task_rq_fair(struct task_struct *p)
5465
{
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

5492
	/*
5493 5494 5495 5496 5497
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5498
	 */
5499 5500 5501 5502
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5503 5504

	/* We have migrated, no longer consider this task hot */
5505
	p->se.exec_start = 0;
5506
}
5507 5508 5509 5510 5511

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5512 5513
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5514 5515
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5516 5517 5518 5519
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5520 5521
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5531
	 */
5532
	return calc_delta_fair(gran, se);
5533 5534
}

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5557
	gran = wakeup_gran(curr, se);
5558 5559 5560 5561 5562 5563
	if (vdiff > gran)
		return 1;

	return 0;
}

5564 5565
static void set_last_buddy(struct sched_entity *se)
{
5566 5567 5568 5569 5570
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5571 5572 5573 5574
}

static void set_next_buddy(struct sched_entity *se)
{
5575 5576 5577 5578 5579
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5580 5581
}

5582 5583
static void set_skip_buddy(struct sched_entity *se)
{
5584 5585
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5586 5587
}

5588 5589 5590
/*
 * Preempt the current task with a newly woken task if needed:
 */
5591
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5592 5593
{
	struct task_struct *curr = rq->curr;
5594
	struct sched_entity *se = &curr->se, *pse = &p->se;
5595
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5596
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5597
	int next_buddy_marked = 0;
5598

I
Ingo Molnar 已提交
5599 5600 5601
	if (unlikely(se == pse))
		return;

5602
	/*
5603
	 * This is possible from callers such as attach_tasks(), in which we
5604 5605 5606 5607 5608 5609 5610
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5611
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5612
		set_next_buddy(pse);
5613 5614
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5615

5616 5617 5618
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5619 5620 5621 5622 5623 5624
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5625 5626 5627 5628
	 */
	if (test_tsk_need_resched(curr))
		return;

5629 5630 5631 5632 5633
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5634
	/*
5635 5636
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5637
	 */
5638
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5639
		return;
5640

5641
	find_matching_se(&se, &pse);
5642
	update_curr(cfs_rq_of(se));
5643
	BUG_ON(!pse);
5644 5645 5646 5647 5648 5649 5650
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5651
		goto preempt;
5652
	}
5653

5654
	return;
5655

5656
preempt:
5657
	resched_curr(rq);
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5672 5673
}

5674
static struct task_struct *
5675
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5676 5677 5678
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5679
	struct task_struct *p;
5680
	int new_tasks;
5681

5682
again:
5683 5684
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5685
		goto idle;
5686

5687
	if (prev->sched_class != &fair_sched_class)
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5707 5708 5709 5710 5711
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5712

5713 5714 5715 5716 5717 5718 5719 5720 5721
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5762

5763
	if (!cfs_rq->nr_running)
5764
		goto idle;
5765

5766
	put_prev_task(rq, prev);
5767

5768
	do {
5769
		se = pick_next_entity(cfs_rq, NULL);
5770
		set_next_entity(cfs_rq, se);
5771 5772 5773
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5774
	p = task_of(se);
5775

5776 5777
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5778 5779

	return p;
5780 5781

idle:
5782 5783 5784 5785 5786 5787
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
5788
	lockdep_unpin_lock(&rq->lock, cookie);
5789
	new_tasks = idle_balance(rq);
5790
	lockdep_repin_lock(&rq->lock, cookie);
5791 5792 5793 5794 5795
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5796
	if (new_tasks < 0)
5797 5798
		return RETRY_TASK;

5799
	if (new_tasks > 0)
5800 5801 5802
		goto again;

	return NULL;
5803 5804 5805 5806 5807
}

/*
 * Account for a descheduled task:
 */
5808
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5809 5810 5811 5812 5813 5814
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5815
		put_prev_entity(cfs_rq, se);
5816 5817 5818
	}
}

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5844 5845 5846 5847 5848
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5849
		rq_clock_skip_update(rq, true);
5850 5851 5852 5853 5854
	}

	set_skip_buddy(se);
}

5855 5856 5857 5858
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5859 5860
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5871
#ifdef CONFIG_SMP
5872
/**************************************************
P
Peter Zijlstra 已提交
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5889
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
5890 5891 5892 5893 5894 5895
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5896
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5897 5898 5899 5900 5901 5902
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5903
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5989

5990 5991
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5992 5993
enum fbq_type { regular, remote, all };

5994
#define LBF_ALL_PINNED	0x01
5995
#define LBF_NEED_BREAK	0x02
5996 5997
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5998 5999 6000 6001 6002

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6003
	int			src_cpu;
6004 6005 6006 6007

	int			dst_cpu;
	struct rq		*dst_rq;

6008 6009
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6010
	enum cpu_idle_type	idle;
6011
	long			imbalance;
6012 6013 6014
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6015
	unsigned int		flags;
6016 6017 6018 6019

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6020 6021

	enum fbq_type		fbq_type;
6022
	struct list_head	tasks;
6023 6024
};

6025 6026 6027
/*
 * Is this task likely cache-hot:
 */
6028
static int task_hot(struct task_struct *p, struct lb_env *env)
6029 6030 6031
{
	s64 delta;

6032 6033
	lockdep_assert_held(&env->src_rq->lock);

6034 6035 6036 6037 6038 6039 6040 6041 6042
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6043
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6044 6045 6046 6047 6048 6049 6050 6051 6052
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6053
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6054 6055 6056 6057

	return delta < (s64)sysctl_sched_migration_cost;
}

6058
#ifdef CONFIG_NUMA_BALANCING
6059
/*
6060 6061 6062
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6063
 */
6064
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6065
{
6066
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6067
	unsigned long src_faults, dst_faults;
6068 6069
	int src_nid, dst_nid;

6070
	if (!static_branch_likely(&sched_numa_balancing))
6071 6072
		return -1;

6073
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6074
		return -1;
6075 6076 6077 6078

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6079
	if (src_nid == dst_nid)
6080
		return -1;
6081

6082 6083 6084 6085 6086 6087 6088
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6089

6090 6091
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6092
		return 0;
6093

6094 6095 6096 6097 6098 6099
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6100 6101
	}

6102
	return dst_faults < src_faults;
6103 6104
}

6105
#else
6106
static inline int migrate_degrades_locality(struct task_struct *p,
6107 6108
					     struct lb_env *env)
{
6109
	return -1;
6110
}
6111 6112
#endif

6113 6114 6115 6116
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6117
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6118
{
6119
	int tsk_cache_hot;
6120 6121 6122

	lockdep_assert_held(&env->src_rq->lock);

6123 6124
	/*
	 * We do not migrate tasks that are:
6125
	 * 1) throttled_lb_pair, or
6126
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6127 6128
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6129
	 */
6130 6131 6132
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6133
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6134
		int cpu;
6135

6136
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6137

6138 6139
		env->flags |= LBF_SOME_PINNED;

6140 6141 6142 6143 6144 6145 6146 6147
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6148
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6149 6150
			return 0;

6151 6152 6153
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6154
				env->flags |= LBF_DST_PINNED;
6155 6156 6157
				env->new_dst_cpu = cpu;
				break;
			}
6158
		}
6159

6160 6161
		return 0;
	}
6162 6163

	/* Record that we found atleast one task that could run on dst_cpu */
6164
	env->flags &= ~LBF_ALL_PINNED;
6165

6166
	if (task_running(env->src_rq, p)) {
6167
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6168 6169 6170 6171 6172
		return 0;
	}

	/*
	 * Aggressive migration if:
6173 6174 6175
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6176
	 */
6177 6178 6179
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6180

6181
	if (tsk_cache_hot <= 0 ||
6182
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6183
		if (tsk_cache_hot == 1) {
6184 6185 6186
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
6187 6188 6189
		return 1;
	}

Z
Zhang Hang 已提交
6190 6191
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
6192 6193
}

6194
/*
6195 6196 6197 6198 6199 6200 6201
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6202
	deactivate_task(env->src_rq, p, 0);
6203 6204 6205
	set_task_cpu(p, env->dst_cpu);
}

6206
/*
6207
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6208 6209
 * part of active balancing operations within "domain".
 *
6210
 * Returns a task if successful and NULL otherwise.
6211
 */
6212
static struct task_struct *detach_one_task(struct lb_env *env)
6213 6214 6215
{
	struct task_struct *p, *n;

6216 6217
	lockdep_assert_held(&env->src_rq->lock);

6218 6219 6220
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6221

6222
		detach_task(p, env);
6223

6224
		/*
6225
		 * Right now, this is only the second place where
6226
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6227
		 * so we can safely collect stats here rather than
6228
		 * inside detach_tasks().
6229 6230
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
6231
		return p;
6232
	}
6233
	return NULL;
6234 6235
}

6236 6237
static const unsigned int sched_nr_migrate_break = 32;

6238
/*
6239 6240
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6241
 *
6242
 * Returns number of detached tasks if successful and 0 otherwise.
6243
 */
6244
static int detach_tasks(struct lb_env *env)
6245
{
6246 6247
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6248
	unsigned long load;
6249 6250 6251
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6252

6253
	if (env->imbalance <= 0)
6254
		return 0;
6255

6256
	while (!list_empty(tasks)) {
6257 6258 6259 6260 6261 6262 6263
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6264
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6265

6266 6267
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6268
		if (env->loop > env->loop_max)
6269
			break;
6270 6271

		/* take a breather every nr_migrate tasks */
6272
		if (env->loop > env->loop_break) {
6273
			env->loop_break += sched_nr_migrate_break;
6274
			env->flags |= LBF_NEED_BREAK;
6275
			break;
6276
		}
6277

6278
		if (!can_migrate_task(p, env))
6279 6280 6281
			goto next;

		load = task_h_load(p);
6282

6283
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6284 6285
			goto next;

6286
		if ((load / 2) > env->imbalance)
6287
			goto next;
6288

6289 6290 6291 6292
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6293
		env->imbalance -= load;
6294 6295

#ifdef CONFIG_PREEMPT
6296 6297
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6298
		 * kernels will stop after the first task is detached to minimize
6299 6300
		 * the critical section.
		 */
6301
		if (env->idle == CPU_NEWLY_IDLE)
6302
			break;
6303 6304
#endif

6305 6306 6307 6308
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6309
		if (env->imbalance <= 0)
6310
			break;
6311 6312 6313

		continue;
next:
6314
		list_move_tail(&p->se.group_node, tasks);
6315
	}
6316

6317
	/*
6318 6319 6320
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6321
	 */
6322
	schedstat_add(env->sd, lb_gained[env->idle], detached);
6323

6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6336
	p->on_rq = TASK_ON_RQ_QUEUED;
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6365

6366 6367 6368 6369
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6370 6371
}

P
Peter Zijlstra 已提交
6372
#ifdef CONFIG_FAIR_GROUP_SCHED
6373
static void update_blocked_averages(int cpu)
6374 6375
{
	struct rq *rq = cpu_rq(cpu);
6376 6377
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6378

6379 6380
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6381

6382 6383 6384 6385
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6386
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6387 6388 6389
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6390

6391
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6392 6393
			update_tg_load_avg(cfs_rq, 0);
	}
6394
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6395 6396
}

6397
/*
6398
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6399 6400 6401
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6402
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6403
{
6404 6405
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6406
	unsigned long now = jiffies;
6407
	unsigned long load;
6408

6409
	if (cfs_rq->last_h_load_update == now)
6410 6411
		return;

6412 6413 6414 6415 6416 6417 6418
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6419

6420
	if (!se) {
6421
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6422 6423 6424 6425 6426
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6427 6428
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6429 6430 6431 6432
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6433 6434
}

6435
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6436
{
6437
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6438

6439
	update_cfs_rq_h_load(cfs_rq);
6440
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6441
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6442 6443
}
#else
6444
static inline void update_blocked_averages(int cpu)
6445
{
6446 6447 6448 6449 6450 6451
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6452
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6453
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6454 6455
}

6456
static unsigned long task_h_load(struct task_struct *p)
6457
{
6458
	return p->se.avg.load_avg;
6459
}
P
Peter Zijlstra 已提交
6460
#endif
6461 6462

/********** Helpers for find_busiest_group ************************/
6463 6464 6465 6466 6467 6468 6469

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6470 6471 6472 6473 6474 6475 6476
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6477
	unsigned long load_per_task;
6478
	unsigned long group_capacity;
6479
	unsigned long group_util; /* Total utilization of the group */
6480 6481 6482
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6483
	enum group_type group_type;
6484
	int group_no_capacity;
6485 6486 6487 6488
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6489 6490
};

J
Joonsoo Kim 已提交
6491 6492 6493 6494 6495 6496 6497 6498
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6499
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6500 6501 6502
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6503
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6504 6505
};

6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6518
		.total_capacity = 0UL,
6519 6520
		.busiest_stat = {
			.avg_load = 0UL,
6521 6522
			.sum_nr_running = 0,
			.group_type = group_other,
6523 6524 6525 6526
		},
	};
}

6527 6528 6529
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6530
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6531 6532
 *
 * Return: The load index.
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6555
static unsigned long scale_rt_capacity(int cpu)
6556 6557
{
	struct rq *rq = cpu_rq(cpu);
6558
	u64 total, used, age_stamp, avg;
6559
	s64 delta;
6560

6561 6562 6563 6564
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6565 6566
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6567
	delta = __rq_clock_broken(rq) - age_stamp;
6568

6569 6570 6571 6572
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6573

6574
	used = div_u64(avg, total);
6575

6576 6577
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6578

6579
	return 1;
6580 6581
}

6582
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6583
{
6584
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6585 6586
	struct sched_group *sdg = sd->groups;

6587
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6588

6589
	capacity *= scale_rt_capacity(cpu);
6590
	capacity >>= SCHED_CAPACITY_SHIFT;
6591

6592 6593
	if (!capacity)
		capacity = 1;
6594

6595 6596
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6597 6598
}

6599
void update_group_capacity(struct sched_domain *sd, int cpu)
6600 6601 6602
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6603
	unsigned long capacity;
6604 6605 6606 6607
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6608
	sdg->sgc->next_update = jiffies + interval;
6609 6610

	if (!child) {
6611
		update_cpu_capacity(sd, cpu);
6612 6613 6614
		return;
	}

6615
	capacity = 0;
6616

P
Peter Zijlstra 已提交
6617 6618 6619 6620 6621 6622
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6623
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6624
			struct sched_group_capacity *sgc;
6625
			struct rq *rq = cpu_rq(cpu);
6626

6627
			/*
6628
			 * build_sched_domains() -> init_sched_groups_capacity()
6629 6630 6631
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6632 6633
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6634
			 *
6635
			 * This avoids capacity from being 0 and
6636 6637 6638
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6639
				capacity += capacity_of(cpu);
6640 6641
				continue;
			}
6642

6643 6644
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6645
		}
P
Peter Zijlstra 已提交
6646 6647 6648 6649 6650 6651 6652 6653
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6654
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6655 6656 6657
			group = group->next;
		} while (group != child->groups);
	}
6658

6659
	sdg->sgc->capacity = capacity;
6660 6661
}

6662
/*
6663 6664 6665
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6666 6667
 */
static inline int
6668
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6669
{
6670 6671
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6672 6673
}

6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6690 6691
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6692 6693
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6694
 * update_sd_pick_busiest(). And calculate_imbalance() and
6695
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6696 6697 6698 6699 6700 6701 6702
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6703
static inline int sg_imbalanced(struct sched_group *group)
6704
{
6705
	return group->sgc->imbalance;
6706 6707
}

6708
/*
6709 6710 6711
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6712 6713
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6714 6715 6716 6717 6718
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6719
 */
6720 6721
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6722
{
6723 6724
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6725

6726
	if ((sgs->group_capacity * 100) >
6727
			(sgs->group_util * env->sd->imbalance_pct))
6728
		return true;
6729

6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6746

6747
	if ((sgs->group_capacity * 100) <
6748
			(sgs->group_util * env->sd->imbalance_pct))
6749
		return true;
6750

6751
	return false;
6752 6753
}

6754 6755 6756
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6757
{
6758
	if (sgs->group_no_capacity)
6759 6760 6761 6762 6763 6764 6765 6766
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6767 6768
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6769
 * @env: The load balancing environment.
6770 6771 6772 6773
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6774
 * @overload: Indicate more than one runnable task for any CPU.
6775
 */
6776 6777
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6778 6779
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6780
{
6781
	unsigned long load;
6782
	int i, nr_running;
6783

6784 6785
	memset(sgs, 0, sizeof(*sgs));

6786
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6787 6788 6789
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6790
		if (local_group)
6791
			load = target_load(i, load_idx);
6792
		else
6793 6794 6795
			load = source_load(i, load_idx);

		sgs->group_load += load;
6796
		sgs->group_util += cpu_util(i);
6797
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6798

6799 6800
		nr_running = rq->nr_running;
		if (nr_running > 1)
6801 6802
			*overload = true;

6803 6804 6805 6806
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6807
		sgs->sum_weighted_load += weighted_cpuload(i);
6808 6809 6810 6811
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
6812
			sgs->idle_cpus++;
6813 6814
	}

6815 6816
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6817
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6818

6819
	if (sgs->sum_nr_running)
6820
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6821

6822
	sgs->group_weight = group->group_weight;
6823

6824
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6825
	sgs->group_type = group_classify(group, sgs);
6826 6827
}

6828 6829
/**
 * update_sd_pick_busiest - return 1 on busiest group
6830
 * @env: The load balancing environment.
6831 6832
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6833
 * @sgs: sched_group statistics
6834 6835 6836
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6837 6838 6839
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6840
 */
6841
static bool update_sd_pick_busiest(struct lb_env *env,
6842 6843
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6844
				   struct sg_lb_stats *sgs)
6845
{
6846
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6847

6848
	if (sgs->group_type > busiest->group_type)
6849 6850
		return true;

6851 6852 6853 6854 6855 6856 6857 6858
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6859 6860
		return true;

6861 6862 6863
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
6864 6865 6866 6867 6868
	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6869
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6870 6871 6872
		if (!sds->busiest)
			return true;

6873 6874
		/* Prefer to move from highest possible cpu's work */
		if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6875 6876 6877 6878 6879 6880
			return true;
	}

	return false;
}

6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6911
/**
6912
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6913
 * @env: The load balancing environment.
6914 6915
 * @sds: variable to hold the statistics for this sched_domain.
 */
6916
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6917
{
6918 6919
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6920
	struct sg_lb_stats tmp_sgs;
6921
	int load_idx, prefer_sibling = 0;
6922
	bool overload = false;
6923 6924 6925 6926

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6927
	load_idx = get_sd_load_idx(env->sd, env->idle);
6928 6929

	do {
J
Joonsoo Kim 已提交
6930
		struct sg_lb_stats *sgs = &tmp_sgs;
6931 6932
		int local_group;

6933
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6934 6935 6936
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6937 6938

			if (env->idle != CPU_NEWLY_IDLE ||
6939 6940
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6941
		}
6942

6943 6944
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6945

6946 6947 6948
		if (local_group)
			goto next_group;

6949 6950
		/*
		 * In case the child domain prefers tasks go to siblings
6951
		 * first, lower the sg capacity so that we'll try
6952 6953
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6954 6955 6956 6957
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6958
		 */
6959
		if (prefer_sibling && sds->local &&
6960 6961 6962
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
6963
			sgs->group_type = group_classify(sg, sgs);
6964
		}
6965

6966
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6967
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6968
			sds->busiest_stat = *sgs;
6969 6970
		}

6971 6972 6973
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6974
		sds->total_capacity += sgs->group_capacity;
6975

6976
		sg = sg->next;
6977
	} while (sg != env->sd->groups);
6978 6979 6980

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6981 6982 6983 6984 6985 6986 6987

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7007
 * Return: 1 when packing is required and a task should be moved to
7008 7009
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7010
 * @env: The load balancing environment.
7011 7012
 * @sds: Statistics of the sched_domain which is to be packed
 */
7013
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7014 7015 7016
{
	int busiest_cpu;

7017
	if (!(env->sd->flags & SD_ASYM_PACKING))
7018 7019
		return 0;

7020 7021 7022
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7023 7024 7025 7026
	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
7027
	if (env->dst_cpu > busiest_cpu)
7028 7029
		return 0;

7030
	env->imbalance = DIV_ROUND_CLOSEST(
7031
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7032
		SCHED_CAPACITY_SCALE);
7033

7034
	return 1;
7035 7036 7037 7038 7039 7040
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7041
 * @env: The load balancing environment.
7042 7043
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7044 7045
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7046
{
7047
	unsigned long tmp, capa_now = 0, capa_move = 0;
7048
	unsigned int imbn = 2;
7049
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7050
	struct sg_lb_stats *local, *busiest;
7051

J
Joonsoo Kim 已提交
7052 7053
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7054

J
Joonsoo Kim 已提交
7055 7056 7057 7058
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7059

J
Joonsoo Kim 已提交
7060
	scaled_busy_load_per_task =
7061
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7062
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7063

7064 7065
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7066
		env->imbalance = busiest->load_per_task;
7067 7068 7069 7070 7071
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7072
	 * however we may be able to increase total CPU capacity used by
7073 7074 7075
	 * moving them.
	 */

7076
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7077
			min(busiest->load_per_task, busiest->avg_load);
7078
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7079
			min(local->load_per_task, local->avg_load);
7080
	capa_now /= SCHED_CAPACITY_SCALE;
7081 7082

	/* Amount of load we'd subtract */
7083
	if (busiest->avg_load > scaled_busy_load_per_task) {
7084
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7085
			    min(busiest->load_per_task,
7086
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7087
	}
7088 7089

	/* Amount of load we'd add */
7090
	if (busiest->avg_load * busiest->group_capacity <
7091
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7092 7093
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7094
	} else {
7095
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7096
		      local->group_capacity;
J
Joonsoo Kim 已提交
7097
	}
7098
	capa_move += local->group_capacity *
7099
		    min(local->load_per_task, local->avg_load + tmp);
7100
	capa_move /= SCHED_CAPACITY_SCALE;
7101 7102

	/* Move if we gain throughput */
7103
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7104
		env->imbalance = busiest->load_per_task;
7105 7106 7107 7108 7109
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7110
 * @env: load balance environment
7111 7112
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7113
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7114
{
7115
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7116 7117 7118 7119
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7120

7121
	if (busiest->group_type == group_imbalanced) {
7122 7123 7124 7125
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7126 7127
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7128 7129
	}

7130
	/*
7131 7132 7133 7134
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7135
	 */
7136 7137
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7138 7139
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7140 7141
	}

7142 7143 7144 7145 7146
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7147
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7148
		if (load_above_capacity > busiest->group_capacity) {
7149
			load_above_capacity -= busiest->group_capacity;
7150 7151 7152
			load_above_capacity *= NICE_0_LOAD;
			load_above_capacity /= busiest->group_capacity;
		} else
7153
			load_above_capacity = ~0UL;
7154 7155 7156 7157 7158 7159
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7160 7161
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7162
	 */
7163
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7164 7165

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7166
	env->imbalance = min(
7167 7168
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7169
	) / SCHED_CAPACITY_SCALE;
7170 7171 7172

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7173
	 * there is no guarantee that any tasks will be moved so we'll have
7174 7175 7176
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7177
	if (env->imbalance < busiest->load_per_task)
7178
		return fix_small_imbalance(env, sds);
7179
}
7180

7181 7182 7183 7184
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7185
 * if there is an imbalance.
7186 7187 7188 7189
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7190
 * @env: The load balancing environment.
7191
 *
7192
 * Return:	- The busiest group if imbalance exists.
7193
 */
J
Joonsoo Kim 已提交
7194
static struct sched_group *find_busiest_group(struct lb_env *env)
7195
{
J
Joonsoo Kim 已提交
7196
	struct sg_lb_stats *local, *busiest;
7197 7198
	struct sd_lb_stats sds;

7199
	init_sd_lb_stats(&sds);
7200 7201 7202 7203 7204

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7205
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7206 7207
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7208

7209
	/* ASYM feature bypasses nice load balance check */
7210
	if (check_asym_packing(env, &sds))
7211 7212
		return sds.busiest;

7213
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7214
	if (!sds.busiest || busiest->sum_nr_running == 0)
7215 7216
		goto out_balanced;

7217 7218
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7219

P
Peter Zijlstra 已提交
7220 7221
	/*
	 * If the busiest group is imbalanced the below checks don't
7222
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7223 7224
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7225
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7226 7227
		goto force_balance;

7228
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7229 7230
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7231 7232
		goto force_balance;

7233
	/*
7234
	 * If the local group is busier than the selected busiest group
7235 7236
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7237
	if (local->avg_load >= busiest->avg_load)
7238 7239
		goto out_balanced;

7240 7241 7242 7243
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7244
	if (local->avg_load >= sds.avg_load)
7245 7246
		goto out_balanced;

7247
	if (env->idle == CPU_IDLE) {
7248
		/*
7249 7250 7251 7252 7253
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7254
		 */
7255 7256
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7257
			goto out_balanced;
7258 7259 7260 7261 7262
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7263 7264
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7265
			goto out_balanced;
7266
	}
7267

7268
force_balance:
7269
	/* Looks like there is an imbalance. Compute it */
7270
	calculate_imbalance(env, &sds);
7271 7272 7273
	return sds.busiest;

out_balanced:
7274
	env->imbalance = 0;
7275 7276 7277 7278 7279 7280
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7281
static struct rq *find_busiest_queue(struct lb_env *env,
7282
				     struct sched_group *group)
7283 7284
{
	struct rq *busiest = NULL, *rq;
7285
	unsigned long busiest_load = 0, busiest_capacity = 1;
7286 7287
	int i;

7288
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7289
		unsigned long capacity, wl;
7290 7291 7292 7293
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7294

7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7317
		capacity = capacity_of(i);
7318

7319
		wl = weighted_cpuload(i);
7320

7321 7322
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7323
		 * which is not scaled with the cpu capacity.
7324
		 */
7325 7326 7327

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7328 7329
			continue;

7330 7331
		/*
		 * For the load comparisons with the other cpu's, consider
7332 7333 7334
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7335
		 *
7336
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7337
		 * multiplication to rid ourselves of the division works out
7338 7339
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7340
		 */
7341
		if (wl * busiest_capacity > busiest_load * capacity) {
7342
			busiest_load = wl;
7343
			busiest_capacity = capacity;
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
7358
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7359

7360
static int need_active_balance(struct lb_env *env)
7361
{
7362 7363 7364
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7365 7366 7367 7368 7369 7370

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
7371
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7372
			return 1;
7373 7374
	}

7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7388 7389 7390
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7391 7392
static int active_load_balance_cpu_stop(void *data);

7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7424
	return balance_cpu == env->dst_cpu;
7425 7426
}

7427 7428 7429 7430 7431 7432
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7433
			int *continue_balancing)
7434
{
7435
	int ld_moved, cur_ld_moved, active_balance = 0;
7436
	struct sched_domain *sd_parent = sd->parent;
7437 7438 7439
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7440
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7441

7442 7443
	struct lb_env env = {
		.sd		= sd,
7444 7445
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7446
		.dst_grpmask    = sched_group_cpus(sd->groups),
7447
		.idle		= idle,
7448
		.loop_break	= sched_nr_migrate_break,
7449
		.cpus		= cpus,
7450
		.fbq_type	= all,
7451
		.tasks		= LIST_HEAD_INIT(env.tasks),
7452 7453
	};

7454 7455 7456 7457
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7458
	if (idle == CPU_NEWLY_IDLE)
7459 7460
		env.dst_grpmask = NULL;

7461 7462 7463 7464 7465
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
7466 7467
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7468
		goto out_balanced;
7469
	}
7470

7471
	group = find_busiest_group(&env);
7472 7473 7474 7475 7476
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

7477
	busiest = find_busiest_queue(&env, group);
7478 7479 7480 7481 7482
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

7483
	BUG_ON(busiest == env.dst_rq);
7484

7485
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7486

7487 7488 7489
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7490 7491 7492 7493 7494 7495 7496 7497
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7498
		env.flags |= LBF_ALL_PINNED;
7499
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7500

7501
more_balance:
7502
		raw_spin_lock_irqsave(&busiest->lock, flags);
7503 7504 7505 7506 7507

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7508
		cur_ld_moved = detach_tasks(&env);
7509 7510

		/*
7511 7512 7513 7514 7515
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7516
		 */
7517 7518 7519 7520 7521 7522 7523 7524

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7525
		local_irq_restore(flags);
7526

7527 7528 7529 7530 7531
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7551
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7552

7553 7554 7555
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7556
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7557
			env.dst_cpu	 = env.new_dst_cpu;
7558
			env.flags	&= ~LBF_DST_PINNED;
7559 7560
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7561

7562 7563 7564 7565 7566 7567
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7568

7569 7570 7571 7572
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7573
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7574

7575
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7576 7577 7578
				*group_imbalance = 1;
		}

7579
		/* All tasks on this runqueue were pinned by CPU affinity */
7580
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7581
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7582 7583 7584
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7585
				goto redo;
7586
			}
7587
			goto out_all_pinned;
7588 7589 7590 7591 7592
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7593 7594 7595 7596 7597 7598 7599 7600
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7601

7602
		if (need_active_balance(&env)) {
7603 7604
			raw_spin_lock_irqsave(&busiest->lock, flags);

7605 7606 7607
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7608 7609
			 */
			if (!cpumask_test_cpu(this_cpu,
7610
					tsk_cpus_allowed(busiest->curr))) {
7611 7612
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7613
				env.flags |= LBF_ALL_PINNED;
7614 7615 7616
				goto out_one_pinned;
			}

7617 7618 7619 7620 7621
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7622 7623 7624 7625 7626 7627
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7628

7629
			if (active_balance) {
7630 7631 7632
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7633
			}
7634

7635
			/* We've kicked active balancing, force task migration. */
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7649
		 * detach_tasks).
7650 7651 7652 7653 7654 7655 7656 7657
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7675 7676 7677 7678 7679 7680
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7681
	if (((env.flags & LBF_ALL_PINNED) &&
7682
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7683 7684 7685
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7686
	ld_moved = 0;
7687 7688 7689 7690
out:
	return ld_moved;
}

7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7718 7719 7720 7721
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7722
static int idle_balance(struct rq *this_rq)
7723
{
7724 7725
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7726 7727
	struct sched_domain *sd;
	int pulled_task = 0;
7728
	u64 curr_cost = 0;
7729

7730 7731 7732 7733 7734 7735
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7736 7737
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7738 7739 7740 7741 7742 7743
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7744
		goto out;
7745
	}
7746

7747 7748
	raw_spin_unlock(&this_rq->lock);

7749
	update_blocked_averages(this_cpu);
7750
	rcu_read_lock();
7751
	for_each_domain(this_cpu, sd) {
7752
		int continue_balancing = 1;
7753
		u64 t0, domain_cost;
7754 7755 7756 7757

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7758 7759
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7760
			break;
7761
		}
7762

7763
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7764 7765
			t0 = sched_clock_cpu(this_cpu);

7766
			pulled_task = load_balance(this_cpu, this_rq,
7767 7768
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7769 7770 7771 7772 7773 7774

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7775
		}
7776

7777
		update_next_balance(sd, 0, &next_balance);
7778 7779 7780 7781 7782 7783

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7784 7785
			break;
	}
7786
	rcu_read_unlock();
7787 7788 7789

	raw_spin_lock(&this_rq->lock);

7790 7791 7792
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7793
	/*
7794 7795 7796
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7797
	 */
7798
	if (this_rq->cfs.h_nr_running && !pulled_task)
7799
		pulled_task = 1;
7800

7801 7802 7803
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7804
		this_rq->next_balance = next_balance;
7805

7806
	/* Is there a task of a high priority class? */
7807
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7808 7809
		pulled_task = -1;

7810
	if (pulled_task)
7811 7812
		this_rq->idle_stamp = 0;

7813
	return pulled_task;
7814 7815 7816
}

/*
7817 7818 7819 7820
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7821
 */
7822
static int active_load_balance_cpu_stop(void *data)
7823
{
7824 7825
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7826
	int target_cpu = busiest_rq->push_cpu;
7827
	struct rq *target_rq = cpu_rq(target_cpu);
7828
	struct sched_domain *sd;
7829
	struct task_struct *p = NULL;
7830 7831 7832 7833 7834 7835 7836

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7837 7838 7839

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7840
		goto out_unlock;
7841 7842 7843 7844 7845 7846 7847 7848 7849

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7850
	rcu_read_lock();
7851 7852 7853 7854 7855 7856 7857
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7858 7859
		struct lb_env env = {
			.sd		= sd,
7860 7861 7862 7863
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7864 7865 7866
			.idle		= CPU_IDLE,
		};

7867 7868
		schedstat_inc(sd, alb_count);

7869
		p = detach_one_task(&env);
7870
		if (p) {
7871
			schedstat_inc(sd, alb_pushed);
7872 7873 7874
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
7875
			schedstat_inc(sd, alb_failed);
7876
		}
7877
	}
7878
	rcu_read_unlock();
7879 7880
out_unlock:
	busiest_rq->active_balance = 0;
7881 7882 7883 7884 7885 7886 7887
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7888
	return 0;
7889 7890
}

7891 7892 7893 7894 7895
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7896
#ifdef CONFIG_NO_HZ_COMMON
7897 7898 7899 7900 7901 7902
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7903
static struct {
7904
	cpumask_var_t idle_cpus_mask;
7905
	atomic_t nr_cpus;
7906 7907
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7908

7909
static inline int find_new_ilb(void)
7910
{
7911
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7912

7913 7914 7915 7916
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7917 7918
}

7919 7920 7921 7922 7923
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7924
static void nohz_balancer_kick(void)
7925 7926 7927 7928 7929
{
	int ilb_cpu;

	nohz.next_balance++;

7930
	ilb_cpu = find_new_ilb();
7931

7932 7933
	if (ilb_cpu >= nr_cpu_ids)
		return;
7934

7935
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7936 7937 7938 7939 7940 7941 7942 7943
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7944 7945 7946
	return;
}

7947
void nohz_balance_exit_idle(unsigned int cpu)
7948 7949
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7950 7951 7952 7953 7954 7955 7956
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7957 7958 7959 7960
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7961 7962 7963
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7964
	int cpu = smp_processor_id();
7965 7966

	rcu_read_lock();
7967
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7968 7969 7970 7971 7972

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7973
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7974
unlock:
7975 7976 7977 7978 7979 7980
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7981
	int cpu = smp_processor_id();
7982 7983

	rcu_read_lock();
7984
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7985 7986 7987 7988 7989

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7990
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7991
unlock:
7992 7993 7994
	rcu_read_unlock();
}

7995
/*
7996
 * This routine will record that the cpu is going idle with tick stopped.
7997
 * This info will be used in performing idle load balancing in the future.
7998
 */
7999
void nohz_balance_enter_idle(int cpu)
8000
{
8001 8002 8003 8004 8005 8006
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8007 8008
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8009

8010 8011 8012 8013 8014 8015
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8016 8017 8018
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8019 8020 8021 8022 8023
}
#endif

static DEFINE_SPINLOCK(balancing);

8024 8025 8026 8027
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8028
void update_max_interval(void)
8029 8030 8031 8032
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8033 8034 8035 8036
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8037
 * Balancing parameters are set up in init_sched_domains.
8038
 */
8039
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8040
{
8041
	int continue_balancing = 1;
8042
	int cpu = rq->cpu;
8043
	unsigned long interval;
8044
	struct sched_domain *sd;
8045 8046 8047
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8048 8049
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8050

8051
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8052

8053
	rcu_read_lock();
8054
	for_each_domain(cpu, sd) {
8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8067 8068 8069
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8081
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8082 8083 8084 8085 8086 8087 8088 8089

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8090
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8091
				/*
8092
				 * The LBF_DST_PINNED logic could have changed
8093 8094
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8095
				 */
8096
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8097 8098
			}
			sd->last_balance = jiffies;
8099
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8100 8101 8102 8103 8104 8105 8106 8107
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8108 8109
	}
	if (need_decay) {
8110
		/*
8111 8112
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8113
		 */
8114 8115
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8116
	}
8117
	rcu_read_unlock();
8118 8119 8120 8121 8122 8123

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8124
	if (likely(update_next_balance)) {
8125
		rq->next_balance = next_balance;
8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8140 8141
}

8142
#ifdef CONFIG_NO_HZ_COMMON
8143
/*
8144
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8145 8146
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8147
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8148
{
8149
	int this_cpu = this_rq->cpu;
8150 8151
	struct rq *rq;
	int balance_cpu;
8152 8153 8154
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8155

8156 8157 8158
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8159 8160

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8161
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8162 8163 8164 8165 8166 8167 8168
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8169
		if (need_resched())
8170 8171
			break;

V
Vincent Guittot 已提交
8172 8173
		rq = cpu_rq(balance_cpu);

8174 8175 8176 8177 8178 8179 8180
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
8181
			cpu_load_update_idle(rq);
8182 8183 8184
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
8185

8186 8187 8188 8189
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8190
	}
8191 8192 8193 8194 8195 8196 8197 8198

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8199 8200
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8201 8202 8203
}

/*
8204
 * Current heuristic for kicking the idle load balancer in the presence
8205
 * of an idle cpu in the system.
8206
 *   - This rq has more than one task.
8207 8208 8209 8210
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8211 8212
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8213
 */
8214
static inline bool nohz_kick_needed(struct rq *rq)
8215 8216
{
	unsigned long now = jiffies;
8217
	struct sched_domain *sd;
8218
	struct sched_group_capacity *sgc;
8219
	int nr_busy, cpu = rq->cpu;
8220
	bool kick = false;
8221

8222
	if (unlikely(rq->idle_balance))
8223
		return false;
8224

8225 8226 8227 8228
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8229
	set_cpu_sd_state_busy();
8230
	nohz_balance_exit_idle(cpu);
8231 8232 8233 8234 8235 8236

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8237
		return false;
8238 8239

	if (time_before(now, nohz.next_balance))
8240
		return false;
8241

8242
	if (rq->nr_running >= 2)
8243
		return true;
8244

8245
	rcu_read_lock();
8246 8247
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
8248 8249
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8250

8251 8252 8253 8254 8255
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8256
	}
8257

8258 8259 8260 8261 8262 8263 8264 8265
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8266

8267
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8268
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8269 8270 8271 8272
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
8273

8274
unlock:
8275
	rcu_read_unlock();
8276
	return kick;
8277 8278
}
#else
8279
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8280 8281 8282 8283 8284 8285
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8286 8287
static void run_rebalance_domains(struct softirq_action *h)
{
8288
	struct rq *this_rq = this_rq();
8289
	enum cpu_idle_type idle = this_rq->idle_balance ?
8290 8291 8292
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8293
	 * If this cpu has a pending nohz_balance_kick, then do the
8294
	 * balancing on behalf of the other idle cpus whose ticks are
8295 8296 8297 8298
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8299
	 */
8300
	nohz_idle_balance(this_rq, idle);
8301
	rebalance_domains(this_rq, idle);
8302 8303 8304 8305 8306
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8307
void trigger_load_balance(struct rq *rq)
8308 8309
{
	/* Don't need to rebalance while attached to NULL domain */
8310 8311 8312 8313
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8314
		raise_softirq(SCHED_SOFTIRQ);
8315
#ifdef CONFIG_NO_HZ_COMMON
8316
	if (nohz_kick_needed(rq))
8317
		nohz_balancer_kick();
8318
#endif
8319 8320
}

8321 8322 8323
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8324 8325

	update_runtime_enabled(rq);
8326 8327 8328 8329 8330
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8331 8332 8333

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8334 8335
}

8336
#endif /* CONFIG_SMP */
8337

8338 8339 8340
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8341
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8342 8343 8344 8345 8346 8347
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8348
		entity_tick(cfs_rq, se, queued);
8349
	}
8350

8351
	if (static_branch_unlikely(&sched_numa_balancing))
8352
		task_tick_numa(rq, curr);
8353 8354 8355
}

/*
P
Peter Zijlstra 已提交
8356 8357 8358
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8359
 */
P
Peter Zijlstra 已提交
8360
static void task_fork_fair(struct task_struct *p)
8361
{
8362 8363
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
8364
	struct rq *rq = this_rq();
8365

8366
	raw_spin_lock(&rq->lock);
8367 8368
	update_rq_clock(rq);

8369 8370
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
8371 8372
	if (curr) {
		update_curr(cfs_rq);
8373
		se->vruntime = curr->vruntime;
8374
	}
8375
	place_entity(cfs_rq, se, 1);
8376

P
Peter Zijlstra 已提交
8377
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8378
		/*
8379 8380 8381
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8382
		swap(curr->vruntime, se->vruntime);
8383
		resched_curr(rq);
8384
	}
8385

8386
	se->vruntime -= cfs_rq->min_vruntime;
8387
	raw_spin_unlock(&rq->lock);
8388 8389
}

8390 8391 8392 8393
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8394 8395
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8396
{
8397
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8398 8399
		return;

8400 8401 8402 8403 8404
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8405
	if (rq->curr == p) {
8406
		if (p->prio > oldprio)
8407
			resched_curr(rq);
8408
	} else
8409
		check_preempt_curr(rq, p, 0);
8410 8411
}

8412
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8413 8414 8415 8416
{
	struct sched_entity *se = &p->se;

	/*
8417 8418 8419 8420 8421 8422 8423 8424 8425 8426
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8427
	 *
8428 8429 8430 8431
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8432
	 */
8433 8434 8435 8436 8437 8438 8439 8440 8441 8442
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8443
	u64 now = cfs_rq_clock_task(cfs_rq);
8444
	int tg_update;
8445 8446

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8447 8448 8449 8450 8451 8452 8453
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8454

8455
	/* Catch up with the cfs_rq and remove our load when we leave */
8456
	tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8457
	detach_entity_load_avg(cfs_rq, se);
8458 8459
	if (tg_update)
		update_tg_load_avg(cfs_rq, false);
P
Peter Zijlstra 已提交
8460 8461
}

8462
static void attach_task_cfs_rq(struct task_struct *p)
8463
{
8464
	struct sched_entity *se = &p->se;
8465
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8466
	u64 now = cfs_rq_clock_task(cfs_rq);
8467
	int tg_update;
8468 8469

#ifdef CONFIG_FAIR_GROUP_SCHED
8470 8471 8472 8473 8474 8475
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8476

8477
	/* Synchronize task with its cfs_rq */
8478
	tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8479
	attach_entity_load_avg(cfs_rq, se);
8480 8481
	if (tg_update)
		update_tg_load_avg(cfs_rq, false);
8482 8483 8484 8485

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8486

8487 8488 8489 8490 8491 8492 8493 8494
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8495

8496
	if (task_on_rq_queued(p)) {
8497
		/*
8498 8499 8500
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8501
		 */
8502 8503 8504 8505
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8506
	}
8507 8508
}

8509 8510 8511 8512 8513 8514 8515 8516 8517
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8518 8519 8520 8521 8522 8523 8524
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8525 8526
}

8527 8528 8529 8530 8531 8532 8533
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8534
#ifdef CONFIG_SMP
8535 8536
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8537
#endif
8538 8539
}

P
Peter Zijlstra 已提交
8540
#ifdef CONFIG_FAIR_GROUP_SCHED
8541 8542 8543 8544 8545 8546 8547 8548
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

8549
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8550
{
8551
	detach_task_cfs_rq(p);
8552
	set_task_rq(p, task_cpu(p));
8553 8554 8555 8556 8557

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8558
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8559
}
8560

8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

8574 8575 8576 8577 8578 8579 8580 8581 8582
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8583
		if (tg->se)
8584 8585 8586 8587 8588 8589 8590 8591 8592 8593
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
8594 8595
	struct cfs_rq *cfs_rq;
	struct rq *rq;
8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
8610 8611
		rq = cpu_rq(i);

8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8624
		init_entity_runnable_average(se);
8625 8626 8627 8628 8629 8630 8631 8632 8633 8634
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
		post_init_entity_util_avg(se);
8647
		sync_throttle(tg, i);
8648 8649 8650 8651
		raw_spin_unlock_irq(&rq->lock);
	}
}

8652
void unregister_fair_sched_group(struct task_group *tg)
8653 8654
{
	unsigned long flags;
8655 8656
	struct rq *rq;
	int cpu;
8657

8658 8659 8660
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
8661

8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8694
	if (!parent) {
8695
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8696 8697
		se->depth = 0;
	} else {
8698
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8699 8700
		se->depth = parent->depth + 1;
	}
8701 8702

	se->my_q = cfs_rq;
8703 8704
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8735 8736 8737

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8738
		for_each_sched_entity(se)
8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

8756 8757
void online_fair_sched_group(struct task_group *tg) { }

8758
void unregister_fair_sched_group(struct task_group *tg) { }
8759 8760 8761

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8762

8763
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8764 8765 8766 8767 8768 8769 8770 8771 8772
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8773
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8774 8775 8776 8777

	return rr_interval;
}

8778 8779 8780
/*
 * All the scheduling class methods:
 */
8781
const struct sched_class fair_sched_class = {
8782
	.next			= &idle_sched_class,
8783 8784 8785
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8786
	.yield_to_task		= yield_to_task_fair,
8787

I
Ingo Molnar 已提交
8788
	.check_preempt_curr	= check_preempt_wakeup,
8789 8790 8791 8792

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8793
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8794
	.select_task_rq		= select_task_rq_fair,
8795
	.migrate_task_rq	= migrate_task_rq_fair,
8796

8797 8798
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8799

8800
	.task_dead		= task_dead_fair,
8801
	.set_cpus_allowed	= set_cpus_allowed_common,
8802
#endif
8803

8804
	.set_curr_task          = set_curr_task_fair,
8805
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8806
	.task_fork		= task_fork_fair,
8807 8808

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8809
	.switched_from		= switched_from_fair,
8810
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8811

8812 8813
	.get_rr_interval	= get_rr_interval_fair,

8814 8815
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8816
#ifdef CONFIG_FAIR_GROUP_SCHED
8817
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
8818
#endif
8819 8820 8821
};

#ifdef CONFIG_SCHED_DEBUG
8822
void print_cfs_stats(struct seq_file *m, int cpu)
8823 8824 8825
{
	struct cfs_rq *cfs_rq;

8826
	rcu_read_lock();
8827
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8828
		print_cfs_rq(m, cpu, cfs_rq);
8829
	rcu_read_unlock();
8830
}
8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8852 8853 8854 8855 8856 8857

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8858
#ifdef CONFIG_NO_HZ_COMMON
8859
	nohz.next_balance = jiffies;
8860 8861 8862 8863 8864
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}