fair.c 137.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29 30
#include <linux/mempolicy.h>
#include <linux/task_work.h>
31 32 33 34

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
35

36
/*
37
 * Targeted preemption latency for CPU-bound tasks:
38
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 *
40
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
41 42 43
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
44
 *
I
Ingo Molnar 已提交
45 46
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
47
 */
48 49
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
50

51 52 53 54 55 56 57 58 59 60 61 62
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

63
/*
64
 * Minimal preemption granularity for CPU-bound tasks:
65
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
66
 */
67 68
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
69 70

/*
71 72
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
73
static unsigned int sched_nr_latency = 8;
74 75

/*
76
 * After fork, child runs first. If set to 0 (default) then
77
 * parent will (try to) run first.
78
 */
79
unsigned int sysctl_sched_child_runs_first __read_mostly;
80 81 82

/*
 * SCHED_OTHER wake-up granularity.
83
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 85 86 87 88
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
89
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
90
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
91

92 93
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

94 95 96 97 98 99 100
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

101 102 103 104 105 106 107 108 109 110 111 112 113 114
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
219

220 221 222 223
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

224
#ifdef CONFIG_FAIR_GROUP_SCHED
225

226
/* cpu runqueue to which this cfs_rq is attached */
227 228
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
229
	return cfs_rq->rq;
230 231
}

232 233
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
234

235 236 237 238 239 240 241 242
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

264 265 266
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
267 268 269 270 271 272 273 274 275 276 277 278
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
279
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
280
		}
281 282 283 284 285 286 287 288 289 290 291 292 293

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

356 357 358 359 360 361
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
362

363 364 365
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
366 367 368 369
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
370 371
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
372

P
Peter Zijlstra 已提交
373
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
374
{
P
Peter Zijlstra 已提交
375
	return &task_rq(p)->cfs;
376 377
}

P
Peter Zijlstra 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

392 393 394 395 396 397 398 399
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

414 415 416 417 418
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
419 420
#endif	/* CONFIG_FAIR_GROUP_SCHED */

421 422
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
423 424 425 426 427

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

428
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
429
{
430 431
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
432 433 434 435 436
		min_vruntime = vruntime;

	return min_vruntime;
}

437
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
438 439 440 441 442 443 444 445
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

446 447 448 449 450 451
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

452 453 454 455 456 457 458 459 460 461 462 463
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
464
		if (!cfs_rq->curr)
465 466 467 468 469 470
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
471 472 473 474
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
475 476
}

477 478 479
/*
 * Enqueue an entity into the rb-tree:
 */
480
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
497
		if (entity_before(se, entry)) {
498 499 500 501 502 503 504 505 506 507 508
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
509
	if (leftmost)
I
Ingo Molnar 已提交
510
		cfs_rq->rb_leftmost = &se->run_node;
511 512 513 514 515

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

516
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
517
{
P
Peter Zijlstra 已提交
518 519 520 521 522 523
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
524

525 526 527
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

528
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
529
{
530 531 532 533 534 535
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
536 537
}

538 539 540 541 542 543 544 545 546 547 548
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
549
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
550
{
551
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
552

553 554
	if (!last)
		return NULL;
555 556

	return rb_entry(last, struct sched_entity, run_node);
557 558
}

559 560 561 562
/**************************************************************
 * Scheduling class statistics methods:
 */

563
int sched_proc_update_handler(struct ctl_table *table, int write,
564
		void __user *buffer, size_t *lenp,
565 566
		loff_t *ppos)
{
567
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
568
	int factor = get_update_sysctl_factor();
569 570 571 572 573 574 575

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

576 577 578 579 580 581 582
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

583 584 585
	return 0;
}
#endif
586

587
/*
588
 * delta /= w
589 590 591 592
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
593 594
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
595 596 597 598

	return delta;
}

599 600 601
/*
 * The idea is to set a period in which each task runs once.
 *
602
 * When there are too many tasks (sched_nr_latency) we have to stretch
603 604 605 606
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
607 608 609
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
610
	unsigned long nr_latency = sched_nr_latency;
611 612

	if (unlikely(nr_running > nr_latency)) {
613
		period = sysctl_sched_min_granularity;
614 615 616 617 618 619
		period *= nr_running;
	}

	return period;
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642 643 644 645

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
646 647
}

648
/*
649
 * We calculate the vruntime slice of a to be inserted task
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
659
static void update_cfs_shares(struct cfs_rq *cfs_rq);
660

661 662 663 664 665
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
666 667
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
668
{
669
	unsigned long delta_exec_weighted;
670

671 672
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
673 674

	curr->sum_exec_runtime += delta_exec;
675
	schedstat_add(cfs_rq, exec_clock, delta_exec);
676
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
677

I
Ingo Molnar 已提交
678
	curr->vruntime += delta_exec_weighted;
679
	update_min_vruntime(cfs_rq);
680

P
Peter Zijlstra 已提交
681
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
682 683
	cfs_rq->load_unacc_exec_time += delta_exec;
#endif
684 685
}

686
static void update_curr(struct cfs_rq *cfs_rq)
687
{
688
	struct sched_entity *curr = cfs_rq->curr;
689
	u64 now = rq_of(cfs_rq)->clock_task;
690 691 692 693 694 695 696 697 698 699
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
700
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
701 702
	if (!delta_exec)
		return;
703

I
Ingo Molnar 已提交
704 705
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
706 707 708 709

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

710
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
711
		cpuacct_charge(curtask, delta_exec);
712
		account_group_exec_runtime(curtask, delta_exec);
713
	}
714 715

	account_cfs_rq_runtime(cfs_rq, delta_exec);
716 717 718
}

static inline void
719
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
720
{
721
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
722 723 724 725 726
}

/*
 * Task is being enqueued - update stats:
 */
727
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
728 729 730 731 732
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
733
	if (se != cfs_rq->curr)
734
		update_stats_wait_start(cfs_rq, se);
735 736 737
}

static void
738
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
739
{
740 741 742 743 744
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
745 746 747
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
748
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
749 750
	}
#endif
751
	schedstat_set(se->statistics.wait_start, 0);
752 753 754
}

static inline void
755
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 757 758 759 760
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
761
	if (se != cfs_rq->curr)
762
		update_stats_wait_end(cfs_rq, se);
763 764 765 766 767 768
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
769
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 771 772 773
{
	/*
	 * We are starting a new run period:
	 */
774
	se->exec_start = rq_of(cfs_rq)->clock_task;
775 776 777 778 779 780
}

/**************************************************
 * Scheduling class queueing methods:
 */

781 782
#ifdef CONFIG_NUMA_BALANCING
/*
783
 * numa task sample period in ms
784
 */
785 786 787 788 789
unsigned int sysctl_numa_balancing_scan_period_min = 100;
unsigned int sysctl_numa_balancing_scan_period_max = 100*16;

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
790

791 792 793
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static void task_numa_placement(struct task_struct *p)
{
	int seq = ACCESS_ONCE(p->mm->numa_scan_seq);

	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;

	/* FIXME: Scheduling placement policy hints go here */
}

/*
 * Got a PROT_NONE fault for a page on @node.
 */
void task_numa_fault(int node, int pages)
{
	struct task_struct *p = current;

	/* FIXME: Allocate task-specific structure for placement policy here */

	task_numa_placement(p);
}

817 818 819 820 821 822
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

823 824 825 826 827 828 829 830 831
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
832
	struct vm_area_struct *vma;
833 834
	unsigned long start, end;
	long pages;
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

	if (p->numa_scan_period == 0)
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;

	next_scan = now + 2*msecs_to_jiffies(p->numa_scan_period);
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

864 865 866 867 868
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
869

870
	down_read(&mm->mmap_sem);
871
	vma = find_vma(mm, start);
872 873
	if (!vma) {
		reset_ptenuma_scan(p);
874
		start = 0;
875 876
		vma = mm->mmap;
	}
877
	for (; vma; vma = vma->vm_next) {
878 879 880 881 882 883 884
		if (!vma_migratable(vma))
			continue;

		/* Skip small VMAs. They are not likely to be of relevance */
		if (((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) < HPAGE_PMD_NR)
			continue;

885 886 887 888 889
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
			pages -= change_prot_numa(vma, start, end);
890

891 892 893 894
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
895
	}
896

897
out:
898 899 900 901 902 903 904
	/*
	 * It is possible to reach the end of the VMA list but the last few VMAs are
	 * not guaranteed to the vma_migratable. If they are not, we would find the
	 * !migratable VMA on the next scan but not reset the scanner to the start
	 * so check it now.
	 */
	if (vma)
905
		mm->numa_scan_offset = start;
906 907 908
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
935 936
		if (!curr->node_stamp)
			curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
937 938 939 940 941 942 943 944 945 946 947 948 949 950
		curr->node_stamp = now;

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
#endif /* CONFIG_NUMA_BALANCING */

951 952 953 954
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
955
	if (!parent_entity(se))
956
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
957 958
#ifdef CONFIG_SMP
	if (entity_is_task(se))
959
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
960
#endif
961 962 963 964 965 966 967
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
968
	if (!parent_entity(se))
969
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
970
	if (entity_is_task(se))
971
		list_del_init(&se->group_node);
972 973 974
	cfs_rq->nr_running--;
}

975
#ifdef CONFIG_FAIR_GROUP_SCHED
976 977
/* we need this in update_cfs_load and load-balance functions below */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
978
# ifdef CONFIG_SMP
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
					    int global_update)
{
	struct task_group *tg = cfs_rq->tg;
	long load_avg;

	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
	load_avg -= cfs_rq->load_contribution;

	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
		atomic_add(load_avg, &tg->load_weight);
		cfs_rq->load_contribution += load_avg;
	}
}

static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
995
{
996
	u64 period = sysctl_sched_shares_window;
P
Peter Zijlstra 已提交
997
	u64 now, delta;
998
	unsigned long load = cfs_rq->load.weight;
P
Peter Zijlstra 已提交
999

1000
	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1001 1002
		return;

1003
	now = rq_of(cfs_rq)->clock_task;
P
Peter Zijlstra 已提交
1004 1005
	delta = now - cfs_rq->load_stamp;

1006 1007 1008 1009 1010
	/* truncate load history at 4 idle periods */
	if (cfs_rq->load_stamp > cfs_rq->load_last &&
	    now - cfs_rq->load_last > 4 * period) {
		cfs_rq->load_period = 0;
		cfs_rq->load_avg = 0;
1011
		delta = period - 1;
1012 1013
	}

P
Peter Zijlstra 已提交
1014
	cfs_rq->load_stamp = now;
1015
	cfs_rq->load_unacc_exec_time = 0;
P
Peter Zijlstra 已提交
1016
	cfs_rq->load_period += delta;
1017 1018 1019 1020
	if (load) {
		cfs_rq->load_last = now;
		cfs_rq->load_avg += delta * load;
	}
P
Peter Zijlstra 已提交
1021

1022 1023 1024 1025 1026
	/* consider updating load contribution on each fold or truncate */
	if (global_update || cfs_rq->load_period > period
	    || !cfs_rq->load_period)
		update_cfs_rq_load_contribution(cfs_rq, global_update);

P
Peter Zijlstra 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	while (cfs_rq->load_period > period) {
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (cfs_rq->load_period));
		cfs_rq->load_period /= 2;
		cfs_rq->load_avg /= 2;
	}
1037

1038 1039
	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
		list_del_leaf_cfs_rq(cfs_rq);
P
Peter Zijlstra 已提交
1040 1041
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
	tg_weight = atomic_read(&tg->load_weight);
	tg_weight -= cfs_rq->load_contribution;
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1058
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1059
{
1060
	long tg_weight, load, shares;
1061

1062
	tg_weight = calc_tg_weight(tg, cfs_rq);
1063
	load = cfs_rq->load.weight;
1064 1065

	shares = (tg->shares * load);
1066 1067
	if (tg_weight)
		shares /= tg_weight;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}

static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
		update_cfs_load(cfs_rq, 0);
1081
		update_cfs_shares(cfs_rq);
1082 1083 1084 1085 1086 1087 1088
	}
}
# else /* CONFIG_SMP */
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
{
}

1089
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1090 1091 1092 1093 1094 1095 1096 1097
{
	return tg->shares;
}

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1098 1099 1100
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1101 1102 1103 1104
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1105
		account_entity_dequeue(cfs_rq, se);
1106
	}
P
Peter Zijlstra 已提交
1107 1108 1109 1110 1111 1112 1113

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1114
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1115 1116 1117
{
	struct task_group *tg;
	struct sched_entity *se;
1118
	long shares;
P
Peter Zijlstra 已提交
1119 1120 1121

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1122
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1123
		return;
1124 1125 1126 1127
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1128
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1129 1130 1131 1132

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1133
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
1134 1135 1136
{
}

1137
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1138 1139
{
}
1140 1141 1142 1143

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
P
Peter Zijlstra 已提交
1144 1145
#endif /* CONFIG_FAIR_GROUP_SCHED */

1146
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1147 1148
{
#ifdef CONFIG_SCHEDSTATS
1149 1150 1151 1152 1153
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

1154 1155
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1156 1157 1158 1159

		if ((s64)delta < 0)
			delta = 0;

1160 1161
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
1162

1163
		se->statistics.sleep_start = 0;
1164
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
1165

1166
		if (tsk) {
1167
			account_scheduler_latency(tsk, delta >> 10, 1);
1168 1169
			trace_sched_stat_sleep(tsk, delta);
		}
1170
	}
1171 1172
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1173 1174 1175 1176

		if ((s64)delta < 0)
			delta = 0;

1177 1178
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
1179

1180
		se->statistics.block_start = 0;
1181
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
1182

1183
		if (tsk) {
1184
			if (tsk->in_iowait) {
1185 1186
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
1187
				trace_sched_stat_iowait(tsk, delta);
1188 1189
			}

1190 1191
			trace_sched_stat_blocked(tsk, delta);

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
1203
		}
1204 1205 1206 1207
	}
#endif
}

P
Peter Zijlstra 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

1221 1222 1223
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
1224
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
1225

1226 1227 1228 1229 1230 1231
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
1232
	if (initial && sched_feat(START_DEBIT))
1233
		vruntime += sched_vslice(cfs_rq, se);
1234

1235
	/* sleeps up to a single latency don't count. */
1236
	if (!initial) {
1237
		unsigned long thresh = sysctl_sched_latency;
1238

1239 1240 1241 1242 1243 1244
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
1245

1246
		vruntime -= thresh;
1247 1248
	}

1249 1250 1251
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
1252
	se->vruntime = vruntime;
1253 1254
}

1255 1256
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

1257
static void
1258
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1259
{
1260 1261 1262 1263
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
1264
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1265 1266
		se->vruntime += cfs_rq->min_vruntime;

1267
	/*
1268
	 * Update run-time statistics of the 'current'.
1269
	 */
1270
	update_curr(cfs_rq);
1271
	update_cfs_load(cfs_rq, 0);
P
Peter Zijlstra 已提交
1272
	account_entity_enqueue(cfs_rq, se);
1273
	update_cfs_shares(cfs_rq);
1274

1275
	if (flags & ENQUEUE_WAKEUP) {
1276
		place_entity(cfs_rq, se, 0);
1277
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
1278
	}
1279

1280
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1281
	check_spread(cfs_rq, se);
1282 1283
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1284
	se->on_rq = 1;
1285

1286
	if (cfs_rq->nr_running == 1) {
1287
		list_add_leaf_cfs_rq(cfs_rq);
1288 1289
		check_enqueue_throttle(cfs_rq);
	}
1290 1291
}

1292
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
1293
{
1294 1295 1296 1297 1298 1299 1300 1301
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
1312 1313
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
1325 1326
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
1327 1328 1329 1330 1331
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
1332 1333 1334

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
1335 1336
}

1337
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1338

1339
static void
1340
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1341
{
1342 1343 1344 1345 1346
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

1347
	update_stats_dequeue(cfs_rq, se);
1348
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
1349
#ifdef CONFIG_SCHEDSTATS
1350 1351 1352 1353
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1354
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1355
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1356
				se->statistics.block_start = rq_of(cfs_rq)->clock;
1357
		}
1358
#endif
P
Peter Zijlstra 已提交
1359 1360
	}

P
Peter Zijlstra 已提交
1361
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1362

1363
	if (se != cfs_rq->curr)
1364
		__dequeue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1365
	se->on_rq = 0;
1366
	update_cfs_load(cfs_rq, 0);
1367
	account_entity_dequeue(cfs_rq, se);
1368 1369 1370 1371 1372 1373

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1374
	if (!(flags & DEQUEUE_SLEEP))
1375
		se->vruntime -= cfs_rq->min_vruntime;
1376

1377 1378 1379
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

1380 1381
	update_min_vruntime(cfs_rq);
	update_cfs_shares(cfs_rq);
1382 1383 1384 1385 1386
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1387
static void
I
Ingo Molnar 已提交
1388
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1389
{
1390
	unsigned long ideal_runtime, delta_exec;
1391 1392
	struct sched_entity *se;
	s64 delta;
1393

P
Peter Zijlstra 已提交
1394
	ideal_runtime = sched_slice(cfs_rq, curr);
1395
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1396
	if (delta_exec > ideal_runtime) {
1397
		resched_task(rq_of(cfs_rq)->curr);
1398 1399 1400 1401 1402
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

1414 1415
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
1416

1417 1418
	if (delta < 0)
		return;
1419

1420 1421
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
1422 1423
}

1424
static void
1425
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1426
{
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1438
	update_stats_curr_start(cfs_rq, se);
1439
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1440 1441 1442 1443 1444 1445
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1446
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1447
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1448 1449 1450
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1451
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1452 1453
}

1454 1455 1456
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1457 1458 1459 1460 1461 1462 1463
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
1464
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1465
{
1466
	struct sched_entity *se = __pick_first_entity(cfs_rq);
1467
	struct sched_entity *left = se;
1468

1469 1470 1471 1472 1473 1474 1475 1476 1477
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
1478

1479 1480 1481 1482 1483 1484
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

1485 1486 1487 1488 1489 1490
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

1491
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1492 1493

	return se;
1494 1495
}

1496 1497
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1498
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1499 1500 1501 1502 1503 1504
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1505
		update_curr(cfs_rq);
1506

1507 1508 1509
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
1510
	check_spread(cfs_rq, prev);
1511
	if (prev->on_rq) {
1512
		update_stats_wait_start(cfs_rq, prev);
1513 1514 1515
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
1516
	cfs_rq->curr = NULL;
1517 1518
}

P
Peter Zijlstra 已提交
1519 1520
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1521 1522
{
	/*
1523
	 * Update run-time statistics of the 'current'.
1524
	 */
1525
	update_curr(cfs_rq);
1526

1527 1528 1529 1530 1531
	/*
	 * Update share accounting for long-running entities.
	 */
	update_entity_shares_tick(cfs_rq);

P
Peter Zijlstra 已提交
1532 1533 1534 1535 1536
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
1537 1538 1539 1540
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
1549
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
1550
		check_preempt_tick(cfs_rq, curr);
1551 1552
}

1553 1554 1555 1556 1557 1558

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
1559 1560

#ifdef HAVE_JUMP_LABEL
1561
static struct static_key __cfs_bandwidth_used;
1562 1563 1564

static inline bool cfs_bandwidth_used(void)
{
1565
	return static_key_false(&__cfs_bandwidth_used);
1566 1567 1568 1569 1570 1571
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
1572
		static_key_slow_inc(&__cfs_bandwidth_used);
1573
	else if (!enabled && was_enabled)
1574
		static_key_slow_dec(&__cfs_bandwidth_used);
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

1585 1586 1587 1588 1589 1590 1591 1592
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
1593 1594 1595 1596 1597 1598

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
1599 1600 1601 1602 1603 1604 1605
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
1606
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

1618 1619 1620 1621 1622
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

1623 1624
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1625 1626 1627
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
1628
	u64 amount = 0, min_amount, expires;
1629 1630 1631 1632 1633 1634 1635

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
1636
	else {
P
Paul Turner 已提交
1637 1638 1639 1640 1641 1642 1643 1644
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
1645
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
1646
		}
1647 1648 1649 1650 1651 1652

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
1653
	}
P
Paul Turner 已提交
1654
	expires = cfs_b->runtime_expires;
1655 1656 1657
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
1658 1659 1660 1661 1662 1663 1664
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
1665 1666

	return cfs_rq->runtime_remaining > 0;
1667 1668
}

P
Paul Turner 已提交
1669 1670 1671 1672 1673
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1674
{
P
Paul Turner 已提交
1675 1676 1677 1678 1679
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct rq *rq = rq_of(cfs_rq);

	/* if the deadline is ahead of our clock, nothing to do */
	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1680 1681
		return;

P
Paul Turner 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
1707
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
1708 1709 1710
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
1711 1712
		return;

1713 1714 1715 1716 1717 1718
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
1719 1720
}

1721 1722
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1723
{
1724
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1725 1726 1727 1728 1729
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

1730 1731
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
1732
	return cfs_bandwidth_used() && cfs_rq->throttled;
1733 1734
}

1735 1736 1737
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
1738
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
		u64 delta = rq->clock_task - cfs_rq->load_stamp;

		/* leaving throttled state, advance shares averaging windows */
		cfs_rq->load_stamp += delta;
		cfs_rq->load_last += delta;

		/* update entity weight now that we are on_rq again */
		update_cfs_shares(cfs_rq);
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	/* group is entering throttled state, record last load */
	if (!cfs_rq->throttle_count)
		update_cfs_load(cfs_rq, 0);
	cfs_rq->throttle_count++;

	return 0;
}

1794
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1795 1796 1797 1798 1799 1800 1801 1802 1803
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	/* account load preceding throttle */
1804 1805 1806
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
1827
	cfs_rq->throttled_timestamp = rq->clock;
1828 1829 1830 1831 1832
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

1833
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	cfs_rq->throttled = 0;
	raw_spin_lock(&cfs_b->lock);
1845
	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1846 1847
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);
1848
	cfs_rq->throttled_timestamp = 0;
1849

1850 1851 1852 1853
	update_rq_clock(rq);
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

1917 1918 1919 1920 1921 1922 1923 1924
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
1925 1926
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
1927 1928 1929 1930 1931 1932

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

1933 1934 1935
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
1936
	cfs_b->nr_periods += overrun;
1937

P
Paul Turner 已提交
1938 1939 1940 1941 1942 1943
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

1944 1945 1946 1947 1948 1949
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

1950 1951 1952
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
1987 1988 1989 1990 1991 1992 1993
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
1994

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2059 2060 2061
	if (!cfs_bandwidth_used())
		return;

2062
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

2100 2101 2102 2103 2104 2105 2106
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
2107 2108 2109
	if (!cfs_bandwidth_used())
		return;

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2127 2128 2129
	if (!cfs_bandwidth_used())
		return;

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

static inline u64 default_cfs_period(void);
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

2227
static void unthrottle_offline_cfs_rqs(struct rq *rq)
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
2248 2249
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2250 2251
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2252
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2253 2254 2255 2256 2257

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
2269 2270 2271 2272 2273

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2274 2275
#endif

2276 2277 2278 2279 2280
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2281
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2282 2283 2284

#endif /* CONFIG_CFS_BANDWIDTH */

2285 2286 2287 2288
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
2289 2290 2291 2292 2293 2294 2295 2296
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

2297
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
2312
		if (rq->curr != p)
2313
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
2314

2315
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
2316 2317
	}
}
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

2328
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2329 2330 2331 2332 2333
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
2334
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
2335 2336 2337 2338
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
2339 2340 2341 2342

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
2343 2344
#endif

2345 2346 2347 2348 2349
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
2350
static void
2351
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2352 2353
{
	struct cfs_rq *cfs_rq;
2354
	struct sched_entity *se = &p->se;
2355 2356

	for_each_sched_entity(se) {
2357
		if (se->on_rq)
2358 2359
			break;
		cfs_rq = cfs_rq_of(se);
2360
		enqueue_entity(cfs_rq, se, flags);
2361 2362 2363 2364 2365 2366 2367 2368 2369

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2370
		cfs_rq->h_nr_running++;
2371

2372
		flags = ENQUEUE_WAKEUP;
2373
	}
P
Peter Zijlstra 已提交
2374

P
Peter Zijlstra 已提交
2375
	for_each_sched_entity(se) {
2376
		cfs_rq = cfs_rq_of(se);
2377
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
2378

2379 2380 2381
		if (cfs_rq_throttled(cfs_rq))
			break;

2382
		update_cfs_load(cfs_rq, 0);
2383
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
2384 2385
	}

2386 2387
	if (!se)
		inc_nr_running(rq);
2388
	hrtick_update(rq);
2389 2390
}

2391 2392
static void set_next_buddy(struct sched_entity *se);

2393 2394 2395 2396 2397
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
2398
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2399 2400
{
	struct cfs_rq *cfs_rq;
2401
	struct sched_entity *se = &p->se;
2402
	int task_sleep = flags & DEQUEUE_SLEEP;
2403 2404 2405

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
2406
		dequeue_entity(cfs_rq, se, flags);
2407 2408 2409 2410 2411 2412 2413 2414 2415

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2416
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2417

2418
		/* Don't dequeue parent if it has other entities besides us */
2419 2420 2421 2422 2423 2424 2425
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
2426 2427 2428

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
2429
			break;
2430
		}
2431
		flags |= DEQUEUE_SLEEP;
2432
	}
P
Peter Zijlstra 已提交
2433

P
Peter Zijlstra 已提交
2434
	for_each_sched_entity(se) {
2435
		cfs_rq = cfs_rq_of(se);
2436
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2437

2438 2439 2440
		if (cfs_rq_throttled(cfs_rq))
			break;

2441
		update_cfs_load(cfs_rq, 0);
2442
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
2443 2444
	}

2445 2446
	if (!se)
		dec_nr_running(rq);
2447
	hrtick_update(rq);
2448 2449
}

2450
#ifdef CONFIG_SMP
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);

	if (nr_running)
		return rq->load.weight / nr_running;

	return 0;
}

2506

2507
static void task_waking_fair(struct task_struct *p)
2508 2509 2510
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2511 2512 2513 2514
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
2515

2516 2517 2518 2519 2520 2521 2522 2523
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
2524

2525
	se->vruntime -= min_vruntime;
2526 2527
}

2528
#ifdef CONFIG_FAIR_GROUP_SCHED
2529 2530 2531 2532 2533 2534
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
2578
 */
P
Peter Zijlstra 已提交
2579
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2580
{
P
Peter Zijlstra 已提交
2581
	struct sched_entity *se = tg->se[cpu];
2582

2583
	if (!tg->parent)	/* the trivial, non-cgroup case */
2584 2585
		return wl;

P
Peter Zijlstra 已提交
2586
	for_each_sched_entity(se) {
2587
		long w, W;
P
Peter Zijlstra 已提交
2588

2589
		tg = se->my_q->tg;
2590

2591 2592 2593 2594
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
2595

2596 2597 2598 2599
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
2600

2601 2602 2603 2604 2605
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
2606 2607
		else
			wl = tg->shares;
2608

2609 2610 2611 2612 2613
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
2614 2615
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
2616 2617 2618 2619

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
2620
		wl -= se->load.weight;
2621 2622 2623 2624 2625 2626 2627 2628

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
2629 2630
		wg = 0;
	}
2631

P
Peter Zijlstra 已提交
2632
	return wl;
2633 2634
}
#else
P
Peter Zijlstra 已提交
2635

2636 2637
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
2638
{
2639
	return wl;
2640
}
P
Peter Zijlstra 已提交
2641

2642 2643
#endif

2644
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2645
{
2646
	s64 this_load, load;
2647
	int idx, this_cpu, prev_cpu;
2648
	unsigned long tl_per_task;
2649
	struct task_group *tg;
2650
	unsigned long weight;
2651
	int balanced;
2652

2653 2654 2655 2656 2657
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
2658

2659 2660 2661 2662 2663
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
2664 2665 2666 2667
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

2668
		this_load += effective_load(tg, this_cpu, -weight, -weight);
2669 2670
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
2671

2672 2673
	tg = task_group(p);
	weight = p->se.load.weight;
2674

2675 2676
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2677 2678 2679
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
2680 2681 2682 2683
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
2684 2685
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
2699

2700
	/*
I
Ingo Molnar 已提交
2701 2702 2703
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
2704
	 */
2705 2706
	if (sync && balanced)
		return 1;
2707

2708
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2709 2710
	tl_per_task = cpu_avg_load_per_task(this_cpu);

2711 2712 2713
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2714 2715 2716 2717 2718
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
2719
		schedstat_inc(sd, ttwu_move_affine);
2720
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2721 2722 2723 2724 2725 2726

		return 1;
	}
	return 0;
}

2727 2728 2729 2730 2731
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
2732
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2733
		  int this_cpu, int load_idx)
2734
{
2735
	struct sched_group *idlest = NULL, *group = sd->groups;
2736 2737
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2738

2739 2740 2741 2742
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
2743

2744 2745
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
2746
					tsk_cpus_allowed(p)))
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2766
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
2792
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2793 2794 2795 2796 2797
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
2798 2799 2800
		}
	}

2801 2802
	return idlest;
}
2803

2804 2805 2806
/*
 * Try and locate an idle CPU in the sched_domain.
 */
2807
static int select_idle_sibling(struct task_struct *p, int target)
2808 2809 2810
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
2811
	struct sched_domain *sd;
2812 2813
	struct sched_group *sg;
	int i;
2814 2815

	/*
2816 2817
	 * If the task is going to be woken-up on this cpu and if it is
	 * already idle, then it is the right target.
2818
	 */
2819 2820 2821 2822 2823 2824 2825 2826
	if (target == cpu && idle_cpu(cpu))
		return cpu;

	/*
	 * If the task is going to be woken-up on the cpu where it previously
	 * ran and if it is currently idle, then it the right target.
	 */
	if (target == prev_cpu && idle_cpu(prev_cpu))
2827
		return prev_cpu;
2828 2829

	/*
2830
	 * Otherwise, iterate the domains and find an elegible idle cpu.
2831
	 */
2832
	sd = rcu_dereference(per_cpu(sd_llc, target));
2833
	for_each_lower_domain(sd) {
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
				if (!idle_cpu(i))
					goto next;
			}
2844

2845 2846 2847 2848 2849 2850 2851 2852
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
2853 2854 2855
	return target;
}

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
2867
static int
2868
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2869
{
2870
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2871 2872 2873
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
2874
	int want_affine = 0;
2875
	int sync = wake_flags & WF_SYNC;
2876

2877
	if (p->nr_cpus_allowed == 1)
2878 2879
		return prev_cpu;

2880
	if (sd_flag & SD_BALANCE_WAKE) {
2881
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2882 2883 2884
			want_affine = 1;
		new_cpu = prev_cpu;
	}
2885

2886
	rcu_read_lock();
2887
	for_each_domain(cpu, tmp) {
2888 2889 2890
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

2891
		/*
2892 2893
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
2894
		 */
2895 2896 2897
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
2898
			break;
2899
		}
2900

2901
		if (tmp->flags & sd_flag)
2902 2903 2904
			sd = tmp;
	}

2905
	if (affine_sd) {
2906
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
2907 2908 2909 2910
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
2911
	}
2912

2913
	while (sd) {
2914
		int load_idx = sd->forkexec_idx;
2915
		struct sched_group *group;
2916
		int weight;
2917

2918
		if (!(sd->flags & sd_flag)) {
2919 2920 2921
			sd = sd->child;
			continue;
		}
2922

2923 2924
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
2925

2926
		group = find_idlest_group(sd, p, cpu, load_idx);
2927 2928 2929 2930
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
2931

2932
		new_cpu = find_idlest_cpu(group, p, cpu);
2933 2934 2935 2936
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
2937
		}
2938 2939 2940

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
2941
		weight = sd->span_weight;
2942 2943
		sd = NULL;
		for_each_domain(cpu, tmp) {
2944
			if (weight <= tmp->span_weight)
2945
				break;
2946
			if (tmp->flags & sd_flag)
2947 2948 2949
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
2950
	}
2951 2952
unlock:
	rcu_read_unlock();
2953

2954
	return new_cpu;
2955 2956 2957
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
2958 2959
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2960 2961 2962 2963
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
2964 2965
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
2975
	 */
2976
	return calc_delta_fair(gran, se);
2977 2978
}

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
3001
	gran = wakeup_gran(curr, se);
3002 3003 3004 3005 3006 3007
	if (vdiff > gran)
		return 1;

	return 0;
}

3008 3009
static void set_last_buddy(struct sched_entity *se)
{
3010 3011 3012 3013 3014
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
3015 3016 3017 3018
}

static void set_next_buddy(struct sched_entity *se)
{
3019 3020 3021 3022 3023
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
3024 3025
}

3026 3027
static void set_skip_buddy(struct sched_entity *se)
{
3028 3029
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
3030 3031
}

3032 3033 3034
/*
 * Preempt the current task with a newly woken task if needed:
 */
3035
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3036 3037
{
	struct task_struct *curr = rq->curr;
3038
	struct sched_entity *se = &curr->se, *pse = &p->se;
3039
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3040
	int scale = cfs_rq->nr_running >= sched_nr_latency;
3041
	int next_buddy_marked = 0;
3042

I
Ingo Molnar 已提交
3043 3044 3045
	if (unlikely(se == pse))
		return;

3046
	/*
3047
	 * This is possible from callers such as move_task(), in which we
3048 3049 3050 3051 3052 3053 3054
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

3055
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
3056
		set_next_buddy(pse);
3057 3058
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
3059

3060 3061 3062
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
3063 3064 3065 3066 3067 3068
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
3069 3070 3071 3072
	 */
	if (test_tsk_need_resched(curr))
		return;

3073 3074 3075 3076 3077
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

3078
	/*
3079 3080
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
3081
	 */
3082
	if (unlikely(p->policy != SCHED_NORMAL))
3083
		return;
3084

3085
	find_matching_se(&se, &pse);
3086
	update_curr(cfs_rq_of(se));
3087
	BUG_ON(!pse);
3088 3089 3090 3091 3092 3093 3094
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
3095
		goto preempt;
3096
	}
3097

3098
	return;
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
3116 3117
}

3118
static struct task_struct *pick_next_task_fair(struct rq *rq)
3119
{
P
Peter Zijlstra 已提交
3120
	struct task_struct *p;
3121 3122 3123
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

3124
	if (!cfs_rq->nr_running)
3125 3126 3127
		return NULL;

	do {
3128
		se = pick_next_entity(cfs_rq);
3129
		set_next_entity(cfs_rq, se);
3130 3131 3132
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
3133
	p = task_of(se);
3134 3135
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
3136 3137

	return p;
3138 3139 3140 3141 3142
}

/*
 * Account for a descheduled task:
 */
3143
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3144 3145 3146 3147 3148 3149
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3150
		put_prev_entity(cfs_rq, se);
3151 3152 3153
	}
}

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
3179 3180 3181 3182 3183 3184
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
3185 3186 3187 3188 3189
	}

	set_skip_buddy(se);
}

3190 3191 3192 3193
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

3194 3195
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

3206
#ifdef CONFIG_SMP
3207 3208 3209 3210
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

3211 3212
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

3213
#define LBF_ALL_PINNED	0x01
3214
#define LBF_NEED_BREAK	0x02
3215
#define LBF_SOME_PINNED 0x04
3216 3217 3218 3219 3220

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
3221
	int			src_cpu;
3222 3223 3224 3225

	int			dst_cpu;
	struct rq		*dst_rq;

3226 3227
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
3228
	enum cpu_idle_type	idle;
3229
	long			imbalance;
3230 3231 3232
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

3233
	unsigned int		flags;
3234 3235 3236 3237

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
3238 3239
};

3240
/*
3241
 * move_task - move a task from one runqueue to another runqueue.
3242 3243
 * Both runqueues must be locked.
 */
3244
static void move_task(struct task_struct *p, struct lb_env *env)
3245
{
3246 3247 3248 3249
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
3250 3251
}

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

3284 3285 3286 3287
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
3288
int can_migrate_task(struct task_struct *p, struct lb_env *env)
3289 3290 3291 3292 3293 3294 3295 3296
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3297
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3298 3299
		int new_dst_cpu;

3300
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318

		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
			return 0;

		new_dst_cpu = cpumask_first_and(env->dst_grpmask,
						tsk_cpus_allowed(p));
		if (new_dst_cpu < nr_cpu_ids) {
			env->flags |= LBF_SOME_PINNED;
			env->new_dst_cpu = new_dst_cpu;
		}
3319 3320
		return 0;
	}
3321 3322

	/* Record that we found atleast one task that could run on dst_cpu */
3323
	env->flags &= ~LBF_ALL_PINNED;
3324

3325
	if (task_running(env->src_rq, p)) {
3326
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3327 3328 3329 3330 3331 3332 3333 3334 3335
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3336
	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3337
	if (!tsk_cache_hot ||
3338
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3339 3340
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
3341
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3342
			schedstat_inc(p, se.statistics.nr_forced_migrations);
3343 3344 3345 3346 3347 3348
		}
#endif
		return 1;
	}

	if (tsk_cache_hot) {
3349
		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3350 3351 3352 3353 3354
		return 0;
	}
	return 1;
}

3355 3356 3357 3358 3359 3360 3361
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
3362
static int move_one_task(struct lb_env *env)
3363 3364 3365
{
	struct task_struct *p, *n;

3366 3367 3368
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
			continue;
3369

3370 3371
		if (!can_migrate_task(p, env))
			continue;
3372

3373 3374 3375 3376 3377 3378 3379 3380
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
3381 3382 3383 3384
	}
	return 0;
}

3385 3386
static unsigned long task_h_load(struct task_struct *p);

3387 3388
static const unsigned int sched_nr_migrate_break = 32;

3389
/*
3390
 * move_tasks tries to move up to imbalance weighted load from busiest to
3391 3392 3393 3394 3395 3396
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
3397
{
3398 3399
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
3400 3401
	unsigned long load;
	int pulled = 0;
3402

3403
	if (env->imbalance <= 0)
3404
		return 0;
3405

3406 3407
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
3408

3409 3410
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
3411
		if (env->loop > env->loop_max)
3412
			break;
3413 3414

		/* take a breather every nr_migrate tasks */
3415
		if (env->loop > env->loop_break) {
3416
			env->loop_break += sched_nr_migrate_break;
3417
			env->flags |= LBF_NEED_BREAK;
3418
			break;
3419
		}
3420

3421
		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3422 3423 3424
			goto next;

		load = task_h_load(p);
3425

3426
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3427 3428
			goto next;

3429
		if ((load / 2) > env->imbalance)
3430
			goto next;
3431

3432 3433
		if (!can_migrate_task(p, env))
			goto next;
3434

3435
		move_task(p, env);
3436
		pulled++;
3437
		env->imbalance -= load;
3438 3439

#ifdef CONFIG_PREEMPT
3440 3441 3442 3443 3444
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3445
		if (env->idle == CPU_NEWLY_IDLE)
3446
			break;
3447 3448
#endif

3449 3450 3451 3452
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
3453
		if (env->imbalance <= 0)
3454
			break;
3455 3456 3457

		continue;
next:
3458
		list_move_tail(&p->se.group_node, tasks);
3459
	}
3460

3461
	/*
3462 3463 3464
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
3465
	 */
3466
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
3467

3468
	return pulled;
3469 3470
}

P
Peter Zijlstra 已提交
3471
#ifdef CONFIG_FAIR_GROUP_SCHED
3472 3473 3474
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
3475
static int update_shares_cpu(struct task_group *tg, int cpu)
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
{
	struct cfs_rq *cfs_rq;
	unsigned long flags;
	struct rq *rq;

	if (!tg->se[cpu])
		return 0;

	rq = cpu_rq(cpu);
	cfs_rq = tg->cfs_rq[cpu];

	raw_spin_lock_irqsave(&rq->lock, flags);

	update_rq_clock(rq);
3490
	update_cfs_load(cfs_rq, 1);
3491 3492 3493 3494 3495

	/*
	 * We need to update shares after updating tg->load_weight in
	 * order to adjust the weight of groups with long running tasks.
	 */
3496
	update_cfs_shares(cfs_rq);
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508

	raw_spin_unlock_irqrestore(&rq->lock, flags);

	return 0;
}

static void update_shares(int cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(cpu);

	rcu_read_lock();
3509 3510 3511 3512
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
3513 3514 3515 3516 3517
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;

3518
		update_shares_cpu(cfs_rq->tg, cpu);
3519
	}
3520 3521 3522
	rcu_read_unlock();
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
/*
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
static int tg_load_down(struct task_group *tg, void *data)
{
	unsigned long load;
	long cpu = (long)data;

	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->se[cpu]->load.weight;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}

	tg->cfs_rq[cpu]->h_load = load;

	return 0;
}

static void update_h_load(long cpu)
{
3548 3549 3550 3551 3552 3553 3554 3555
	struct rq *rq = cpu_rq(cpu);
	unsigned long now = jiffies;

	if (rq->h_load_throttle == now)
		return;

	rq->h_load_throttle = now;

3556
	rcu_read_lock();
3557
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3558
	rcu_read_unlock();
3559 3560
}

3561
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
3562
{
3563 3564
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
	unsigned long load;
P
Peter Zijlstra 已提交
3565

3566 3567
	load = p->se.load.weight;
	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
P
Peter Zijlstra 已提交
3568

3569
	return load;
P
Peter Zijlstra 已提交
3570 3571
}
#else
3572 3573 3574 3575
static inline void update_shares(int cpu)
{
}

3576
static inline void update_h_load(long cpu)
P
Peter Zijlstra 已提交
3577 3578 3579
{
}

3580
static unsigned long task_h_load(struct task_struct *p)
3581
{
3582
	return p->se.load.weight;
3583
}
P
Peter Zijlstra 已提交
3584
#endif
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
3602
	unsigned long this_has_capacity;
3603
	unsigned int  this_idle_cpus;
3604 3605

	/* Statistics of the busiest group */
3606
	unsigned int  busiest_idle_cpus;
3607 3608 3609
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
3610
	unsigned long busiest_group_capacity;
3611
	unsigned long busiest_has_capacity;
3612
	unsigned int  busiest_group_weight;
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

	int group_imb; /* Is there imbalance in this sd */
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
3626 3627
	unsigned long idle_cpus;
	unsigned long group_weight;
3628
	int group_imb; /* Is there an imbalance in the group ? */
3629
	int group_has_capacity; /* Is there extra capacity in the group? */
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
};

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
3660
	return SCHED_POWER_SCALE;
3661 3662 3663 3664 3665 3666 3667 3668 3669
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
3670
	unsigned long weight = sd->span_weight;
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
3686
	u64 total, available, age_stamp, avg;
3687

3688 3689 3690 3691 3692 3693 3694 3695
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

	total = sched_avg_period() + (rq->clock - age_stamp);
3696

3697
	if (unlikely(total < avg)) {
3698 3699 3700
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
3701
		available = total - avg;
3702
	}
3703

3704 3705
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
3706

3707
	total >>= SCHED_POWER_SHIFT;
3708 3709 3710 3711 3712 3713

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
3714
	unsigned long weight = sd->span_weight;
3715
	unsigned long power = SCHED_POWER_SCALE;
3716 3717 3718 3719 3720 3721 3722 3723
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3724
		power >>= SCHED_POWER_SHIFT;
3725 3726
	}

3727
	sdg->sgp->power_orig = power;
3728 3729 3730 3731 3732 3733

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3734
	power >>= SCHED_POWER_SHIFT;
3735

3736
	power *= scale_rt_power(cpu);
3737
	power >>= SCHED_POWER_SHIFT;
3738 3739 3740 3741

	if (!power)
		power = 1;

3742
	cpu_rq(cpu)->cpu_power = power;
3743
	sdg->sgp->power = power;
3744 3745
}

3746
void update_group_power(struct sched_domain *sd, int cpu)
3747 3748 3749 3750
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;
3751 3752 3753 3754 3755
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
3756 3757 3758 3759 3760 3761 3762 3763

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

P
Peter Zijlstra 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

		for_each_cpu(cpu, sched_group_cpus(sdg))
			power += power_of(cpu);
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
3784

3785
	sdg->sgp->power_orig = sdg->sgp->power = power;
3786 3787
}

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
3799
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3800
	 */
P
Peter Zijlstra 已提交
3801
	if (!(sd->flags & SD_SHARE_CPUPOWER))
3802 3803 3804 3805 3806
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
3807
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3808 3809 3810 3811 3812
		return 1;

	return 0;
}

3813 3814
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3815
 * @env: The load balancing environment.
3816 3817 3818 3819 3820 3821
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3822 3823
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
3824
			int local_group, int *balance, struct sg_lb_stats *sgs)
3825
{
3826 3827
	unsigned long nr_running, max_nr_running, min_nr_running;
	unsigned long load, max_cpu_load, min_cpu_load;
3828
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3829
	unsigned long avg_load_per_task = 0;
3830
	int i;
3831

3832
	if (local_group)
P
Peter Zijlstra 已提交
3833
		balance_cpu = group_balance_cpu(group);
3834 3835 3836 3837

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3838
	max_nr_running = 0;
3839
	min_nr_running = ~0UL;
3840

3841
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
3842 3843
		struct rq *rq = cpu_rq(i);

3844 3845
		nr_running = rq->nr_running;

3846 3847
		/* Bias balancing toward cpus of our domain */
		if (local_group) {
P
Peter Zijlstra 已提交
3848 3849
			if (idle_cpu(i) && !first_idle_cpu &&
					cpumask_test_cpu(i, sched_group_mask(group))) {
3850
				first_idle_cpu = 1;
3851 3852
				balance_cpu = i;
			}
3853 3854

			load = target_load(i, load_idx);
3855 3856
		} else {
			load = source_load(i, load_idx);
3857
			if (load > max_cpu_load)
3858 3859 3860
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
3861 3862 3863 3864 3865

			if (nr_running > max_nr_running)
				max_nr_running = nr_running;
			if (min_nr_running > nr_running)
				min_nr_running = nr_running;
3866 3867 3868
		}

		sgs->group_load += load;
3869
		sgs->sum_nr_running += nr_running;
3870
		sgs->sum_weighted_load += weighted_cpuload(i);
3871 3872
		if (idle_cpu(i))
			sgs->idle_cpus++;
3873 3874 3875 3876 3877 3878 3879 3880
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
3881
	if (local_group) {
3882
		if (env->idle != CPU_NEWLY_IDLE) {
3883
			if (balance_cpu != env->dst_cpu) {
3884 3885 3886
				*balance = 0;
				return;
			}
3887
			update_group_power(env->sd, env->dst_cpu);
3888
		} else if (time_after_eq(jiffies, group->sgp->next_update))
3889
			update_group_power(env->sd, env->dst_cpu);
3890 3891 3892
	}

	/* Adjust by relative CPU power of the group */
3893
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3894 3895 3896

	/*
	 * Consider the group unbalanced when the imbalance is larger
P
Peter Zijlstra 已提交
3897
	 * than the average weight of a task.
3898 3899 3900 3901 3902 3903
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3904 3905
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3906

3907 3908
	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
	    (max_nr_running - min_nr_running) > 1)
3909 3910
		sgs->group_imb = 1;

3911
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3912
						SCHED_POWER_SCALE);
3913
	if (!sgs->group_capacity)
3914
		sgs->group_capacity = fix_small_capacity(env->sd, group);
3915
	sgs->group_weight = group->group_weight;
3916 3917 3918

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
3919 3920
}

3921 3922
/**
 * update_sd_pick_busiest - return 1 on busiest group
3923
 * @env: The load balancing environment.
3924 3925
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
3926
 * @sgs: sched_group statistics
3927 3928 3929 3930
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
3931
static bool update_sd_pick_busiest(struct lb_env *env,
3932 3933
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
3934
				   struct sg_lb_stats *sgs)
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
3950 3951
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

3962
/**
3963
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3964
 * @env: The load balancing environment.
3965 3966 3967
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
3968
static inline void update_sd_lb_stats(struct lb_env *env,
3969
					int *balance, struct sd_lb_stats *sds)
3970
{
3971 3972
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
3973 3974 3975 3976 3977 3978
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

3979
	load_idx = get_sd_load_idx(env->sd, env->idle);
3980 3981 3982 3983

	do {
		int local_group;

3984
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
3985
		memset(&sgs, 0, sizeof(sgs));
3986
		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
3987

P
Peter Zijlstra 已提交
3988
		if (local_group && !(*balance))
3989 3990 3991
			return;

		sds->total_load += sgs.group_load;
3992
		sds->total_pwr += sg->sgp->power;
3993 3994 3995

		/*
		 * In case the child domain prefers tasks go to siblings
3996
		 * first, lower the sg capacity to one so that we'll try
3997 3998 3999 4000 4001 4002
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
4003
		 */
4004
		if (prefer_sibling && !local_group && sds->this_has_capacity)
4005 4006 4007 4008
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
4009
			sds->this = sg;
4010 4011
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
4012
			sds->this_has_capacity = sgs.group_has_capacity;
4013
			sds->this_idle_cpus = sgs.idle_cpus;
4014
		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4015
			sds->max_load = sgs.avg_load;
4016
			sds->busiest = sg;
4017
			sds->busiest_nr_running = sgs.sum_nr_running;
4018
			sds->busiest_idle_cpus = sgs.idle_cpus;
4019
			sds->busiest_group_capacity = sgs.group_capacity;
4020
			sds->busiest_load_per_task = sgs.sum_weighted_load;
4021
			sds->busiest_has_capacity = sgs.group_has_capacity;
4022
			sds->busiest_group_weight = sgs.group_weight;
4023 4024 4025
			sds->group_imb = sgs.group_imb;
		}

4026
		sg = sg->next;
4027
	} while (sg != env->sd->groups);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
4047 4048 4049
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
4050
 * @env: The load balancing environment.
4051 4052
 * @sds: Statistics of the sched_domain which is to be packed
 */
4053
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4054 4055 4056
{
	int busiest_cpu;

4057
	if (!(env->sd->flags & SD_ASYM_PACKING))
4058 4059 4060 4061 4062 4063
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
4064
	if (env->dst_cpu > busiest_cpu)
4065 4066
		return 0;

4067 4068 4069
	env->imbalance = DIV_ROUND_CLOSEST(
		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);

4070
	return 1;
4071 4072 4073 4074 4075 4076
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
4077
 * @env: The load balancing environment.
4078 4079
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
4080 4081
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4082 4083 4084
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
4085
	unsigned long scaled_busy_load_per_task;
4086 4087 4088 4089 4090 4091

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
4092
	} else {
4093
		sds->this_load_per_task =
4094 4095
			cpu_avg_load_per_task(env->dst_cpu);
	}
4096

4097
	scaled_busy_load_per_task = sds->busiest_load_per_task
4098
					 * SCHED_POWER_SCALE;
4099
	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4100 4101 4102

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
4103
		env->imbalance = sds->busiest_load_per_task;
4104 4105 4106 4107 4108 4109 4110 4111 4112
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

4113
	pwr_now += sds->busiest->sgp->power *
4114
			min(sds->busiest_load_per_task, sds->max_load);
4115
	pwr_now += sds->this->sgp->power *
4116
			min(sds->this_load_per_task, sds->this_load);
4117
	pwr_now /= SCHED_POWER_SCALE;
4118 4119

	/* Amount of load we'd subtract */
4120
	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4121
		sds->busiest->sgp->power;
4122
	if (sds->max_load > tmp)
4123
		pwr_move += sds->busiest->sgp->power *
4124 4125 4126
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
4127
	if (sds->max_load * sds->busiest->sgp->power <
4128
		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4129 4130
		tmp = (sds->max_load * sds->busiest->sgp->power) /
			sds->this->sgp->power;
4131
	else
4132
		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4133 4134
			sds->this->sgp->power;
	pwr_move += sds->this->sgp->power *
4135
			min(sds->this_load_per_task, sds->this_load + tmp);
4136
	pwr_move /= SCHED_POWER_SCALE;
4137 4138 4139

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
4140
		env->imbalance = sds->busiest_load_per_task;
4141 4142 4143 4144 4145
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
4146
 * @env: load balance environment
4147 4148
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
4149
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4150
{
4151 4152 4153 4154 4155 4156 4157 4158
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

4159 4160 4161 4162 4163 4164
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
4165 4166
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
4167 4168
	}

4169 4170 4171 4172 4173 4174 4175
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

4176
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4177

4178
		load_above_capacity /= sds->busiest->sgp->power;
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4192 4193

	/* How much load to actually move to equalise the imbalance */
4194
	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4195
		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4196
			/ SCHED_POWER_SCALE;
4197 4198 4199

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
4200
	 * there is no guarantee that any tasks will be moved so we'll have
4201 4202 4203
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
4204 4205
	if (env->imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(env, sds);
4206 4207

}
4208

4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
4221
 * @env: The load balancing environment.
4222 4223 4224 4225 4226 4227 4228 4229 4230
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
4231
find_busiest_group(struct lb_env *env, int *balance)
4232 4233 4234 4235 4236 4237 4238 4239 4240
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
4241
	update_sd_lb_stats(env, balance, &sds);
4242

4243 4244 4245
	/*
	 * this_cpu is not the appropriate cpu to perform load balancing at
	 * this level.
4246
	 */
P
Peter Zijlstra 已提交
4247
	if (!(*balance))
4248 4249
		goto ret;

4250 4251
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
4252 4253
		return sds.busiest;

4254
	/* There is no busy sibling group to pull tasks from */
4255 4256 4257
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

4258
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4259

P
Peter Zijlstra 已提交
4260 4261 4262 4263 4264 4265 4266 4267
	/*
	 * If the busiest group is imbalanced the below checks don't
	 * work because they assumes all things are equal, which typically
	 * isn't true due to cpus_allowed constraints and the like.
	 */
	if (sds.group_imb)
		goto force_balance;

4268
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4269
	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4270 4271 4272
			!sds.busiest_has_capacity)
		goto force_balance;

4273 4274 4275 4276
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
4277 4278 4279
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

4280 4281 4282 4283
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
4284 4285 4286
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

4287
	if (env->idle == CPU_IDLE) {
4288 4289 4290 4291 4292 4293
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
4294
		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4295 4296
		    sds.busiest_nr_running <= sds.busiest_group_weight)
			goto out_balanced;
4297 4298 4299 4300 4301
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
4302
		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4303
			goto out_balanced;
4304
	}
4305

4306
force_balance:
4307
	/* Looks like there is an imbalance. Compute it */
4308
	calculate_imbalance(env, &sds);
4309 4310 4311 4312
	return sds.busiest;

out_balanced:
ret:
4313
	env->imbalance = 0;
4314 4315 4316 4317 4318 4319
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4320
static struct rq *find_busiest_queue(struct lb_env *env,
4321
				     struct sched_group *group)
4322 4323 4324 4325 4326 4327 4328
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
4329 4330
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
4331 4332
		unsigned long wl;

4333
		if (!capacity)
4334
			capacity = fix_small_capacity(env->sd, group);
4335

4336
		if (!cpumask_test_cpu(i, env->cpus))
4337 4338 4339
			continue;

		rq = cpu_rq(i);
4340
		wl = weighted_cpuload(i);
4341

4342 4343 4344 4345
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
4346
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4347 4348
			continue;

4349 4350 4351 4352 4353 4354
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
4355
		wl = (wl * SCHED_POWER_SCALE) / power;
4356

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
4373
DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4374

4375
static int need_active_balance(struct lb_env *env)
4376
{
4377 4378 4379
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
4380 4381 4382 4383 4384 4385

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
4386
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4387
			return 1;
4388 4389 4390 4391 4392
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

4393 4394
static int active_load_balance_cpu_stop(void *data);

4395 4396 4397 4398 4399 4400 4401 4402
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
4403 4404
	int ld_moved, cur_ld_moved, active_balance = 0;
	int lb_iterations, max_lb_iterations;
4405 4406 4407 4408 4409
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);

4410 4411
	struct lb_env env = {
		.sd		= sd,
4412 4413
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
4414
		.dst_grpmask    = sched_group_cpus(sd->groups),
4415
		.idle		= idle,
4416
		.loop_break	= sched_nr_migrate_break,
4417
		.cpus		= cpus,
4418 4419
	};

4420
	cpumask_copy(cpus, cpu_active_mask);
4421
	max_lb_iterations = cpumask_weight(env.dst_grpmask);
4422 4423 4424 4425

	schedstat_inc(sd, lb_count[idle]);

redo:
4426
	group = find_busiest_group(&env, balance);
4427 4428 4429 4430 4431 4432 4433 4434 4435

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4436
	busiest = find_busiest_queue(&env, group);
4437 4438 4439 4440 4441
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

4442
	BUG_ON(busiest == env.dst_rq);
4443

4444
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4445 4446

	ld_moved = 0;
4447
	lb_iterations = 1;
4448 4449 4450 4451 4452 4453 4454
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
4455
		env.flags |= LBF_ALL_PINNED;
4456 4457 4458
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
4459

4460
		update_h_load(env.src_cpu);
4461
more_balance:
4462
		local_irq_save(flags);
4463
		double_rq_lock(env.dst_rq, busiest);
4464 4465 4466 4467 4468 4469 4470

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
4471
		double_rq_unlock(env.dst_rq, busiest);
4472 4473
		local_irq_restore(flags);

4474 4475 4476 4477 4478
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

4479 4480 4481
		/*
		 * some other cpu did the load balance for us.
		 */
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
				lb_iterations++ < max_lb_iterations) {

4507
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
			env.dst_cpu	 = env.new_dst_cpu;
			env.flags	&= ~LBF_SOME_PINNED;
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
4518 4519

		/* All tasks on this runqueue were pinned by CPU affinity */
4520
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
4521
			cpumask_clear_cpu(cpu_of(busiest), cpus);
4522 4523 4524
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
4525
				goto redo;
4526
			}
4527 4528 4529 4530 4531 4532
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
4533 4534 4535 4536 4537 4538 4539 4540
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
4541

4542
		if (need_active_balance(&env)) {
4543 4544
			raw_spin_lock_irqsave(&busiest->lock, flags);

4545 4546 4547
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
4548 4549
			 */
			if (!cpumask_test_cpu(this_cpu,
4550
					tsk_cpus_allowed(busiest->curr))) {
4551 4552
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
4553
				env.flags |= LBF_ALL_PINNED;
4554 4555 4556
				goto out_one_pinned;
			}

4557 4558 4559 4560 4561
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
4562 4563 4564 4565 4566 4567
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4568

4569
			if (active_balance) {
4570 4571 4572
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
4573
			}
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
4607
	if (((env.flags & LBF_ALL_PINNED) &&
4608
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4609 4610 4611
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

4612
	ld_moved = 0;
4613 4614 4615 4616 4617 4618 4619 4620
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4621
void idle_balance(int this_cpu, struct rq *this_rq)
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

4632 4633 4634 4635 4636
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

P
Paul Turner 已提交
4637
	update_shares(this_cpu);
4638
	rcu_read_lock();
4639 4640
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
4641
		int balance = 1;
4642 4643 4644 4645

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

4646
		if (sd->flags & SD_BALANCE_NEWIDLE) {
4647
			/* If we've pulled tasks over stop searching: */
4648 4649 4650
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
4651 4652 4653 4654

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
4655 4656
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4657
			break;
N
Nikhil Rao 已提交
4658
		}
4659
	}
4660
	rcu_read_unlock();
4661 4662 4663

	raw_spin_lock(&this_rq->lock);

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
4674 4675 4676 4677
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
4678
 */
4679
static int active_load_balance_cpu_stop(void *data)
4680
{
4681 4682
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
4683
	int target_cpu = busiest_rq->push_cpu;
4684
	struct rq *target_rq = cpu_rq(target_cpu);
4685
	struct sched_domain *sd;
4686 4687 4688 4689 4690 4691 4692

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
4693 4694 4695

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
4696
		goto out_unlock;
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
4709
	rcu_read_lock();
4710 4711 4712 4713 4714 4715 4716
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
4717 4718
		struct lb_env env = {
			.sd		= sd,
4719 4720 4721 4722
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
4723 4724 4725
			.idle		= CPU_IDLE,
		};

4726 4727
		schedstat_inc(sd, alb_count);

4728
		if (move_one_task(&env))
4729 4730 4731 4732
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4733
	rcu_read_unlock();
4734
	double_unlock_balance(busiest_rq, target_rq);
4735 4736 4737 4738
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
4739 4740 4741
}

#ifdef CONFIG_NO_HZ
4742 4743 4744 4745 4746 4747
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
4748
static struct {
4749
	cpumask_var_t idle_cpus_mask;
4750
	atomic_t nr_cpus;
4751 4752
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
4753

4754
static inline int find_new_ilb(int call_cpu)
4755
{
4756
	int ilb = cpumask_first(nohz.idle_cpus_mask);
4757

4758 4759 4760 4761
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
4762 4763
}

4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

4775
	ilb_cpu = find_new_ilb(cpu);
4776

4777 4778
	if (ilb_cpu >= nr_cpu_ids)
		return;
4779

4780
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4781 4782 4783 4784 4785 4786 4787 4788
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
4789 4790 4791
	return;
}

4792
static inline void nohz_balance_exit_idle(int cpu)
4793 4794 4795 4796 4797 4798 4799 4800
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	clear_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	set_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

4831
/*
4832
 * This routine will record that the cpu is going idle with tick stopped.
4833
 * This info will be used in performing idle load balancing in the future.
4834
 */
4835
void nohz_balance_enter_idle(int cpu)
4836
{
4837 4838 4839 4840 4841 4842
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

4843 4844
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
4845

4846 4847 4848
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4849
}
4850 4851 4852 4853 4854 4855

static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
4856
		nohz_balance_exit_idle(smp_processor_id());
4857 4858 4859 4860 4861
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
4862 4863 4864 4865
#endif

static DEFINE_SPINLOCK(balancing);

4866 4867 4868 4869
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
4870
void update_max_interval(void)
4871 4872 4873 4874
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
4886
	struct sched_domain *sd;
4887 4888 4889 4890 4891
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

P
Peter Zijlstra 已提交
4892 4893
	update_shares(cpu);

4894
	rcu_read_lock();
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
4905
		interval = clamp(interval, 1UL, max_load_balance_interval);
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * We've pulled tasks over so either we're no
4918
				 * longer idle.
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
				 */
				idle = CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}
4940
	rcu_read_unlock();
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

4951
#ifdef CONFIG_NO_HZ
4952
/*
4953
 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4954 4955
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
4956 4957 4958 4959 4960 4961
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

4962 4963 4964
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
4965 4966

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4967
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
4968 4969 4970 4971 4972 4973 4974
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
4975
		if (need_resched())
4976 4977
			break;

V
Vincent Guittot 已提交
4978 4979 4980 4981 4982 4983
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
4984 4985 4986 4987 4988 4989 4990

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
4991 4992
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
4993 4994 4995
}

/*
4996 4997 4998 4999 5000 5001 5002
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
5003 5004 5005 5006
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
5007
	struct sched_domain *sd;
5008

5009
	if (unlikely(idle_cpu(cpu)))
5010 5011
		return 0;

5012 5013 5014 5015
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
5016
	set_cpu_sd_state_busy();
5017
	nohz_balance_exit_idle(cpu);
5018 5019 5020 5021 5022 5023 5024

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
5025 5026

	if (time_before(now, nohz.next_balance))
5027 5028
		return 0;

5029 5030
	if (rq->nr_running >= 2)
		goto need_kick;
5031

5032
	rcu_read_lock();
5033 5034 5035 5036
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5037

5038
		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5039
			goto need_kick_unlock;
5040 5041 5042 5043

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
5044
			goto need_kick_unlock;
5045 5046 5047

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
5048
	}
5049
	rcu_read_unlock();
5050
	return 0;
5051 5052 5053

need_kick_unlock:
	rcu_read_unlock();
5054 5055
need_kick:
	return 1;
5056 5057 5058 5059 5060 5061 5062 5063 5064
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
5065 5066 5067 5068
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
5069
	enum cpu_idle_type idle = this_rq->idle_balance ?
5070 5071 5072 5073 5074
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
5075
	 * If this cpu has a pending nohz_balance_kick, then do the
5076 5077 5078
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
5079
	nohz_idle_balance(this_cpu, idle);
5080 5081 5082 5083
}

static inline int on_null_domain(int cpu)
{
5084
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5085 5086 5087 5088 5089
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
5090
void trigger_load_balance(struct rq *rq, int cpu)
5091 5092 5093 5094 5095
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
5096
#ifdef CONFIG_NO_HZ
5097
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5098 5099
		nohz_balancer_kick(cpu);
#endif
5100 5101
}

5102 5103 5104 5105 5106 5107 5108 5109
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
5110 5111 5112

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
5113 5114
}

5115
#endif /* CONFIG_SMP */
5116

5117 5118 5119
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
5120
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5121 5122 5123 5124 5125 5126
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
5127
		entity_tick(cfs_rq, se, queued);
5128
	}
5129 5130 5131

	if (sched_feat_numa(NUMA))
		task_tick_numa(rq, curr);
5132 5133 5134
}

/*
P
Peter Zijlstra 已提交
5135 5136 5137
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
5138
 */
P
Peter Zijlstra 已提交
5139
static void task_fork_fair(struct task_struct *p)
5140
{
5141 5142
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
5143
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
5144 5145 5146
	struct rq *rq = this_rq();
	unsigned long flags;

5147
	raw_spin_lock_irqsave(&rq->lock, flags);
5148

5149 5150
	update_rq_clock(rq);

5151 5152 5153
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

5154 5155
	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
P
Peter Zijlstra 已提交
5156
		__set_task_cpu(p, this_cpu);
5157 5158
		rcu_read_unlock();
	}
5159

5160
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
5161

5162 5163
	if (curr)
		se->vruntime = curr->vruntime;
5164
	place_entity(cfs_rq, se, 1);
5165

P
Peter Zijlstra 已提交
5166
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
5167
		/*
5168 5169 5170
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
5171
		swap(curr->vruntime, se->vruntime);
5172
		resched_task(rq->curr);
5173
	}
5174

5175 5176
	se->vruntime -= cfs_rq->min_vruntime;

5177
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5178 5179
}

5180 5181 5182 5183
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
5184 5185
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5186
{
P
Peter Zijlstra 已提交
5187 5188 5189
	if (!p->se.on_rq)
		return;

5190 5191 5192 5193 5194
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
5195
	if (rq->curr == p) {
5196 5197 5198
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
5199
		check_preempt_curr(rq, p, 0);
5200 5201
}

P
Peter Zijlstra 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
}

5226 5227 5228
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
5229
static void switched_to_fair(struct rq *rq, struct task_struct *p)
5230
{
P
Peter Zijlstra 已提交
5231 5232 5233
	if (!p->se.on_rq)
		return;

5234 5235 5236 5237 5238
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
5239
	if (rq->curr == p)
5240 5241
		resched_task(rq->curr);
	else
5242
		check_preempt_curr(rq, p, 0);
5243 5244
}

5245 5246 5247 5248 5249 5250 5251 5252 5253
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

5254 5255 5256 5257 5258 5259 5260
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
5261 5262
}

5263 5264 5265 5266 5267 5268 5269 5270 5271
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
}

P
Peter Zijlstra 已提交
5272
#ifdef CONFIG_FAIR_GROUP_SCHED
5273
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
5274
{
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
5288 5289 5290 5291 5292 5293
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
5294 5295
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
5296 5297 5298 5299
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
5300
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5301 5302
		on_rq = 1;

5303 5304 5305
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
5306
	if (!on_rq)
5307
		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
P
Peter Zijlstra 已提交
5308
}
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
#ifdef CONFIG_SMP
	/* allow initial update_cfs_load() to truncate */
	cfs_rq->load_stamp = 1;
P
Peter Zijlstra 已提交
5395
#endif
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
5464

5465
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

5480 5481 5482
/*
 * All the scheduling class methods:
 */
5483
const struct sched_class fair_sched_class = {
5484
	.next			= &idle_sched_class,
5485 5486 5487
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
5488
	.yield_to_task		= yield_to_task_fair,
5489

I
Ingo Molnar 已提交
5490
	.check_preempt_curr	= check_preempt_wakeup,
5491 5492 5493 5494

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

5495
#ifdef CONFIG_SMP
L
Li Zefan 已提交
5496 5497
	.select_task_rq		= select_task_rq_fair,

5498 5499
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
5500 5501

	.task_waking		= task_waking_fair,
5502
#endif
5503

5504
	.set_curr_task          = set_curr_task_fair,
5505
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
5506
	.task_fork		= task_fork_fair,
5507 5508

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
5509
	.switched_from		= switched_from_fair,
5510
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
5511

5512 5513
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
5514
#ifdef CONFIG_FAIR_GROUP_SCHED
5515
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
5516
#endif
5517 5518 5519
};

#ifdef CONFIG_SCHED_DEBUG
5520
void print_cfs_stats(struct seq_file *m, int cpu)
5521 5522 5523
{
	struct cfs_rq *cfs_rq;

5524
	rcu_read_lock();
5525
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5526
		print_cfs_rq(m, cpu, cfs_rq);
5527
	rcu_read_unlock();
5528 5529
}
#endif
5530 5531 5532 5533 5534 5535 5536

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

#ifdef CONFIG_NO_HZ
5537
	nohz.next_balance = jiffies;
5538
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5539
	cpu_notifier(sched_ilb_notifier, 0);
5540 5541 5542 5543
#endif
#endif /* SMP */

}