fair.c 137.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
220

221 222 223 224
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

225
#ifdef CONFIG_FAIR_GROUP_SCHED
226

227
/* cpu runqueue to which this cfs_rq is attached */
228 229
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
230
	return cfs_rq->rq;
231 232
}

233 234
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
235

236 237 238 239 240 241 242 243
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

265 266 267
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
268 269 270 271 272 273 274 275 276 277 278 279
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
280
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
281
		}
282 283 284 285 286 287 288 289 290 291 292 293 294

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

357 358 359 360 361 362
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
363

364 365 366
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
367 368 369 370
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
371 372
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
373

P
Peter Zijlstra 已提交
374
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
375
{
P
Peter Zijlstra 已提交
376
	return &task_rq(p)->cfs;
377 378
}

P
Peter Zijlstra 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

393 394 395 396 397 398 399 400
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

415 416 417 418 419
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
420 421
#endif	/* CONFIG_FAIR_GROUP_SCHED */

422 423
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
424 425 426 427 428

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

429
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
430
{
431 432
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
433 434 435 436 437
		min_vruntime = vruntime;

	return min_vruntime;
}

438
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
439 440 441 442 443 444 445 446
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

447 448 449 450 451 452
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

453 454 455 456 457 458 459 460 461 462 463 464
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
465
		if (!cfs_rq->curr)
466 467 468 469 470 471
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
472 473 474 475
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
476 477
}

478 479 480
/*
 * Enqueue an entity into the rb-tree:
 */
481
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
498
		if (entity_before(se, entry)) {
499 500 501 502 503 504 505 506 507 508 509
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
510
	if (leftmost)
I
Ingo Molnar 已提交
511
		cfs_rq->rb_leftmost = &se->run_node;
512 513 514 515 516

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

517
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
518
{
P
Peter Zijlstra 已提交
519 520 521 522 523 524
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
525

526 527 528
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

529
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
530
{
531 532 533 534 535 536
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
537 538
}

539 540 541 542 543 544 545 546 547 548 549
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
550
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
551
{
552
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
553

554 555
	if (!last)
		return NULL;
556 557

	return rb_entry(last, struct sched_entity, run_node);
558 559
}

560 561 562 563
/**************************************************************
 * Scheduling class statistics methods:
 */

564
int sched_proc_update_handler(struct ctl_table *table, int write,
565
		void __user *buffer, size_t *lenp,
566 567
		loff_t *ppos)
{
568
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
569
	int factor = get_update_sysctl_factor();
570 571 572 573 574 575 576

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

577 578 579 580 581 582 583
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

584 585 586
	return 0;
}
#endif
587

588
/*
589
 * delta /= w
590 591 592 593
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
594 595
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
596 597 598 599

	return delta;
}

600 601 602
/*
 * The idea is to set a period in which each task runs once.
 *
603
 * When there are too many tasks (sched_nr_latency) we have to stretch
604 605 606 607
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
608 609 610
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
611
	unsigned long nr_latency = sched_nr_latency;
612 613

	if (unlikely(nr_running > nr_latency)) {
614
		period = sysctl_sched_min_granularity;
615 616 617 618 619 620
		period *= nr_running;
	}

	return period;
}

621 622 623 624
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
625
 * s = p*P[w/rw]
626
 */
P
Peter Zijlstra 已提交
627
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
628
{
M
Mike Galbraith 已提交
629
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
630

M
Mike Galbraith 已提交
631
	for_each_sched_entity(se) {
L
Lin Ming 已提交
632
		struct load_weight *load;
633
		struct load_weight lw;
L
Lin Ming 已提交
634 635 636

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
637

M
Mike Galbraith 已提交
638
		if (unlikely(!se->on_rq)) {
639
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
640 641 642 643 644 645 646

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
647 648
}

649
/*
650
 * We calculate the vruntime slice of a to be inserted task
651
 *
652
 * vs = s/w
653
 */
654
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
655
{
656
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
657 658
}

659
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
660
static void update_cfs_shares(struct cfs_rq *cfs_rq);
661

662 663 664 665 666
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
667 668
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
669
{
670
	unsigned long delta_exec_weighted;
671

672 673
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
674 675

	curr->sum_exec_runtime += delta_exec;
676
	schedstat_add(cfs_rq, exec_clock, delta_exec);
677
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
678

I
Ingo Molnar 已提交
679
	curr->vruntime += delta_exec_weighted;
680
	update_min_vruntime(cfs_rq);
681

P
Peter Zijlstra 已提交
682
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
683 684
	cfs_rq->load_unacc_exec_time += delta_exec;
#endif
685 686
}

687
static void update_curr(struct cfs_rq *cfs_rq)
688
{
689
	struct sched_entity *curr = cfs_rq->curr;
690
	u64 now = rq_of(cfs_rq)->clock_task;
691 692 693 694 695 696 697 698 699 700
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
701
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
702 703
	if (!delta_exec)
		return;
704

I
Ingo Molnar 已提交
705 706
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
707 708 709 710

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

711
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
712
		cpuacct_charge(curtask, delta_exec);
713
		account_group_exec_runtime(curtask, delta_exec);
714
	}
715 716

	account_cfs_rq_runtime(cfs_rq, delta_exec);
717 718 719
}

static inline void
720
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
721
{
722
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
723 724 725 726 727
}

/*
 * Task is being enqueued - update stats:
 */
728
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 730 731 732 733
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
734
	if (se != cfs_rq->curr)
735
		update_stats_wait_start(cfs_rq, se);
736 737 738
}

static void
739
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
740
{
741 742 743 744 745
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
746 747 748
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
749
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
750 751
	}
#endif
752
	schedstat_set(se->statistics.wait_start, 0);
753 754 755
}

static inline void
756
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
757 758 759 760 761
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
762
	if (se != cfs_rq->curr)
763
		update_stats_wait_end(cfs_rq, se);
764 765 766 767 768 769
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
770
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
771 772 773 774
{
	/*
	 * We are starting a new run period:
	 */
775
	se->exec_start = rq_of(cfs_rq)->clock_task;
776 777 778 779 780 781
}

/**************************************************
 * Scheduling class queueing methods:
 */

782 783
#ifdef CONFIG_NUMA_BALANCING
/*
784
 * numa task sample period in ms
785
 */
786 787 788 789 790
unsigned int sysctl_numa_balancing_scan_period_min = 100;
unsigned int sysctl_numa_balancing_scan_period_max = 100*16;

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
791

792 793 794
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static void task_numa_placement(struct task_struct *p)
{
	int seq = ACCESS_ONCE(p->mm->numa_scan_seq);

	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;

	/* FIXME: Scheduling placement policy hints go here */
}

/*
 * Got a PROT_NONE fault for a page on @node.
 */
void task_numa_fault(int node, int pages)
{
	struct task_struct *p = current;

	/* FIXME: Allocate task-specific structure for placement policy here */

	task_numa_placement(p);
}

818 819 820 821 822 823
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

824 825 826 827 828 829 830 831 832
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
833
	struct vm_area_struct *vma;
834 835
	unsigned long start, end;
	long pages;
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

	if (p->numa_scan_period == 0)
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;

	next_scan = now + 2*msecs_to_jiffies(p->numa_scan_period);
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

865 866 867 868 869 870 871 872
	/*
	 * Do not set pte_numa if the current running node is rate-limited.
	 * This loses statistics on the fault but if we are unwilling to
	 * migrate to this node, it is less likely we can do useful work
	 */
	if (migrate_ratelimited(numa_node_id()))
		return;

873 874 875 876 877
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
878

879
	down_read(&mm->mmap_sem);
880
	vma = find_vma(mm, start);
881 882
	if (!vma) {
		reset_ptenuma_scan(p);
883
		start = 0;
884 885
		vma = mm->mmap;
	}
886
	for (; vma; vma = vma->vm_next) {
887 888 889 890 891 892 893
		if (!vma_migratable(vma))
			continue;

		/* Skip small VMAs. They are not likely to be of relevance */
		if (((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) < HPAGE_PMD_NR)
			continue;

894 895 896 897 898
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
			pages -= change_prot_numa(vma, start, end);
899

900 901 902 903
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
904
	}
905

906
out:
907 908 909 910 911 912 913
	/*
	 * It is possible to reach the end of the VMA list but the last few VMAs are
	 * not guaranteed to the vma_migratable. If they are not, we would find the
	 * !migratable VMA on the next scan but not reset the scanner to the start
	 * so check it now.
	 */
	if (vma)
914
		mm->numa_scan_offset = start;
915 916 917
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
944 945
		if (!curr->node_stamp)
			curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
946 947 948 949 950 951 952 953 954 955 956 957 958 959
		curr->node_stamp = now;

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
#endif /* CONFIG_NUMA_BALANCING */

960 961 962 963
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
964
	if (!parent_entity(se))
965
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
966 967
#ifdef CONFIG_SMP
	if (entity_is_task(se))
968
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
969
#endif
970 971 972 973 974 975 976
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
977
	if (!parent_entity(se))
978
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
979
	if (entity_is_task(se))
980
		list_del_init(&se->group_node);
981 982 983
	cfs_rq->nr_running--;
}

984
#ifdef CONFIG_FAIR_GROUP_SCHED
985 986
/* we need this in update_cfs_load and load-balance functions below */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
987
# ifdef CONFIG_SMP
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
					    int global_update)
{
	struct task_group *tg = cfs_rq->tg;
	long load_avg;

	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
	load_avg -= cfs_rq->load_contribution;

	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
		atomic_add(load_avg, &tg->load_weight);
		cfs_rq->load_contribution += load_avg;
	}
}

static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
1004
{
1005
	u64 period = sysctl_sched_shares_window;
P
Peter Zijlstra 已提交
1006
	u64 now, delta;
1007
	unsigned long load = cfs_rq->load.weight;
P
Peter Zijlstra 已提交
1008

1009
	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1010 1011
		return;

1012
	now = rq_of(cfs_rq)->clock_task;
P
Peter Zijlstra 已提交
1013 1014
	delta = now - cfs_rq->load_stamp;

1015 1016 1017 1018 1019
	/* truncate load history at 4 idle periods */
	if (cfs_rq->load_stamp > cfs_rq->load_last &&
	    now - cfs_rq->load_last > 4 * period) {
		cfs_rq->load_period = 0;
		cfs_rq->load_avg = 0;
1020
		delta = period - 1;
1021 1022
	}

P
Peter Zijlstra 已提交
1023
	cfs_rq->load_stamp = now;
1024
	cfs_rq->load_unacc_exec_time = 0;
P
Peter Zijlstra 已提交
1025
	cfs_rq->load_period += delta;
1026 1027 1028 1029
	if (load) {
		cfs_rq->load_last = now;
		cfs_rq->load_avg += delta * load;
	}
P
Peter Zijlstra 已提交
1030

1031 1032 1033 1034 1035
	/* consider updating load contribution on each fold or truncate */
	if (global_update || cfs_rq->load_period > period
	    || !cfs_rq->load_period)
		update_cfs_rq_load_contribution(cfs_rq, global_update);

P
Peter Zijlstra 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	while (cfs_rq->load_period > period) {
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (cfs_rq->load_period));
		cfs_rq->load_period /= 2;
		cfs_rq->load_avg /= 2;
	}
1046

1047 1048
	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
		list_del_leaf_cfs_rq(cfs_rq);
P
Peter Zijlstra 已提交
1049 1050
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
	tg_weight = atomic_read(&tg->load_weight);
	tg_weight -= cfs_rq->load_contribution;
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1067
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1068
{
1069
	long tg_weight, load, shares;
1070

1071
	tg_weight = calc_tg_weight(tg, cfs_rq);
1072
	load = cfs_rq->load.weight;
1073 1074

	shares = (tg->shares * load);
1075 1076
	if (tg_weight)
		shares /= tg_weight;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}

static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
		update_cfs_load(cfs_rq, 0);
1090
		update_cfs_shares(cfs_rq);
1091 1092 1093 1094 1095 1096 1097
	}
}
# else /* CONFIG_SMP */
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
{
}

1098
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1099 1100 1101 1102 1103 1104 1105 1106
{
	return tg->shares;
}

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1107 1108 1109
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1110 1111 1112 1113
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1114
		account_entity_dequeue(cfs_rq, se);
1115
	}
P
Peter Zijlstra 已提交
1116 1117 1118 1119 1120 1121 1122

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1123
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1124 1125 1126
{
	struct task_group *tg;
	struct sched_entity *se;
1127
	long shares;
P
Peter Zijlstra 已提交
1128 1129 1130

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1131
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1132
		return;
1133 1134 1135 1136
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1137
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1138 1139 1140 1141

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1142
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
1143 1144 1145
{
}

1146
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1147 1148
{
}
1149 1150 1151 1152

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
P
Peter Zijlstra 已提交
1153 1154
#endif /* CONFIG_FAIR_GROUP_SCHED */

1155
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1156 1157
{
#ifdef CONFIG_SCHEDSTATS
1158 1159 1160 1161 1162
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

1163 1164
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1165 1166 1167 1168

		if ((s64)delta < 0)
			delta = 0;

1169 1170
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
1171

1172
		se->statistics.sleep_start = 0;
1173
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
1174

1175
		if (tsk) {
1176
			account_scheduler_latency(tsk, delta >> 10, 1);
1177 1178
			trace_sched_stat_sleep(tsk, delta);
		}
1179
	}
1180 1181
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1182 1183 1184 1185

		if ((s64)delta < 0)
			delta = 0;

1186 1187
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
1188

1189
		se->statistics.block_start = 0;
1190
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
1191

1192
		if (tsk) {
1193
			if (tsk->in_iowait) {
1194 1195
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
1196
				trace_sched_stat_iowait(tsk, delta);
1197 1198
			}

1199 1200
			trace_sched_stat_blocked(tsk, delta);

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
1212
		}
1213 1214 1215 1216
	}
#endif
}

P
Peter Zijlstra 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

1230 1231 1232
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
1233
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
1234

1235 1236 1237 1238 1239 1240
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
1241
	if (initial && sched_feat(START_DEBIT))
1242
		vruntime += sched_vslice(cfs_rq, se);
1243

1244
	/* sleeps up to a single latency don't count. */
1245
	if (!initial) {
1246
		unsigned long thresh = sysctl_sched_latency;
1247

1248 1249 1250 1251 1252 1253
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
1254

1255
		vruntime -= thresh;
1256 1257
	}

1258 1259 1260
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
1261
	se->vruntime = vruntime;
1262 1263
}

1264 1265
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

1266
static void
1267
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1268
{
1269 1270 1271 1272
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
1273
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1274 1275
		se->vruntime += cfs_rq->min_vruntime;

1276
	/*
1277
	 * Update run-time statistics of the 'current'.
1278
	 */
1279
	update_curr(cfs_rq);
1280
	update_cfs_load(cfs_rq, 0);
P
Peter Zijlstra 已提交
1281
	account_entity_enqueue(cfs_rq, se);
1282
	update_cfs_shares(cfs_rq);
1283

1284
	if (flags & ENQUEUE_WAKEUP) {
1285
		place_entity(cfs_rq, se, 0);
1286
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
1287
	}
1288

1289
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1290
	check_spread(cfs_rq, se);
1291 1292
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1293
	se->on_rq = 1;
1294

1295
	if (cfs_rq->nr_running == 1) {
1296
		list_add_leaf_cfs_rq(cfs_rq);
1297 1298
		check_enqueue_throttle(cfs_rq);
	}
1299 1300
}

1301
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
1302
{
1303 1304 1305 1306 1307 1308 1309 1310
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
1321 1322
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
1334 1335
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
1336 1337 1338 1339 1340
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
1341 1342 1343

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
1344 1345
}

1346
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1347

1348
static void
1349
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1350
{
1351 1352 1353 1354 1355
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

1356
	update_stats_dequeue(cfs_rq, se);
1357
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
1358
#ifdef CONFIG_SCHEDSTATS
1359 1360 1361 1362
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1363
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1364
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1365
				se->statistics.block_start = rq_of(cfs_rq)->clock;
1366
		}
1367
#endif
P
Peter Zijlstra 已提交
1368 1369
	}

P
Peter Zijlstra 已提交
1370
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1371

1372
	if (se != cfs_rq->curr)
1373
		__dequeue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1374
	se->on_rq = 0;
1375
	update_cfs_load(cfs_rq, 0);
1376
	account_entity_dequeue(cfs_rq, se);
1377 1378 1379 1380 1381 1382

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1383
	if (!(flags & DEQUEUE_SLEEP))
1384
		se->vruntime -= cfs_rq->min_vruntime;
1385

1386 1387 1388
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

1389 1390
	update_min_vruntime(cfs_rq);
	update_cfs_shares(cfs_rq);
1391 1392 1393 1394 1395
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1396
static void
I
Ingo Molnar 已提交
1397
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1398
{
1399
	unsigned long ideal_runtime, delta_exec;
1400 1401
	struct sched_entity *se;
	s64 delta;
1402

P
Peter Zijlstra 已提交
1403
	ideal_runtime = sched_slice(cfs_rq, curr);
1404
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1405
	if (delta_exec > ideal_runtime) {
1406
		resched_task(rq_of(cfs_rq)->curr);
1407 1408 1409 1410 1411
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

1423 1424
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
1425

1426 1427
	if (delta < 0)
		return;
1428

1429 1430
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
1431 1432
}

1433
static void
1434
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1435
{
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1447
	update_stats_curr_start(cfs_rq, se);
1448
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1449 1450 1451 1452 1453 1454
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1455
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1456
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1457 1458 1459
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1460
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1461 1462
}

1463 1464 1465
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1466 1467 1468 1469 1470 1471 1472
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
1473
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1474
{
1475
	struct sched_entity *se = __pick_first_entity(cfs_rq);
1476
	struct sched_entity *left = se;
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
1487

1488 1489 1490 1491 1492 1493
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

1494 1495 1496 1497 1498 1499
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

1500
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1501 1502

	return se;
1503 1504
}

1505 1506
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1507
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1508 1509 1510 1511 1512 1513
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1514
		update_curr(cfs_rq);
1515

1516 1517 1518
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
1519
	check_spread(cfs_rq, prev);
1520
	if (prev->on_rq) {
1521
		update_stats_wait_start(cfs_rq, prev);
1522 1523 1524
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
1525
	cfs_rq->curr = NULL;
1526 1527
}

P
Peter Zijlstra 已提交
1528 1529
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1530 1531
{
	/*
1532
	 * Update run-time statistics of the 'current'.
1533
	 */
1534
	update_curr(cfs_rq);
1535

1536 1537 1538 1539 1540
	/*
	 * Update share accounting for long-running entities.
	 */
	update_entity_shares_tick(cfs_rq);

P
Peter Zijlstra 已提交
1541 1542 1543 1544 1545
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
1546 1547 1548 1549
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
1550 1551 1552 1553 1554 1555 1556 1557
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
1558
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
1559
		check_preempt_tick(cfs_rq, curr);
1560 1561
}

1562 1563 1564 1565 1566 1567

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
1568 1569

#ifdef HAVE_JUMP_LABEL
1570
static struct static_key __cfs_bandwidth_used;
1571 1572 1573

static inline bool cfs_bandwidth_used(void)
{
1574
	return static_key_false(&__cfs_bandwidth_used);
1575 1576 1577 1578 1579 1580
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
1581
		static_key_slow_inc(&__cfs_bandwidth_used);
1582
	else if (!enabled && was_enabled)
1583
		static_key_slow_dec(&__cfs_bandwidth_used);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

1594 1595 1596 1597 1598 1599 1600 1601
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
1602 1603 1604 1605 1606 1607

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
1608 1609 1610 1611 1612 1613 1614
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
1615
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

1627 1628 1629 1630 1631
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

1632 1633
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1634 1635 1636
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
1637
	u64 amount = 0, min_amount, expires;
1638 1639 1640 1641 1642 1643 1644

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
1645
	else {
P
Paul Turner 已提交
1646 1647 1648 1649 1650 1651 1652 1653
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
1654
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
1655
		}
1656 1657 1658 1659 1660 1661

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
1662
	}
P
Paul Turner 已提交
1663
	expires = cfs_b->runtime_expires;
1664 1665 1666
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
1667 1668 1669 1670 1671 1672 1673
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
1674 1675

	return cfs_rq->runtime_remaining > 0;
1676 1677
}

P
Paul Turner 已提交
1678 1679 1680 1681 1682
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1683
{
P
Paul Turner 已提交
1684 1685 1686 1687 1688
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct rq *rq = rq_of(cfs_rq);

	/* if the deadline is ahead of our clock, nothing to do */
	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1689 1690
		return;

P
Paul Turner 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
1716
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
1717 1718 1719
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
1720 1721
		return;

1722 1723 1724 1725 1726 1727
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
1728 1729
}

1730 1731
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1732
{
1733
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1734 1735 1736 1737 1738
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

1739 1740
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
1741
	return cfs_bandwidth_used() && cfs_rq->throttled;
1742 1743
}

1744 1745 1746
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
1747
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
		u64 delta = rq->clock_task - cfs_rq->load_stamp;

		/* leaving throttled state, advance shares averaging windows */
		cfs_rq->load_stamp += delta;
		cfs_rq->load_last += delta;

		/* update entity weight now that we are on_rq again */
		update_cfs_shares(cfs_rq);
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	/* group is entering throttled state, record last load */
	if (!cfs_rq->throttle_count)
		update_cfs_load(cfs_rq, 0);
	cfs_rq->throttle_count++;

	return 0;
}

1803
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1804 1805 1806 1807 1808 1809 1810 1811 1812
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	/* account load preceding throttle */
1813 1814 1815
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
1836
	cfs_rq->throttled_timestamp = rq->clock;
1837 1838 1839 1840 1841
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

1842
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	cfs_rq->throttled = 0;
	raw_spin_lock(&cfs_b->lock);
1854
	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1855 1856
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);
1857
	cfs_rq->throttled_timestamp = 0;
1858

1859 1860 1861 1862
	update_rq_clock(rq);
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

1926 1927 1928 1929 1930 1931 1932 1933
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
1934 1935
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
1936 1937 1938 1939 1940 1941

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

1942 1943 1944
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
1945
	cfs_b->nr_periods += overrun;
1946

P
Paul Turner 已提交
1947 1948 1949 1950 1951 1952
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

1953 1954 1955 1956 1957 1958
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

1959 1960 1961
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
1996 1997 1998 1999 2000 2001 2002
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2068 2069 2070
	if (!cfs_bandwidth_used())
		return;

2071
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

2109 2110 2111 2112 2113 2114 2115
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
2116 2117 2118
	if (!cfs_bandwidth_used())
		return;

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2136 2137 2138
	if (!cfs_bandwidth_used())
		return;

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

static inline u64 default_cfs_period(void);
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

2236
static void unthrottle_offline_cfs_rqs(struct rq *rq)
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
2257 2258
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2259 2260
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2261
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2262 2263 2264 2265 2266

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
2278 2279 2280 2281 2282

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2283 2284
#endif

2285 2286 2287 2288 2289
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2290
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2291 2292 2293

#endif /* CONFIG_CFS_BANDWIDTH */

2294 2295 2296 2297
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
2298 2299 2300 2301 2302 2303 2304 2305
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

2306
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
2321
		if (rq->curr != p)
2322
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
2323

2324
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
2325 2326
	}
}
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

2337
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2338 2339 2340 2341 2342
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
2343
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
2344 2345 2346 2347
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
2348 2349 2350 2351

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
2352 2353
#endif

2354 2355 2356 2357 2358
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
2359
static void
2360
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2361 2362
{
	struct cfs_rq *cfs_rq;
2363
	struct sched_entity *se = &p->se;
2364 2365

	for_each_sched_entity(se) {
2366
		if (se->on_rq)
2367 2368
			break;
		cfs_rq = cfs_rq_of(se);
2369
		enqueue_entity(cfs_rq, se, flags);
2370 2371 2372 2373 2374 2375 2376 2377 2378

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2379
		cfs_rq->h_nr_running++;
2380

2381
		flags = ENQUEUE_WAKEUP;
2382
	}
P
Peter Zijlstra 已提交
2383

P
Peter Zijlstra 已提交
2384
	for_each_sched_entity(se) {
2385
		cfs_rq = cfs_rq_of(se);
2386
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
2387

2388 2389 2390
		if (cfs_rq_throttled(cfs_rq))
			break;

2391
		update_cfs_load(cfs_rq, 0);
2392
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
2393 2394
	}

2395 2396
	if (!se)
		inc_nr_running(rq);
2397
	hrtick_update(rq);
2398 2399
}

2400 2401
static void set_next_buddy(struct sched_entity *se);

2402 2403 2404 2405 2406
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
2407
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2408 2409
{
	struct cfs_rq *cfs_rq;
2410
	struct sched_entity *se = &p->se;
2411
	int task_sleep = flags & DEQUEUE_SLEEP;
2412 2413 2414

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
2415
		dequeue_entity(cfs_rq, se, flags);
2416 2417 2418 2419 2420 2421 2422 2423 2424

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2425
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2426

2427
		/* Don't dequeue parent if it has other entities besides us */
2428 2429 2430 2431 2432 2433 2434
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
2435 2436 2437

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
2438
			break;
2439
		}
2440
		flags |= DEQUEUE_SLEEP;
2441
	}
P
Peter Zijlstra 已提交
2442

P
Peter Zijlstra 已提交
2443
	for_each_sched_entity(se) {
2444
		cfs_rq = cfs_rq_of(se);
2445
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2446

2447 2448 2449
		if (cfs_rq_throttled(cfs_rq))
			break;

2450
		update_cfs_load(cfs_rq, 0);
2451
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
2452 2453
	}

2454 2455
	if (!se)
		dec_nr_running(rq);
2456
	hrtick_update(rq);
2457 2458
}

2459
#ifdef CONFIG_SMP
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);

	if (nr_running)
		return rq->load.weight / nr_running;

	return 0;
}

2515

2516
static void task_waking_fair(struct task_struct *p)
2517 2518 2519
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2520 2521 2522 2523
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
2524

2525 2526 2527 2528 2529 2530 2531 2532
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
2533

2534
	se->vruntime -= min_vruntime;
2535 2536
}

2537
#ifdef CONFIG_FAIR_GROUP_SCHED
2538 2539 2540 2541 2542 2543
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
2587
 */
P
Peter Zijlstra 已提交
2588
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2589
{
P
Peter Zijlstra 已提交
2590
	struct sched_entity *se = tg->se[cpu];
2591

2592
	if (!tg->parent)	/* the trivial, non-cgroup case */
2593 2594
		return wl;

P
Peter Zijlstra 已提交
2595
	for_each_sched_entity(se) {
2596
		long w, W;
P
Peter Zijlstra 已提交
2597

2598
		tg = se->my_q->tg;
2599

2600 2601 2602 2603
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
2604

2605 2606 2607 2608
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
2609

2610 2611 2612 2613 2614
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
2615 2616
		else
			wl = tg->shares;
2617

2618 2619 2620 2621 2622
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
2623 2624
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
2625 2626 2627 2628

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
2629
		wl -= se->load.weight;
2630 2631 2632 2633 2634 2635 2636 2637

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
2638 2639
		wg = 0;
	}
2640

P
Peter Zijlstra 已提交
2641
	return wl;
2642 2643
}
#else
P
Peter Zijlstra 已提交
2644

2645 2646
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
2647
{
2648
	return wl;
2649
}
P
Peter Zijlstra 已提交
2650

2651 2652
#endif

2653
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2654
{
2655
	s64 this_load, load;
2656
	int idx, this_cpu, prev_cpu;
2657
	unsigned long tl_per_task;
2658
	struct task_group *tg;
2659
	unsigned long weight;
2660
	int balanced;
2661

2662 2663 2664 2665 2666
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
2667

2668 2669 2670 2671 2672
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
2673 2674 2675 2676
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

2677
		this_load += effective_load(tg, this_cpu, -weight, -weight);
2678 2679
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
2680

2681 2682
	tg = task_group(p);
	weight = p->se.load.weight;
2683

2684 2685
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2686 2687 2688
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
2689 2690 2691 2692
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
2693 2694
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
2708

2709
	/*
I
Ingo Molnar 已提交
2710 2711 2712
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
2713
	 */
2714 2715
	if (sync && balanced)
		return 1;
2716

2717
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2718 2719
	tl_per_task = cpu_avg_load_per_task(this_cpu);

2720 2721 2722
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2723 2724 2725 2726 2727
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
2728
		schedstat_inc(sd, ttwu_move_affine);
2729
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2730 2731 2732 2733 2734 2735

		return 1;
	}
	return 0;
}

2736 2737 2738 2739 2740
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
2741
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2742
		  int this_cpu, int load_idx)
2743
{
2744
	struct sched_group *idlest = NULL, *group = sd->groups;
2745 2746
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2747

2748 2749 2750 2751
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
2752

2753 2754
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
2755
					tsk_cpus_allowed(p)))
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2775
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
2801
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2802 2803 2804 2805 2806
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
2807 2808 2809
		}
	}

2810 2811
	return idlest;
}
2812

2813 2814 2815
/*
 * Try and locate an idle CPU in the sched_domain.
 */
2816
static int select_idle_sibling(struct task_struct *p, int target)
2817 2818 2819
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
2820
	struct sched_domain *sd;
2821 2822
	struct sched_group *sg;
	int i;
2823 2824

	/*
2825 2826
	 * If the task is going to be woken-up on this cpu and if it is
	 * already idle, then it is the right target.
2827
	 */
2828 2829 2830 2831 2832 2833 2834 2835
	if (target == cpu && idle_cpu(cpu))
		return cpu;

	/*
	 * If the task is going to be woken-up on the cpu where it previously
	 * ran and if it is currently idle, then it the right target.
	 */
	if (target == prev_cpu && idle_cpu(prev_cpu))
2836
		return prev_cpu;
2837 2838

	/*
2839
	 * Otherwise, iterate the domains and find an elegible idle cpu.
2840
	 */
2841
	sd = rcu_dereference(per_cpu(sd_llc, target));
2842
	for_each_lower_domain(sd) {
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
				if (!idle_cpu(i))
					goto next;
			}
2853

2854 2855 2856 2857 2858 2859 2860 2861
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
2862 2863 2864
	return target;
}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
2876
static int
2877
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2878
{
2879
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2880 2881 2882
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
2883
	int want_affine = 0;
2884
	int sync = wake_flags & WF_SYNC;
2885

2886
	if (p->nr_cpus_allowed == 1)
2887 2888
		return prev_cpu;

2889
	if (sd_flag & SD_BALANCE_WAKE) {
2890
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2891 2892 2893
			want_affine = 1;
		new_cpu = prev_cpu;
	}
2894

2895
	rcu_read_lock();
2896
	for_each_domain(cpu, tmp) {
2897 2898 2899
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

2900
		/*
2901 2902
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
2903
		 */
2904 2905 2906
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
2907
			break;
2908
		}
2909

2910
		if (tmp->flags & sd_flag)
2911 2912 2913
			sd = tmp;
	}

2914
	if (affine_sd) {
2915
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
2916 2917 2918 2919
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
2920
	}
2921

2922
	while (sd) {
2923
		int load_idx = sd->forkexec_idx;
2924
		struct sched_group *group;
2925
		int weight;
2926

2927
		if (!(sd->flags & sd_flag)) {
2928 2929 2930
			sd = sd->child;
			continue;
		}
2931

2932 2933
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
2934

2935
		group = find_idlest_group(sd, p, cpu, load_idx);
2936 2937 2938 2939
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
2940

2941
		new_cpu = find_idlest_cpu(group, p, cpu);
2942 2943 2944 2945
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
2946
		}
2947 2948 2949

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
2950
		weight = sd->span_weight;
2951 2952
		sd = NULL;
		for_each_domain(cpu, tmp) {
2953
			if (weight <= tmp->span_weight)
2954
				break;
2955
			if (tmp->flags & sd_flag)
2956 2957 2958
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
2959
	}
2960 2961
unlock:
	rcu_read_unlock();
2962

2963
	return new_cpu;
2964 2965 2966
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
2967 2968
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2969 2970 2971 2972
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
2973 2974
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
2984
	 */
2985
	return calc_delta_fair(gran, se);
2986 2987
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
3010
	gran = wakeup_gran(curr, se);
3011 3012 3013 3014 3015 3016
	if (vdiff > gran)
		return 1;

	return 0;
}

3017 3018
static void set_last_buddy(struct sched_entity *se)
{
3019 3020 3021 3022 3023
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
3024 3025 3026 3027
}

static void set_next_buddy(struct sched_entity *se)
{
3028 3029 3030 3031 3032
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
3033 3034
}

3035 3036
static void set_skip_buddy(struct sched_entity *se)
{
3037 3038
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
3039 3040
}

3041 3042 3043
/*
 * Preempt the current task with a newly woken task if needed:
 */
3044
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3045 3046
{
	struct task_struct *curr = rq->curr;
3047
	struct sched_entity *se = &curr->se, *pse = &p->se;
3048
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3049
	int scale = cfs_rq->nr_running >= sched_nr_latency;
3050
	int next_buddy_marked = 0;
3051

I
Ingo Molnar 已提交
3052 3053 3054
	if (unlikely(se == pse))
		return;

3055
	/*
3056
	 * This is possible from callers such as move_task(), in which we
3057 3058 3059 3060 3061 3062 3063
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

3064
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
3065
		set_next_buddy(pse);
3066 3067
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
3068

3069 3070 3071
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
3072 3073 3074 3075 3076 3077
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
3078 3079 3080 3081
	 */
	if (test_tsk_need_resched(curr))
		return;

3082 3083 3084 3085 3086
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

3087
	/*
3088 3089
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
3090
	 */
3091
	if (unlikely(p->policy != SCHED_NORMAL))
3092
		return;
3093

3094
	find_matching_se(&se, &pse);
3095
	update_curr(cfs_rq_of(se));
3096
	BUG_ON(!pse);
3097 3098 3099 3100 3101 3102 3103
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
3104
		goto preempt;
3105
	}
3106

3107
	return;
3108

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
3125 3126
}

3127
static struct task_struct *pick_next_task_fair(struct rq *rq)
3128
{
P
Peter Zijlstra 已提交
3129
	struct task_struct *p;
3130 3131 3132
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

3133
	if (!cfs_rq->nr_running)
3134 3135 3136
		return NULL;

	do {
3137
		se = pick_next_entity(cfs_rq);
3138
		set_next_entity(cfs_rq, se);
3139 3140 3141
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
3142
	p = task_of(se);
3143 3144
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
3145 3146

	return p;
3147 3148 3149 3150 3151
}

/*
 * Account for a descheduled task:
 */
3152
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3153 3154 3155 3156 3157 3158
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3159
		put_prev_entity(cfs_rq, se);
3160 3161 3162
	}
}

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
3188 3189 3190 3191 3192 3193
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
3194 3195 3196 3197 3198
	}

	set_skip_buddy(se);
}

3199 3200 3201 3202
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

3203 3204
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

3215
#ifdef CONFIG_SMP
3216 3217 3218 3219
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

3220 3221
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

3222
#define LBF_ALL_PINNED	0x01
3223
#define LBF_NEED_BREAK	0x02
3224
#define LBF_SOME_PINNED 0x04
3225 3226 3227 3228 3229

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
3230
	int			src_cpu;
3231 3232 3233 3234

	int			dst_cpu;
	struct rq		*dst_rq;

3235 3236
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
3237
	enum cpu_idle_type	idle;
3238
	long			imbalance;
3239 3240 3241
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

3242
	unsigned int		flags;
3243 3244 3245 3246

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
3247 3248
};

3249
/*
3250
 * move_task - move a task from one runqueue to another runqueue.
3251 3252
 * Both runqueues must be locked.
 */
3253
static void move_task(struct task_struct *p, struct lb_env *env)
3254
{
3255 3256 3257 3258
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
3259 3260
}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

3293 3294 3295 3296
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
3297
int can_migrate_task(struct task_struct *p, struct lb_env *env)
3298 3299 3300 3301 3302 3303 3304 3305
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3306
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3307 3308
		int new_dst_cpu;

3309
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
			return 0;

		new_dst_cpu = cpumask_first_and(env->dst_grpmask,
						tsk_cpus_allowed(p));
		if (new_dst_cpu < nr_cpu_ids) {
			env->flags |= LBF_SOME_PINNED;
			env->new_dst_cpu = new_dst_cpu;
		}
3328 3329
		return 0;
	}
3330 3331

	/* Record that we found atleast one task that could run on dst_cpu */
3332
	env->flags &= ~LBF_ALL_PINNED;
3333

3334
	if (task_running(env->src_rq, p)) {
3335
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3336 3337 3338 3339 3340 3341 3342 3343 3344
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3345
	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3346
	if (!tsk_cache_hot ||
3347
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3348 3349
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
3350
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3351
			schedstat_inc(p, se.statistics.nr_forced_migrations);
3352 3353 3354 3355 3356 3357
		}
#endif
		return 1;
	}

	if (tsk_cache_hot) {
3358
		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3359 3360 3361 3362 3363
		return 0;
	}
	return 1;
}

3364 3365 3366 3367 3368 3369 3370
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
3371
static int move_one_task(struct lb_env *env)
3372 3373 3374
{
	struct task_struct *p, *n;

3375 3376 3377
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
			continue;
3378

3379 3380
		if (!can_migrate_task(p, env))
			continue;
3381

3382 3383 3384 3385 3386 3387 3388 3389
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
3390 3391 3392 3393
	}
	return 0;
}

3394 3395
static unsigned long task_h_load(struct task_struct *p);

3396 3397
static const unsigned int sched_nr_migrate_break = 32;

3398
/*
3399
 * move_tasks tries to move up to imbalance weighted load from busiest to
3400 3401 3402 3403 3404 3405
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
3406
{
3407 3408
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
3409 3410
	unsigned long load;
	int pulled = 0;
3411

3412
	if (env->imbalance <= 0)
3413
		return 0;
3414

3415 3416
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
3417

3418 3419
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
3420
		if (env->loop > env->loop_max)
3421
			break;
3422 3423

		/* take a breather every nr_migrate tasks */
3424
		if (env->loop > env->loop_break) {
3425
			env->loop_break += sched_nr_migrate_break;
3426
			env->flags |= LBF_NEED_BREAK;
3427
			break;
3428
		}
3429

3430
		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3431 3432 3433
			goto next;

		load = task_h_load(p);
3434

3435
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3436 3437
			goto next;

3438
		if ((load / 2) > env->imbalance)
3439
			goto next;
3440

3441 3442
		if (!can_migrate_task(p, env))
			goto next;
3443

3444
		move_task(p, env);
3445
		pulled++;
3446
		env->imbalance -= load;
3447 3448

#ifdef CONFIG_PREEMPT
3449 3450 3451 3452 3453
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3454
		if (env->idle == CPU_NEWLY_IDLE)
3455
			break;
3456 3457
#endif

3458 3459 3460 3461
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
3462
		if (env->imbalance <= 0)
3463
			break;
3464 3465 3466

		continue;
next:
3467
		list_move_tail(&p->se.group_node, tasks);
3468
	}
3469

3470
	/*
3471 3472 3473
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
3474
	 */
3475
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
3476

3477
	return pulled;
3478 3479
}

P
Peter Zijlstra 已提交
3480
#ifdef CONFIG_FAIR_GROUP_SCHED
3481 3482 3483
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
3484
static int update_shares_cpu(struct task_group *tg, int cpu)
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
{
	struct cfs_rq *cfs_rq;
	unsigned long flags;
	struct rq *rq;

	if (!tg->se[cpu])
		return 0;

	rq = cpu_rq(cpu);
	cfs_rq = tg->cfs_rq[cpu];

	raw_spin_lock_irqsave(&rq->lock, flags);

	update_rq_clock(rq);
3499
	update_cfs_load(cfs_rq, 1);
3500 3501 3502 3503 3504

	/*
	 * We need to update shares after updating tg->load_weight in
	 * order to adjust the weight of groups with long running tasks.
	 */
3505
	update_cfs_shares(cfs_rq);
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517

	raw_spin_unlock_irqrestore(&rq->lock, flags);

	return 0;
}

static void update_shares(int cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(cpu);

	rcu_read_lock();
3518 3519 3520 3521
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
3522 3523 3524 3525 3526
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;

3527
		update_shares_cpu(cfs_rq->tg, cpu);
3528
	}
3529 3530 3531
	rcu_read_unlock();
}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
/*
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
static int tg_load_down(struct task_group *tg, void *data)
{
	unsigned long load;
	long cpu = (long)data;

	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->se[cpu]->load.weight;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}

	tg->cfs_rq[cpu]->h_load = load;

	return 0;
}

static void update_h_load(long cpu)
{
3557 3558 3559 3560 3561 3562 3563 3564
	struct rq *rq = cpu_rq(cpu);
	unsigned long now = jiffies;

	if (rq->h_load_throttle == now)
		return;

	rq->h_load_throttle = now;

3565
	rcu_read_lock();
3566
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3567
	rcu_read_unlock();
3568 3569
}

3570
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
3571
{
3572 3573
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
	unsigned long load;
P
Peter Zijlstra 已提交
3574

3575 3576
	load = p->se.load.weight;
	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
P
Peter Zijlstra 已提交
3577

3578
	return load;
P
Peter Zijlstra 已提交
3579 3580
}
#else
3581 3582 3583 3584
static inline void update_shares(int cpu)
{
}

3585
static inline void update_h_load(long cpu)
P
Peter Zijlstra 已提交
3586 3587 3588
{
}

3589
static unsigned long task_h_load(struct task_struct *p)
3590
{
3591
	return p->se.load.weight;
3592
}
P
Peter Zijlstra 已提交
3593
#endif
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
3611
	unsigned long this_has_capacity;
3612
	unsigned int  this_idle_cpus;
3613 3614

	/* Statistics of the busiest group */
3615
	unsigned int  busiest_idle_cpus;
3616 3617 3618
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
3619
	unsigned long busiest_group_capacity;
3620
	unsigned long busiest_has_capacity;
3621
	unsigned int  busiest_group_weight;
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634

	int group_imb; /* Is there imbalance in this sd */
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
3635 3636
	unsigned long idle_cpus;
	unsigned long group_weight;
3637
	int group_imb; /* Is there an imbalance in the group ? */
3638
	int group_has_capacity; /* Is there extra capacity in the group? */
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
};

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
3669
	return SCHED_POWER_SCALE;
3670 3671 3672 3673 3674 3675 3676 3677 3678
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
3679
	unsigned long weight = sd->span_weight;
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
3695
	u64 total, available, age_stamp, avg;
3696

3697 3698 3699 3700 3701 3702 3703 3704
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

	total = sched_avg_period() + (rq->clock - age_stamp);
3705

3706
	if (unlikely(total < avg)) {
3707 3708 3709
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
3710
		available = total - avg;
3711
	}
3712

3713 3714
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
3715

3716
	total >>= SCHED_POWER_SHIFT;
3717 3718 3719 3720 3721 3722

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
3723
	unsigned long weight = sd->span_weight;
3724
	unsigned long power = SCHED_POWER_SCALE;
3725 3726 3727 3728 3729 3730 3731 3732
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3733
		power >>= SCHED_POWER_SHIFT;
3734 3735
	}

3736
	sdg->sgp->power_orig = power;
3737 3738 3739 3740 3741 3742

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3743
	power >>= SCHED_POWER_SHIFT;
3744

3745
	power *= scale_rt_power(cpu);
3746
	power >>= SCHED_POWER_SHIFT;
3747 3748 3749 3750

	if (!power)
		power = 1;

3751
	cpu_rq(cpu)->cpu_power = power;
3752
	sdg->sgp->power = power;
3753 3754
}

3755
void update_group_power(struct sched_domain *sd, int cpu)
3756 3757 3758 3759
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;
3760 3761 3762 3763 3764
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
3765 3766 3767 3768 3769 3770 3771 3772

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

P
Peter Zijlstra 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

		for_each_cpu(cpu, sched_group_cpus(sdg))
			power += power_of(cpu);
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
3793

3794
	sdg->sgp->power_orig = sdg->sgp->power = power;
3795 3796
}

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
3808
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3809
	 */
P
Peter Zijlstra 已提交
3810
	if (!(sd->flags & SD_SHARE_CPUPOWER))
3811 3812 3813 3814 3815
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
3816
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3817 3818 3819 3820 3821
		return 1;

	return 0;
}

3822 3823
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3824
 * @env: The load balancing environment.
3825 3826 3827 3828 3829 3830
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3831 3832
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
3833
			int local_group, int *balance, struct sg_lb_stats *sgs)
3834
{
3835 3836
	unsigned long nr_running, max_nr_running, min_nr_running;
	unsigned long load, max_cpu_load, min_cpu_load;
3837
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3838
	unsigned long avg_load_per_task = 0;
3839
	int i;
3840

3841
	if (local_group)
P
Peter Zijlstra 已提交
3842
		balance_cpu = group_balance_cpu(group);
3843 3844 3845 3846

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3847
	max_nr_running = 0;
3848
	min_nr_running = ~0UL;
3849

3850
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
3851 3852
		struct rq *rq = cpu_rq(i);

3853 3854
		nr_running = rq->nr_running;

3855 3856
		/* Bias balancing toward cpus of our domain */
		if (local_group) {
P
Peter Zijlstra 已提交
3857 3858
			if (idle_cpu(i) && !first_idle_cpu &&
					cpumask_test_cpu(i, sched_group_mask(group))) {
3859
				first_idle_cpu = 1;
3860 3861
				balance_cpu = i;
			}
3862 3863

			load = target_load(i, load_idx);
3864 3865
		} else {
			load = source_load(i, load_idx);
3866
			if (load > max_cpu_load)
3867 3868 3869
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
3870 3871 3872 3873 3874

			if (nr_running > max_nr_running)
				max_nr_running = nr_running;
			if (min_nr_running > nr_running)
				min_nr_running = nr_running;
3875 3876 3877
		}

		sgs->group_load += load;
3878
		sgs->sum_nr_running += nr_running;
3879
		sgs->sum_weighted_load += weighted_cpuload(i);
3880 3881
		if (idle_cpu(i))
			sgs->idle_cpus++;
3882 3883 3884 3885 3886 3887 3888 3889
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
3890
	if (local_group) {
3891
		if (env->idle != CPU_NEWLY_IDLE) {
3892
			if (balance_cpu != env->dst_cpu) {
3893 3894 3895
				*balance = 0;
				return;
			}
3896
			update_group_power(env->sd, env->dst_cpu);
3897
		} else if (time_after_eq(jiffies, group->sgp->next_update))
3898
			update_group_power(env->sd, env->dst_cpu);
3899 3900 3901
	}

	/* Adjust by relative CPU power of the group */
3902
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3903 3904 3905

	/*
	 * Consider the group unbalanced when the imbalance is larger
P
Peter Zijlstra 已提交
3906
	 * than the average weight of a task.
3907 3908 3909 3910 3911 3912
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3913 3914
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3915

3916 3917
	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
	    (max_nr_running - min_nr_running) > 1)
3918 3919
		sgs->group_imb = 1;

3920
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3921
						SCHED_POWER_SCALE);
3922
	if (!sgs->group_capacity)
3923
		sgs->group_capacity = fix_small_capacity(env->sd, group);
3924
	sgs->group_weight = group->group_weight;
3925 3926 3927

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
3928 3929
}

3930 3931
/**
 * update_sd_pick_busiest - return 1 on busiest group
3932
 * @env: The load balancing environment.
3933 3934
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
3935
 * @sgs: sched_group statistics
3936 3937 3938 3939
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
3940
static bool update_sd_pick_busiest(struct lb_env *env,
3941 3942
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
3943
				   struct sg_lb_stats *sgs)
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
3959 3960
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

3971
/**
3972
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3973
 * @env: The load balancing environment.
3974 3975 3976
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
3977
static inline void update_sd_lb_stats(struct lb_env *env,
3978
					int *balance, struct sd_lb_stats *sds)
3979
{
3980 3981
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
3982 3983 3984 3985 3986 3987
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

3988
	load_idx = get_sd_load_idx(env->sd, env->idle);
3989 3990 3991 3992

	do {
		int local_group;

3993
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
3994
		memset(&sgs, 0, sizeof(sgs));
3995
		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
3996

P
Peter Zijlstra 已提交
3997
		if (local_group && !(*balance))
3998 3999 4000
			return;

		sds->total_load += sgs.group_load;
4001
		sds->total_pwr += sg->sgp->power;
4002 4003 4004

		/*
		 * In case the child domain prefers tasks go to siblings
4005
		 * first, lower the sg capacity to one so that we'll try
4006 4007 4008 4009 4010 4011
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
4012
		 */
4013
		if (prefer_sibling && !local_group && sds->this_has_capacity)
4014 4015 4016 4017
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
4018
			sds->this = sg;
4019 4020
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
4021
			sds->this_has_capacity = sgs.group_has_capacity;
4022
			sds->this_idle_cpus = sgs.idle_cpus;
4023
		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4024
			sds->max_load = sgs.avg_load;
4025
			sds->busiest = sg;
4026
			sds->busiest_nr_running = sgs.sum_nr_running;
4027
			sds->busiest_idle_cpus = sgs.idle_cpus;
4028
			sds->busiest_group_capacity = sgs.group_capacity;
4029
			sds->busiest_load_per_task = sgs.sum_weighted_load;
4030
			sds->busiest_has_capacity = sgs.group_has_capacity;
4031
			sds->busiest_group_weight = sgs.group_weight;
4032 4033 4034
			sds->group_imb = sgs.group_imb;
		}

4035
		sg = sg->next;
4036
	} while (sg != env->sd->groups);
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
4056 4057 4058
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
4059
 * @env: The load balancing environment.
4060 4061
 * @sds: Statistics of the sched_domain which is to be packed
 */
4062
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4063 4064 4065
{
	int busiest_cpu;

4066
	if (!(env->sd->flags & SD_ASYM_PACKING))
4067 4068 4069 4070 4071 4072
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
4073
	if (env->dst_cpu > busiest_cpu)
4074 4075
		return 0;

4076 4077 4078
	env->imbalance = DIV_ROUND_CLOSEST(
		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);

4079
	return 1;
4080 4081 4082 4083 4084 4085
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
4086
 * @env: The load balancing environment.
4087 4088
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
4089 4090
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4091 4092 4093
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
4094
	unsigned long scaled_busy_load_per_task;
4095 4096 4097 4098 4099 4100

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
4101
	} else {
4102
		sds->this_load_per_task =
4103 4104
			cpu_avg_load_per_task(env->dst_cpu);
	}
4105

4106
	scaled_busy_load_per_task = sds->busiest_load_per_task
4107
					 * SCHED_POWER_SCALE;
4108
	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4109 4110 4111

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
4112
		env->imbalance = sds->busiest_load_per_task;
4113 4114 4115 4116 4117 4118 4119 4120 4121
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

4122
	pwr_now += sds->busiest->sgp->power *
4123
			min(sds->busiest_load_per_task, sds->max_load);
4124
	pwr_now += sds->this->sgp->power *
4125
			min(sds->this_load_per_task, sds->this_load);
4126
	pwr_now /= SCHED_POWER_SCALE;
4127 4128

	/* Amount of load we'd subtract */
4129
	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4130
		sds->busiest->sgp->power;
4131
	if (sds->max_load > tmp)
4132
		pwr_move += sds->busiest->sgp->power *
4133 4134 4135
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
4136
	if (sds->max_load * sds->busiest->sgp->power <
4137
		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4138 4139
		tmp = (sds->max_load * sds->busiest->sgp->power) /
			sds->this->sgp->power;
4140
	else
4141
		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4142 4143
			sds->this->sgp->power;
	pwr_move += sds->this->sgp->power *
4144
			min(sds->this_load_per_task, sds->this_load + tmp);
4145
	pwr_move /= SCHED_POWER_SCALE;
4146 4147 4148

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
4149
		env->imbalance = sds->busiest_load_per_task;
4150 4151 4152 4153 4154
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
4155
 * @env: load balance environment
4156 4157
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
4158
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4159
{
4160 4161 4162 4163 4164 4165 4166 4167
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

4168 4169 4170 4171 4172 4173
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
4174 4175
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
4176 4177
	}

4178 4179 4180 4181 4182 4183 4184
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

4185
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4186

4187
		load_above_capacity /= sds->busiest->sgp->power;
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4201 4202

	/* How much load to actually move to equalise the imbalance */
4203
	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4204
		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4205
			/ SCHED_POWER_SCALE;
4206 4207 4208

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
4209
	 * there is no guarantee that any tasks will be moved so we'll have
4210 4211 4212
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
4213 4214
	if (env->imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(env, sds);
4215 4216

}
4217

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
4230
 * @env: The load balancing environment.
4231 4232 4233 4234 4235 4236 4237 4238 4239
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
4240
find_busiest_group(struct lb_env *env, int *balance)
4241 4242 4243 4244 4245 4246 4247 4248 4249
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
4250
	update_sd_lb_stats(env, balance, &sds);
4251

4252 4253 4254
	/*
	 * this_cpu is not the appropriate cpu to perform load balancing at
	 * this level.
4255
	 */
P
Peter Zijlstra 已提交
4256
	if (!(*balance))
4257 4258
		goto ret;

4259 4260
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
4261 4262
		return sds.busiest;

4263
	/* There is no busy sibling group to pull tasks from */
4264 4265 4266
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

4267
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4268

P
Peter Zijlstra 已提交
4269 4270 4271 4272 4273 4274 4275 4276
	/*
	 * If the busiest group is imbalanced the below checks don't
	 * work because they assumes all things are equal, which typically
	 * isn't true due to cpus_allowed constraints and the like.
	 */
	if (sds.group_imb)
		goto force_balance;

4277
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4278
	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4279 4280 4281
			!sds.busiest_has_capacity)
		goto force_balance;

4282 4283 4284 4285
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
4286 4287 4288
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

4289 4290 4291 4292
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
4293 4294 4295
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

4296
	if (env->idle == CPU_IDLE) {
4297 4298 4299 4300 4301 4302
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
4303
		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4304 4305
		    sds.busiest_nr_running <= sds.busiest_group_weight)
			goto out_balanced;
4306 4307 4308 4309 4310
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
4311
		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4312
			goto out_balanced;
4313
	}
4314

4315
force_balance:
4316
	/* Looks like there is an imbalance. Compute it */
4317
	calculate_imbalance(env, &sds);
4318 4319 4320 4321
	return sds.busiest;

out_balanced:
ret:
4322
	env->imbalance = 0;
4323 4324 4325 4326 4327 4328
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4329
static struct rq *find_busiest_queue(struct lb_env *env,
4330
				     struct sched_group *group)
4331 4332 4333 4334 4335 4336 4337
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
4338 4339
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
4340 4341
		unsigned long wl;

4342
		if (!capacity)
4343
			capacity = fix_small_capacity(env->sd, group);
4344

4345
		if (!cpumask_test_cpu(i, env->cpus))
4346 4347 4348
			continue;

		rq = cpu_rq(i);
4349
		wl = weighted_cpuload(i);
4350

4351 4352 4353 4354
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
4355
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4356 4357
			continue;

4358 4359 4360 4361 4362 4363
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
4364
		wl = (wl * SCHED_POWER_SCALE) / power;
4365

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
4382
DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4383

4384
static int need_active_balance(struct lb_env *env)
4385
{
4386 4387 4388
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
4389 4390 4391 4392 4393 4394

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
4395
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4396
			return 1;
4397 4398 4399 4400 4401
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

4402 4403
static int active_load_balance_cpu_stop(void *data);

4404 4405 4406 4407 4408 4409 4410 4411
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
4412 4413
	int ld_moved, cur_ld_moved, active_balance = 0;
	int lb_iterations, max_lb_iterations;
4414 4415 4416 4417 4418
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);

4419 4420
	struct lb_env env = {
		.sd		= sd,
4421 4422
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
4423
		.dst_grpmask    = sched_group_cpus(sd->groups),
4424
		.idle		= idle,
4425
		.loop_break	= sched_nr_migrate_break,
4426
		.cpus		= cpus,
4427 4428
	};

4429
	cpumask_copy(cpus, cpu_active_mask);
4430
	max_lb_iterations = cpumask_weight(env.dst_grpmask);
4431 4432 4433 4434

	schedstat_inc(sd, lb_count[idle]);

redo:
4435
	group = find_busiest_group(&env, balance);
4436 4437 4438 4439 4440 4441 4442 4443 4444

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4445
	busiest = find_busiest_queue(&env, group);
4446 4447 4448 4449 4450
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

4451
	BUG_ON(busiest == env.dst_rq);
4452

4453
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4454 4455

	ld_moved = 0;
4456
	lb_iterations = 1;
4457 4458 4459 4460 4461 4462 4463
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
4464
		env.flags |= LBF_ALL_PINNED;
4465 4466 4467
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
4468

4469
		update_h_load(env.src_cpu);
4470
more_balance:
4471
		local_irq_save(flags);
4472
		double_rq_lock(env.dst_rq, busiest);
4473 4474 4475 4476 4477 4478 4479

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
4480
		double_rq_unlock(env.dst_rq, busiest);
4481 4482
		local_irq_restore(flags);

4483 4484 4485 4486 4487
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

4488 4489 4490
		/*
		 * some other cpu did the load balance for us.
		 */
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
				lb_iterations++ < max_lb_iterations) {

4516
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
			env.dst_cpu	 = env.new_dst_cpu;
			env.flags	&= ~LBF_SOME_PINNED;
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
4527 4528

		/* All tasks on this runqueue were pinned by CPU affinity */
4529
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
4530
			cpumask_clear_cpu(cpu_of(busiest), cpus);
4531 4532 4533
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
4534
				goto redo;
4535
			}
4536 4537 4538 4539 4540 4541
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
4542 4543 4544 4545 4546 4547 4548 4549
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
4550

4551
		if (need_active_balance(&env)) {
4552 4553
			raw_spin_lock_irqsave(&busiest->lock, flags);

4554 4555 4556
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
4557 4558
			 */
			if (!cpumask_test_cpu(this_cpu,
4559
					tsk_cpus_allowed(busiest->curr))) {
4560 4561
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
4562
				env.flags |= LBF_ALL_PINNED;
4563 4564 4565
				goto out_one_pinned;
			}

4566 4567 4568 4569 4570
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
4571 4572 4573 4574 4575 4576
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4577

4578
			if (active_balance) {
4579 4580 4581
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
4582
			}
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
4616
	if (((env.flags & LBF_ALL_PINNED) &&
4617
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4618 4619 4620
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

4621
	ld_moved = 0;
4622 4623 4624 4625 4626 4627 4628 4629
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4630
void idle_balance(int this_cpu, struct rq *this_rq)
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

4641 4642 4643 4644 4645
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

P
Paul Turner 已提交
4646
	update_shares(this_cpu);
4647
	rcu_read_lock();
4648 4649
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
4650
		int balance = 1;
4651 4652 4653 4654

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

4655
		if (sd->flags & SD_BALANCE_NEWIDLE) {
4656
			/* If we've pulled tasks over stop searching: */
4657 4658 4659
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
4660 4661 4662 4663

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
4664 4665
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4666
			break;
N
Nikhil Rao 已提交
4667
		}
4668
	}
4669
	rcu_read_unlock();
4670 4671 4672

	raw_spin_lock(&this_rq->lock);

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
4683 4684 4685 4686
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
4687
 */
4688
static int active_load_balance_cpu_stop(void *data)
4689
{
4690 4691
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
4692
	int target_cpu = busiest_rq->push_cpu;
4693
	struct rq *target_rq = cpu_rq(target_cpu);
4694
	struct sched_domain *sd;
4695 4696 4697 4698 4699 4700 4701

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
4702 4703 4704

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
4705
		goto out_unlock;
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
4718
	rcu_read_lock();
4719 4720 4721 4722 4723 4724 4725
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
4726 4727
		struct lb_env env = {
			.sd		= sd,
4728 4729 4730 4731
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
4732 4733 4734
			.idle		= CPU_IDLE,
		};

4735 4736
		schedstat_inc(sd, alb_count);

4737
		if (move_one_task(&env))
4738 4739 4740 4741
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4742
	rcu_read_unlock();
4743
	double_unlock_balance(busiest_rq, target_rq);
4744 4745 4746 4747
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
4748 4749 4750
}

#ifdef CONFIG_NO_HZ
4751 4752 4753 4754 4755 4756
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
4757
static struct {
4758
	cpumask_var_t idle_cpus_mask;
4759
	atomic_t nr_cpus;
4760 4761
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
4762

4763
static inline int find_new_ilb(int call_cpu)
4764
{
4765
	int ilb = cpumask_first(nohz.idle_cpus_mask);
4766

4767 4768 4769 4770
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
4771 4772
}

4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

4784
	ilb_cpu = find_new_ilb(cpu);
4785

4786 4787
	if (ilb_cpu >= nr_cpu_ids)
		return;
4788

4789
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4790 4791 4792 4793 4794 4795 4796 4797
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
4798 4799 4800
	return;
}

4801
static inline void nohz_balance_exit_idle(int cpu)
4802 4803 4804 4805 4806 4807 4808 4809
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	clear_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	set_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

4840
/*
4841
 * This routine will record that the cpu is going idle with tick stopped.
4842
 * This info will be used in performing idle load balancing in the future.
4843
 */
4844
void nohz_balance_enter_idle(int cpu)
4845
{
4846 4847 4848 4849 4850 4851
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

4852 4853
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
4854

4855 4856 4857
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4858
}
4859 4860 4861 4862 4863 4864

static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
4865
		nohz_balance_exit_idle(smp_processor_id());
4866 4867 4868 4869 4870
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
4871 4872 4873 4874
#endif

static DEFINE_SPINLOCK(balancing);

4875 4876 4877 4878
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
4879
void update_max_interval(void)
4880 4881 4882 4883
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
4895
	struct sched_domain *sd;
4896 4897 4898 4899 4900
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

P
Peter Zijlstra 已提交
4901 4902
	update_shares(cpu);

4903
	rcu_read_lock();
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
4914
		interval = clamp(interval, 1UL, max_load_balance_interval);
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * We've pulled tasks over so either we're no
4927
				 * longer idle.
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
				 */
				idle = CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}
4949
	rcu_read_unlock();
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

4960
#ifdef CONFIG_NO_HZ
4961
/*
4962
 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4963 4964
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
4965 4966 4967 4968 4969 4970
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

4971 4972 4973
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
4974 4975

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4976
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
4977 4978 4979 4980 4981 4982 4983
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
4984
		if (need_resched())
4985 4986
			break;

V
Vincent Guittot 已提交
4987 4988 4989 4990 4991 4992
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
4993 4994 4995 4996 4997 4998 4999

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
5000 5001
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5002 5003 5004
}

/*
5005 5006 5007 5008 5009 5010 5011
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
5012 5013 5014 5015
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
5016
	struct sched_domain *sd;
5017

5018
	if (unlikely(idle_cpu(cpu)))
5019 5020
		return 0;

5021 5022 5023 5024
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
5025
	set_cpu_sd_state_busy();
5026
	nohz_balance_exit_idle(cpu);
5027 5028 5029 5030 5031 5032 5033

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
5034 5035

	if (time_before(now, nohz.next_balance))
5036 5037
		return 0;

5038 5039
	if (rq->nr_running >= 2)
		goto need_kick;
5040

5041
	rcu_read_lock();
5042 5043 5044 5045
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5046

5047
		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5048
			goto need_kick_unlock;
5049 5050 5051 5052

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
5053
			goto need_kick_unlock;
5054 5055 5056

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
5057
	}
5058
	rcu_read_unlock();
5059
	return 0;
5060 5061 5062

need_kick_unlock:
	rcu_read_unlock();
5063 5064
need_kick:
	return 1;
5065 5066 5067 5068 5069 5070 5071 5072 5073
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
5074 5075 5076 5077
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
5078
	enum cpu_idle_type idle = this_rq->idle_balance ?
5079 5080 5081 5082 5083
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
5084
	 * If this cpu has a pending nohz_balance_kick, then do the
5085 5086 5087
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
5088
	nohz_idle_balance(this_cpu, idle);
5089 5090 5091 5092
}

static inline int on_null_domain(int cpu)
{
5093
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5094 5095 5096 5097 5098
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
5099
void trigger_load_balance(struct rq *rq, int cpu)
5100 5101 5102 5103 5104
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
5105
#ifdef CONFIG_NO_HZ
5106
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5107 5108
		nohz_balancer_kick(cpu);
#endif
5109 5110
}

5111 5112 5113 5114 5115 5116 5117 5118
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
5119 5120 5121

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
5122 5123
}

5124
#endif /* CONFIG_SMP */
5125

5126 5127 5128
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
5129
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5130 5131 5132 5133 5134 5135
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
5136
		entity_tick(cfs_rq, se, queued);
5137
	}
5138 5139 5140

	if (sched_feat_numa(NUMA))
		task_tick_numa(rq, curr);
5141 5142 5143
}

/*
P
Peter Zijlstra 已提交
5144 5145 5146
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
5147
 */
P
Peter Zijlstra 已提交
5148
static void task_fork_fair(struct task_struct *p)
5149
{
5150 5151
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
5152
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
5153 5154 5155
	struct rq *rq = this_rq();
	unsigned long flags;

5156
	raw_spin_lock_irqsave(&rq->lock, flags);
5157

5158 5159
	update_rq_clock(rq);

5160 5161 5162
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

5163 5164
	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
P
Peter Zijlstra 已提交
5165
		__set_task_cpu(p, this_cpu);
5166 5167
		rcu_read_unlock();
	}
5168

5169
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
5170

5171 5172
	if (curr)
		se->vruntime = curr->vruntime;
5173
	place_entity(cfs_rq, se, 1);
5174

P
Peter Zijlstra 已提交
5175
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
5176
		/*
5177 5178 5179
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
5180
		swap(curr->vruntime, se->vruntime);
5181
		resched_task(rq->curr);
5182
	}
5183

5184 5185
	se->vruntime -= cfs_rq->min_vruntime;

5186
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5187 5188
}

5189 5190 5191 5192
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
5193 5194
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5195
{
P
Peter Zijlstra 已提交
5196 5197 5198
	if (!p->se.on_rq)
		return;

5199 5200 5201 5202 5203
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
5204
	if (rq->curr == p) {
5205 5206 5207
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
5208
		check_preempt_curr(rq, p, 0);
5209 5210
}

P
Peter Zijlstra 已提交
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
}

5235 5236 5237
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
5238
static void switched_to_fair(struct rq *rq, struct task_struct *p)
5239
{
P
Peter Zijlstra 已提交
5240 5241 5242
	if (!p->se.on_rq)
		return;

5243 5244 5245 5246 5247
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
5248
	if (rq->curr == p)
5249 5250
		resched_task(rq->curr);
	else
5251
		check_preempt_curr(rq, p, 0);
5252 5253
}

5254 5255 5256 5257 5258 5259 5260 5261 5262
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

5263 5264 5265 5266 5267 5268 5269
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
5270 5271
}

5272 5273 5274 5275 5276 5277 5278 5279 5280
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
}

P
Peter Zijlstra 已提交
5281
#ifdef CONFIG_FAIR_GROUP_SCHED
5282
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
5283
{
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
5297 5298 5299 5300 5301 5302
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
5303 5304
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
5305 5306 5307 5308
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
5309
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5310 5311
		on_rq = 1;

5312 5313 5314
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
5315
	if (!on_rq)
5316
		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
P
Peter Zijlstra 已提交
5317
}
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
#ifdef CONFIG_SMP
	/* allow initial update_cfs_load() to truncate */
	cfs_rq->load_stamp = 1;
P
Peter Zijlstra 已提交
5404
#endif
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
5473

5474
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

5489 5490 5491
/*
 * All the scheduling class methods:
 */
5492
const struct sched_class fair_sched_class = {
5493
	.next			= &idle_sched_class,
5494 5495 5496
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
5497
	.yield_to_task		= yield_to_task_fair,
5498

I
Ingo Molnar 已提交
5499
	.check_preempt_curr	= check_preempt_wakeup,
5500 5501 5502 5503

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

5504
#ifdef CONFIG_SMP
L
Li Zefan 已提交
5505 5506
	.select_task_rq		= select_task_rq_fair,

5507 5508
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
5509 5510

	.task_waking		= task_waking_fair,
5511
#endif
5512

5513
	.set_curr_task          = set_curr_task_fair,
5514
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
5515
	.task_fork		= task_fork_fair,
5516 5517

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
5518
	.switched_from		= switched_from_fair,
5519
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
5520

5521 5522
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
5523
#ifdef CONFIG_FAIR_GROUP_SCHED
5524
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
5525
#endif
5526 5527 5528
};

#ifdef CONFIG_SCHED_DEBUG
5529
void print_cfs_stats(struct seq_file *m, int cpu)
5530 5531 5532
{
	struct cfs_rq *cfs_rq;

5533
	rcu_read_lock();
5534
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5535
		print_cfs_rq(m, cpu, cfs_rq);
5536
	rcu_read_unlock();
5537 5538
}
#endif
5539 5540 5541 5542 5543 5544 5545

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

#ifdef CONFIG_NO_HZ
5546
	nohz.next_balance = jiffies;
5547
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5548
	cpu_notifier(sched_ilb_notifier, 0);
5549 5550 5551 5552
#endif
#endif /* SMP */

}