fair.c 136.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29 30
#include <linux/mempolicy.h>
#include <linux/task_work.h>
31 32 33 34

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
35

36
/*
37
 * Targeted preemption latency for CPU-bound tasks:
38
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 *
40
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
41 42 43
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
44
 *
I
Ingo Molnar 已提交
45 46
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
47
 */
48 49
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
50

51 52 53 54 55 56 57 58 59 60 61 62
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

63
/*
64
 * Minimal preemption granularity for CPU-bound tasks:
65
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
66
 */
67 68
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
69 70

/*
71 72
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
73
static unsigned int sched_nr_latency = 8;
74 75

/*
76
 * After fork, child runs first. If set to 0 (default) then
77
 * parent will (try to) run first.
78
 */
79
unsigned int sysctl_sched_child_runs_first __read_mostly;
80 81 82

/*
 * SCHED_OTHER wake-up granularity.
83
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 85 86 87 88
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
89
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
90
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
91

92 93
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

94 95 96 97 98 99 100
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

101 102 103 104 105 106 107 108 109 110 111 112 113 114
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
219

220 221 222 223
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

224
#ifdef CONFIG_FAIR_GROUP_SCHED
225

226
/* cpu runqueue to which this cfs_rq is attached */
227 228
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
229
	return cfs_rq->rq;
230 231
}

232 233
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
234

235 236 237 238 239 240 241 242
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

264 265 266
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
267 268 269 270 271 272 273 274 275 276 277 278
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
279
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
280
		}
281 282 283 284 285 286 287 288 289 290 291 292 293

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

356 357 358 359 360 361
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
362

363 364 365
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
366 367 368 369
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
370 371
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
372

P
Peter Zijlstra 已提交
373
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
374
{
P
Peter Zijlstra 已提交
375
	return &task_rq(p)->cfs;
376 377
}

P
Peter Zijlstra 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

392 393 394 395 396 397 398 399
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

414 415 416 417 418
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
419 420
#endif	/* CONFIG_FAIR_GROUP_SCHED */

421 422
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
423 424 425 426 427

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

428
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
429
{
430 431
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
432 433 434 435 436
		min_vruntime = vruntime;

	return min_vruntime;
}

437
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
438 439 440 441 442 443 444 445
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

446 447 448 449 450 451
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

452 453 454 455 456 457 458 459 460 461 462 463
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
464
		if (!cfs_rq->curr)
465 466 467 468 469 470
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
471 472 473 474
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
475 476
}

477 478 479
/*
 * Enqueue an entity into the rb-tree:
 */
480
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
497
		if (entity_before(se, entry)) {
498 499 500 501 502 503 504 505 506 507 508
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
509
	if (leftmost)
I
Ingo Molnar 已提交
510
		cfs_rq->rb_leftmost = &se->run_node;
511 512 513 514 515

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

516
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
517
{
P
Peter Zijlstra 已提交
518 519 520 521 522 523
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
524

525 526 527
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

528
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
529
{
530 531 532 533 534 535
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
536 537
}

538 539 540 541 542 543 544 545 546 547 548
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
549
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
550
{
551
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
552

553 554
	if (!last)
		return NULL;
555 556

	return rb_entry(last, struct sched_entity, run_node);
557 558
}

559 560 561 562
/**************************************************************
 * Scheduling class statistics methods:
 */

563
int sched_proc_update_handler(struct ctl_table *table, int write,
564
		void __user *buffer, size_t *lenp,
565 566
		loff_t *ppos)
{
567
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
568
	int factor = get_update_sysctl_factor();
569 570 571 572 573 574 575

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

576 577 578 579 580 581 582
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

583 584 585
	return 0;
}
#endif
586

587
/*
588
 * delta /= w
589 590 591 592
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
593 594
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
595 596 597 598

	return delta;
}

599 600 601
/*
 * The idea is to set a period in which each task runs once.
 *
602
 * When there are too many tasks (sched_nr_latency) we have to stretch
603 604 605 606
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
607 608 609
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
610
	unsigned long nr_latency = sched_nr_latency;
611 612

	if (unlikely(nr_running > nr_latency)) {
613
		period = sysctl_sched_min_granularity;
614 615 616 617 618 619
		period *= nr_running;
	}

	return period;
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642 643 644 645

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
646 647
}

648
/*
649
 * We calculate the vruntime slice of a to be inserted task
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
659
static void update_cfs_shares(struct cfs_rq *cfs_rq);
660

661 662 663 664 665
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
666 667
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
668
{
669
	unsigned long delta_exec_weighted;
670

671 672
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
673 674

	curr->sum_exec_runtime += delta_exec;
675
	schedstat_add(cfs_rq, exec_clock, delta_exec);
676
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
677

I
Ingo Molnar 已提交
678
	curr->vruntime += delta_exec_weighted;
679
	update_min_vruntime(cfs_rq);
680

P
Peter Zijlstra 已提交
681
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
682 683
	cfs_rq->load_unacc_exec_time += delta_exec;
#endif
684 685
}

686
static void update_curr(struct cfs_rq *cfs_rq)
687
{
688
	struct sched_entity *curr = cfs_rq->curr;
689
	u64 now = rq_of(cfs_rq)->clock_task;
690 691 692 693 694 695 696 697 698 699
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
700
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
701 702
	if (!delta_exec)
		return;
703

I
Ingo Molnar 已提交
704 705
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
706 707 708 709

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

710
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
711
		cpuacct_charge(curtask, delta_exec);
712
		account_group_exec_runtime(curtask, delta_exec);
713
	}
714 715

	account_cfs_rq_runtime(cfs_rq, delta_exec);
716 717 718
}

static inline void
719
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
720
{
721
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
722 723 724 725 726
}

/*
 * Task is being enqueued - update stats:
 */
727
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
728 729 730 731 732
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
733
	if (se != cfs_rq->curr)
734
		update_stats_wait_start(cfs_rq, se);
735 736 737
}

static void
738
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
739
{
740 741 742 743 744
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
745 746 747
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
748
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
749 750
	}
#endif
751
	schedstat_set(se->statistics.wait_start, 0);
752 753 754
}

static inline void
755
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 757 758 759 760
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
761
	if (se != cfs_rq->curr)
762
		update_stats_wait_end(cfs_rq, se);
763 764 765 766 767 768
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
769
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 771 772 773
{
	/*
	 * We are starting a new run period:
	 */
774
	se->exec_start = rq_of(cfs_rq)->clock_task;
775 776 777 778 779 780
}

/**************************************************
 * Scheduling class queueing methods:
 */

781 782
#ifdef CONFIG_NUMA_BALANCING
/*
783
 * numa task sample period in ms
784
 */
785 786 787 788 789
unsigned int sysctl_numa_balancing_scan_period_min = 100;
unsigned int sysctl_numa_balancing_scan_period_max = 100*16;

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

static void task_numa_placement(struct task_struct *p)
{
	int seq = ACCESS_ONCE(p->mm->numa_scan_seq);

	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;

	/* FIXME: Scheduling placement policy hints go here */
}

/*
 * Got a PROT_NONE fault for a page on @node.
 */
void task_numa_fault(int node, int pages)
{
	struct task_struct *p = current;

	/* FIXME: Allocate task-specific structure for placement policy here */

	task_numa_placement(p);
}

814 815 816 817 818 819
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

820 821 822 823 824 825 826 827 828
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
829 830 831
	struct vm_area_struct *vma;
	unsigned long offset, end;
	long length;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

	if (p->numa_scan_period == 0)
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;

	next_scan = now + 2*msecs_to_jiffies(p->numa_scan_period);
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

861 862 863
	offset = mm->numa_scan_offset;
	length = sysctl_numa_balancing_scan_size;
	length <<= 20;
864

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	down_read(&mm->mmap_sem);
	vma = find_vma(mm, offset);
	if (!vma) {
		reset_ptenuma_scan(p);
		offset = 0;
		vma = mm->mmap;
	}
	for (; vma && length > 0; vma = vma->vm_next) {
		if (!vma_migratable(vma))
			continue;

		/* Skip small VMAs. They are not likely to be of relevance */
		if (((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) < HPAGE_PMD_NR)
			continue;

		offset = max(offset, vma->vm_start);
		end = min(ALIGN(offset + length, HPAGE_SIZE), vma->vm_end);
		length -= end - offset;

		change_prot_numa(vma, offset, end);

		offset = end;
887
	}
888 889 890 891 892 893 894 895 896 897 898 899

	/*
	 * It is possible to reach the end of the VMA list but the last few VMAs are
	 * not guaranteed to the vma_migratable. If they are not, we would find the
	 * !migratable VMA on the next scan but not reset the scanner to the start
	 * so check it now.
	 */
	if (vma)
		mm->numa_scan_offset = offset;
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
		curr->node_stamp = now;

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
#endif /* CONFIG_NUMA_BALANCING */

940 941 942 943
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
944
	if (!parent_entity(se))
945
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
946 947
#ifdef CONFIG_SMP
	if (entity_is_task(se))
948
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
949
#endif
950 951 952 953 954 955 956
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
957
	if (!parent_entity(se))
958
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
959
	if (entity_is_task(se))
960
		list_del_init(&se->group_node);
961 962 963
	cfs_rq->nr_running--;
}

964
#ifdef CONFIG_FAIR_GROUP_SCHED
965 966
/* we need this in update_cfs_load and load-balance functions below */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
967
# ifdef CONFIG_SMP
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
					    int global_update)
{
	struct task_group *tg = cfs_rq->tg;
	long load_avg;

	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
	load_avg -= cfs_rq->load_contribution;

	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
		atomic_add(load_avg, &tg->load_weight);
		cfs_rq->load_contribution += load_avg;
	}
}

static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
984
{
985
	u64 period = sysctl_sched_shares_window;
P
Peter Zijlstra 已提交
986
	u64 now, delta;
987
	unsigned long load = cfs_rq->load.weight;
P
Peter Zijlstra 已提交
988

989
	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
990 991
		return;

992
	now = rq_of(cfs_rq)->clock_task;
P
Peter Zijlstra 已提交
993 994
	delta = now - cfs_rq->load_stamp;

995 996 997 998 999
	/* truncate load history at 4 idle periods */
	if (cfs_rq->load_stamp > cfs_rq->load_last &&
	    now - cfs_rq->load_last > 4 * period) {
		cfs_rq->load_period = 0;
		cfs_rq->load_avg = 0;
1000
		delta = period - 1;
1001 1002
	}

P
Peter Zijlstra 已提交
1003
	cfs_rq->load_stamp = now;
1004
	cfs_rq->load_unacc_exec_time = 0;
P
Peter Zijlstra 已提交
1005
	cfs_rq->load_period += delta;
1006 1007 1008 1009
	if (load) {
		cfs_rq->load_last = now;
		cfs_rq->load_avg += delta * load;
	}
P
Peter Zijlstra 已提交
1010

1011 1012 1013 1014 1015
	/* consider updating load contribution on each fold or truncate */
	if (global_update || cfs_rq->load_period > period
	    || !cfs_rq->load_period)
		update_cfs_rq_load_contribution(cfs_rq, global_update);

P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	while (cfs_rq->load_period > period) {
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (cfs_rq->load_period));
		cfs_rq->load_period /= 2;
		cfs_rq->load_avg /= 2;
	}
1026

1027 1028
	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
		list_del_leaf_cfs_rq(cfs_rq);
P
Peter Zijlstra 已提交
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
	tg_weight = atomic_read(&tg->load_weight);
	tg_weight -= cfs_rq->load_contribution;
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1047
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1048
{
1049
	long tg_weight, load, shares;
1050

1051
	tg_weight = calc_tg_weight(tg, cfs_rq);
1052
	load = cfs_rq->load.weight;
1053 1054

	shares = (tg->shares * load);
1055 1056
	if (tg_weight)
		shares /= tg_weight;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}

static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
		update_cfs_load(cfs_rq, 0);
1070
		update_cfs_shares(cfs_rq);
1071 1072 1073 1074 1075 1076 1077
	}
}
# else /* CONFIG_SMP */
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
{
}

1078
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1079 1080 1081 1082 1083 1084 1085 1086
{
	return tg->shares;
}

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1087 1088 1089
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1090 1091 1092 1093
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1094
		account_entity_dequeue(cfs_rq, se);
1095
	}
P
Peter Zijlstra 已提交
1096 1097 1098 1099 1100 1101 1102

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1103
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1104 1105 1106
{
	struct task_group *tg;
	struct sched_entity *se;
1107
	long shares;
P
Peter Zijlstra 已提交
1108 1109 1110

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1111
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1112
		return;
1113 1114 1115 1116
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1117
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1118 1119 1120 1121

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1122
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
1123 1124 1125
{
}

1126
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1127 1128
{
}
1129 1130 1131 1132

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
P
Peter Zijlstra 已提交
1133 1134
#endif /* CONFIG_FAIR_GROUP_SCHED */

1135
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1136 1137
{
#ifdef CONFIG_SCHEDSTATS
1138 1139 1140 1141 1142
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

1143 1144
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1145 1146 1147 1148

		if ((s64)delta < 0)
			delta = 0;

1149 1150
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
1151

1152
		se->statistics.sleep_start = 0;
1153
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
1154

1155
		if (tsk) {
1156
			account_scheduler_latency(tsk, delta >> 10, 1);
1157 1158
			trace_sched_stat_sleep(tsk, delta);
		}
1159
	}
1160 1161
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1162 1163 1164 1165

		if ((s64)delta < 0)
			delta = 0;

1166 1167
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
1168

1169
		se->statistics.block_start = 0;
1170
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
1171

1172
		if (tsk) {
1173
			if (tsk->in_iowait) {
1174 1175
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
1176
				trace_sched_stat_iowait(tsk, delta);
1177 1178
			}

1179 1180
			trace_sched_stat_blocked(tsk, delta);

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
1192
		}
1193 1194 1195 1196
	}
#endif
}

P
Peter Zijlstra 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

1210 1211 1212
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
1213
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
1214

1215 1216 1217 1218 1219 1220
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
1221
	if (initial && sched_feat(START_DEBIT))
1222
		vruntime += sched_vslice(cfs_rq, se);
1223

1224
	/* sleeps up to a single latency don't count. */
1225
	if (!initial) {
1226
		unsigned long thresh = sysctl_sched_latency;
1227

1228 1229 1230 1231 1232 1233
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
1234

1235
		vruntime -= thresh;
1236 1237
	}

1238 1239 1240
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
1241
	se->vruntime = vruntime;
1242 1243
}

1244 1245
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

1246
static void
1247
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1248
{
1249 1250 1251 1252
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
1253
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1254 1255
		se->vruntime += cfs_rq->min_vruntime;

1256
	/*
1257
	 * Update run-time statistics of the 'current'.
1258
	 */
1259
	update_curr(cfs_rq);
1260
	update_cfs_load(cfs_rq, 0);
P
Peter Zijlstra 已提交
1261
	account_entity_enqueue(cfs_rq, se);
1262
	update_cfs_shares(cfs_rq);
1263

1264
	if (flags & ENQUEUE_WAKEUP) {
1265
		place_entity(cfs_rq, se, 0);
1266
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
1267
	}
1268

1269
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1270
	check_spread(cfs_rq, se);
1271 1272
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1273
	se->on_rq = 1;
1274

1275
	if (cfs_rq->nr_running == 1) {
1276
		list_add_leaf_cfs_rq(cfs_rq);
1277 1278
		check_enqueue_throttle(cfs_rq);
	}
1279 1280
}

1281
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
1282
{
1283 1284 1285 1286 1287 1288 1289 1290
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
1301 1302
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
1314 1315
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
1316 1317 1318 1319 1320
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
1321 1322 1323

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
1324 1325
}

1326
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1327

1328
static void
1329
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1330
{
1331 1332 1333 1334 1335
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

1336
	update_stats_dequeue(cfs_rq, se);
1337
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
1338
#ifdef CONFIG_SCHEDSTATS
1339 1340 1341 1342
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1343
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1344
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1345
				se->statistics.block_start = rq_of(cfs_rq)->clock;
1346
		}
1347
#endif
P
Peter Zijlstra 已提交
1348 1349
	}

P
Peter Zijlstra 已提交
1350
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1351

1352
	if (se != cfs_rq->curr)
1353
		__dequeue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1354
	se->on_rq = 0;
1355
	update_cfs_load(cfs_rq, 0);
1356
	account_entity_dequeue(cfs_rq, se);
1357 1358 1359 1360 1361 1362

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1363
	if (!(flags & DEQUEUE_SLEEP))
1364
		se->vruntime -= cfs_rq->min_vruntime;
1365

1366 1367 1368
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

1369 1370
	update_min_vruntime(cfs_rq);
	update_cfs_shares(cfs_rq);
1371 1372 1373 1374 1375
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1376
static void
I
Ingo Molnar 已提交
1377
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1378
{
1379
	unsigned long ideal_runtime, delta_exec;
1380 1381
	struct sched_entity *se;
	s64 delta;
1382

P
Peter Zijlstra 已提交
1383
	ideal_runtime = sched_slice(cfs_rq, curr);
1384
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1385
	if (delta_exec > ideal_runtime) {
1386
		resched_task(rq_of(cfs_rq)->curr);
1387 1388 1389 1390 1391
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

1403 1404
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
1405

1406 1407
	if (delta < 0)
		return;
1408

1409 1410
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
1411 1412
}

1413
static void
1414
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1415
{
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1427
	update_stats_curr_start(cfs_rq, se);
1428
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1429 1430 1431 1432 1433 1434
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1435
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1436
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1437 1438 1439
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1440
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1441 1442
}

1443 1444 1445
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1446 1447 1448 1449 1450 1451 1452
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
1453
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1454
{
1455
	struct sched_entity *se = __pick_first_entity(cfs_rq);
1456
	struct sched_entity *left = se;
1457

1458 1459 1460 1461 1462 1463 1464 1465 1466
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
1467

1468 1469 1470 1471 1472 1473
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

1474 1475 1476 1477 1478 1479
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

1480
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1481 1482

	return se;
1483 1484
}

1485 1486
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1487
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1488 1489 1490 1491 1492 1493
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1494
		update_curr(cfs_rq);
1495

1496 1497 1498
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
1499
	check_spread(cfs_rq, prev);
1500
	if (prev->on_rq) {
1501
		update_stats_wait_start(cfs_rq, prev);
1502 1503 1504
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
1505
	cfs_rq->curr = NULL;
1506 1507
}

P
Peter Zijlstra 已提交
1508 1509
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1510 1511
{
	/*
1512
	 * Update run-time statistics of the 'current'.
1513
	 */
1514
	update_curr(cfs_rq);
1515

1516 1517 1518 1519 1520
	/*
	 * Update share accounting for long-running entities.
	 */
	update_entity_shares_tick(cfs_rq);

P
Peter Zijlstra 已提交
1521 1522 1523 1524 1525
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
1526 1527 1528 1529
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
1538
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
1539
		check_preempt_tick(cfs_rq, curr);
1540 1541
}

1542 1543 1544 1545 1546 1547

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
1548 1549

#ifdef HAVE_JUMP_LABEL
1550
static struct static_key __cfs_bandwidth_used;
1551 1552 1553

static inline bool cfs_bandwidth_used(void)
{
1554
	return static_key_false(&__cfs_bandwidth_used);
1555 1556 1557 1558 1559 1560
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
1561
		static_key_slow_inc(&__cfs_bandwidth_used);
1562
	else if (!enabled && was_enabled)
1563
		static_key_slow_dec(&__cfs_bandwidth_used);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

1574 1575 1576 1577 1578 1579 1580 1581
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
1582 1583 1584 1585 1586 1587

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
1588 1589 1590 1591 1592 1593 1594
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
1595
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

1607 1608 1609 1610 1611
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

1612 1613
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1614 1615 1616
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
1617
	u64 amount = 0, min_amount, expires;
1618 1619 1620 1621 1622 1623 1624

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
1625
	else {
P
Paul Turner 已提交
1626 1627 1628 1629 1630 1631 1632 1633
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
1634
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
1635
		}
1636 1637 1638 1639 1640 1641

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
1642
	}
P
Paul Turner 已提交
1643
	expires = cfs_b->runtime_expires;
1644 1645 1646
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
1647 1648 1649 1650 1651 1652 1653
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
1654 1655

	return cfs_rq->runtime_remaining > 0;
1656 1657
}

P
Paul Turner 已提交
1658 1659 1660 1661 1662
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1663
{
P
Paul Turner 已提交
1664 1665 1666 1667 1668
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct rq *rq = rq_of(cfs_rq);

	/* if the deadline is ahead of our clock, nothing to do */
	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1669 1670
		return;

P
Paul Turner 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
1696
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
1697 1698 1699
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
1700 1701
		return;

1702 1703 1704 1705 1706 1707
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
1708 1709
}

1710 1711
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1712
{
1713
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1714 1715 1716 1717 1718
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

1719 1720
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
1721
	return cfs_bandwidth_used() && cfs_rq->throttled;
1722 1723
}

1724 1725 1726
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
1727
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
		u64 delta = rq->clock_task - cfs_rq->load_stamp;

		/* leaving throttled state, advance shares averaging windows */
		cfs_rq->load_stamp += delta;
		cfs_rq->load_last += delta;

		/* update entity weight now that we are on_rq again */
		update_cfs_shares(cfs_rq);
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	/* group is entering throttled state, record last load */
	if (!cfs_rq->throttle_count)
		update_cfs_load(cfs_rq, 0);
	cfs_rq->throttle_count++;

	return 0;
}

1783
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1784 1785 1786 1787 1788 1789 1790 1791 1792
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	/* account load preceding throttle */
1793 1794 1795
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
1816
	cfs_rq->throttled_timestamp = rq->clock;
1817 1818 1819 1820 1821
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

1822
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	cfs_rq->throttled = 0;
	raw_spin_lock(&cfs_b->lock);
1834
	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1835 1836
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);
1837
	cfs_rq->throttled_timestamp = 0;
1838

1839 1840 1841 1842
	update_rq_clock(rq);
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

1906 1907 1908 1909 1910 1911 1912 1913
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
1914 1915
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
1916 1917 1918 1919 1920 1921

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

1922 1923 1924
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
1925
	cfs_b->nr_periods += overrun;
1926

P
Paul Turner 已提交
1927 1928 1929 1930 1931 1932
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

1933 1934 1935 1936 1937 1938
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

1939 1940 1941
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
1966

1967 1968 1969 1970 1971 1972 1973 1974 1975
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
1976 1977 1978 1979 1980 1981 1982
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2048 2049 2050
	if (!cfs_bandwidth_used())
		return;

2051
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

2089 2090 2091 2092 2093 2094 2095
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
2096 2097 2098
	if (!cfs_bandwidth_used())
		return;

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2116 2117 2118
	if (!cfs_bandwidth_used())
		return;

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

static inline u64 default_cfs_period(void);
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

2216
static void unthrottle_offline_cfs_rqs(struct rq *rq)
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
2237 2238
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2239 2240
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2241
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2242 2243 2244 2245 2246

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
2258 2259 2260 2261 2262

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2263 2264
#endif

2265 2266 2267 2268 2269
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2270
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2271 2272 2273

#endif /* CONFIG_CFS_BANDWIDTH */

2274 2275 2276 2277
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
2278 2279 2280 2281 2282 2283 2284 2285
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

2286
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
2301
		if (rq->curr != p)
2302
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
2303

2304
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
2305 2306
	}
}
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

2317
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2318 2319 2320 2321 2322
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
2323
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
2324 2325 2326 2327
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
2328 2329 2330 2331

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
2332 2333
#endif

2334 2335 2336 2337 2338
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
2339
static void
2340
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2341 2342
{
	struct cfs_rq *cfs_rq;
2343
	struct sched_entity *se = &p->se;
2344 2345

	for_each_sched_entity(se) {
2346
		if (se->on_rq)
2347 2348
			break;
		cfs_rq = cfs_rq_of(se);
2349
		enqueue_entity(cfs_rq, se, flags);
2350 2351 2352 2353 2354 2355 2356 2357 2358

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2359
		cfs_rq->h_nr_running++;
2360

2361
		flags = ENQUEUE_WAKEUP;
2362
	}
P
Peter Zijlstra 已提交
2363

P
Peter Zijlstra 已提交
2364
	for_each_sched_entity(se) {
2365
		cfs_rq = cfs_rq_of(se);
2366
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
2367

2368 2369 2370
		if (cfs_rq_throttled(cfs_rq))
			break;

2371
		update_cfs_load(cfs_rq, 0);
2372
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
2373 2374
	}

2375 2376
	if (!se)
		inc_nr_running(rq);
2377
	hrtick_update(rq);
2378 2379
}

2380 2381
static void set_next_buddy(struct sched_entity *se);

2382 2383 2384 2385 2386
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
2387
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2388 2389
{
	struct cfs_rq *cfs_rq;
2390
	struct sched_entity *se = &p->se;
2391
	int task_sleep = flags & DEQUEUE_SLEEP;
2392 2393 2394

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
2395
		dequeue_entity(cfs_rq, se, flags);
2396 2397 2398 2399 2400 2401 2402 2403 2404

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2405
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2406

2407
		/* Don't dequeue parent if it has other entities besides us */
2408 2409 2410 2411 2412 2413 2414
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
2415 2416 2417

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
2418
			break;
2419
		}
2420
		flags |= DEQUEUE_SLEEP;
2421
	}
P
Peter Zijlstra 已提交
2422

P
Peter Zijlstra 已提交
2423
	for_each_sched_entity(se) {
2424
		cfs_rq = cfs_rq_of(se);
2425
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2426

2427 2428 2429
		if (cfs_rq_throttled(cfs_rq))
			break;

2430
		update_cfs_load(cfs_rq, 0);
2431
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
2432 2433
	}

2434 2435
	if (!se)
		dec_nr_running(rq);
2436
	hrtick_update(rq);
2437 2438
}

2439
#ifdef CONFIG_SMP
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);

	if (nr_running)
		return rq->load.weight / nr_running;

	return 0;
}

2495

2496
static void task_waking_fair(struct task_struct *p)
2497 2498 2499
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2500 2501 2502 2503
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
2504

2505 2506 2507 2508 2509 2510 2511 2512
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
2513

2514
	se->vruntime -= min_vruntime;
2515 2516
}

2517
#ifdef CONFIG_FAIR_GROUP_SCHED
2518 2519 2520 2521 2522 2523
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
2567
 */
P
Peter Zijlstra 已提交
2568
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2569
{
P
Peter Zijlstra 已提交
2570
	struct sched_entity *se = tg->se[cpu];
2571

2572
	if (!tg->parent)	/* the trivial, non-cgroup case */
2573 2574
		return wl;

P
Peter Zijlstra 已提交
2575
	for_each_sched_entity(se) {
2576
		long w, W;
P
Peter Zijlstra 已提交
2577

2578
		tg = se->my_q->tg;
2579

2580 2581 2582 2583
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
2584

2585 2586 2587 2588
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
2589

2590 2591 2592 2593 2594
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
2595 2596
		else
			wl = tg->shares;
2597

2598 2599 2600 2601 2602
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
2603 2604
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
2605 2606 2607 2608

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
2609
		wl -= se->load.weight;
2610 2611 2612 2613 2614 2615 2616 2617

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
2618 2619
		wg = 0;
	}
2620

P
Peter Zijlstra 已提交
2621
	return wl;
2622 2623
}
#else
P
Peter Zijlstra 已提交
2624

2625 2626
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
2627
{
2628
	return wl;
2629
}
P
Peter Zijlstra 已提交
2630

2631 2632
#endif

2633
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2634
{
2635
	s64 this_load, load;
2636
	int idx, this_cpu, prev_cpu;
2637
	unsigned long tl_per_task;
2638
	struct task_group *tg;
2639
	unsigned long weight;
2640
	int balanced;
2641

2642 2643 2644 2645 2646
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
2647

2648 2649 2650 2651 2652
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
2653 2654 2655 2656
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

2657
		this_load += effective_load(tg, this_cpu, -weight, -weight);
2658 2659
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
2660

2661 2662
	tg = task_group(p);
	weight = p->se.load.weight;
2663

2664 2665
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2666 2667 2668
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
2669 2670 2671 2672
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
2673 2674
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
2688

2689
	/*
I
Ingo Molnar 已提交
2690 2691 2692
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
2693
	 */
2694 2695
	if (sync && balanced)
		return 1;
2696

2697
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2698 2699
	tl_per_task = cpu_avg_load_per_task(this_cpu);

2700 2701 2702
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2703 2704 2705 2706 2707
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
2708
		schedstat_inc(sd, ttwu_move_affine);
2709
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2710 2711 2712 2713 2714 2715

		return 1;
	}
	return 0;
}

2716 2717 2718 2719 2720
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
2721
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2722
		  int this_cpu, int load_idx)
2723
{
2724
	struct sched_group *idlest = NULL, *group = sd->groups;
2725 2726
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2727

2728 2729 2730 2731
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
2732

2733 2734
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
2735
					tsk_cpus_allowed(p)))
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2755
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
2781
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2782 2783 2784 2785 2786
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
2787 2788 2789
		}
	}

2790 2791
	return idlest;
}
2792

2793 2794 2795
/*
 * Try and locate an idle CPU in the sched_domain.
 */
2796
static int select_idle_sibling(struct task_struct *p, int target)
2797 2798 2799
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
2800
	struct sched_domain *sd;
2801 2802
	struct sched_group *sg;
	int i;
2803 2804

	/*
2805 2806
	 * If the task is going to be woken-up on this cpu and if it is
	 * already idle, then it is the right target.
2807
	 */
2808 2809 2810 2811 2812 2813 2814 2815
	if (target == cpu && idle_cpu(cpu))
		return cpu;

	/*
	 * If the task is going to be woken-up on the cpu where it previously
	 * ran and if it is currently idle, then it the right target.
	 */
	if (target == prev_cpu && idle_cpu(prev_cpu))
2816
		return prev_cpu;
2817 2818

	/*
2819
	 * Otherwise, iterate the domains and find an elegible idle cpu.
2820
	 */
2821
	sd = rcu_dereference(per_cpu(sd_llc, target));
2822
	for_each_lower_domain(sd) {
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
				if (!idle_cpu(i))
					goto next;
			}
2833

2834 2835 2836 2837 2838 2839 2840 2841
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
2842 2843 2844
	return target;
}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
2856
static int
2857
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2858
{
2859
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2860 2861 2862
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
2863
	int want_affine = 0;
2864
	int sync = wake_flags & WF_SYNC;
2865

2866
	if (p->nr_cpus_allowed == 1)
2867 2868
		return prev_cpu;

2869
	if (sd_flag & SD_BALANCE_WAKE) {
2870
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2871 2872 2873
			want_affine = 1;
		new_cpu = prev_cpu;
	}
2874

2875
	rcu_read_lock();
2876
	for_each_domain(cpu, tmp) {
2877 2878 2879
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

2880
		/*
2881 2882
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
2883
		 */
2884 2885 2886
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
2887
			break;
2888
		}
2889

2890
		if (tmp->flags & sd_flag)
2891 2892 2893
			sd = tmp;
	}

2894
	if (affine_sd) {
2895
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
2896 2897 2898 2899
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
2900
	}
2901

2902
	while (sd) {
2903
		int load_idx = sd->forkexec_idx;
2904
		struct sched_group *group;
2905
		int weight;
2906

2907
		if (!(sd->flags & sd_flag)) {
2908 2909 2910
			sd = sd->child;
			continue;
		}
2911

2912 2913
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
2914

2915
		group = find_idlest_group(sd, p, cpu, load_idx);
2916 2917 2918 2919
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
2920

2921
		new_cpu = find_idlest_cpu(group, p, cpu);
2922 2923 2924 2925
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
2926
		}
2927 2928 2929

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
2930
		weight = sd->span_weight;
2931 2932
		sd = NULL;
		for_each_domain(cpu, tmp) {
2933
			if (weight <= tmp->span_weight)
2934
				break;
2935
			if (tmp->flags & sd_flag)
2936 2937 2938
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
2939
	}
2940 2941
unlock:
	rcu_read_unlock();
2942

2943
	return new_cpu;
2944 2945 2946
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
2947 2948
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2949 2950 2951 2952
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
2953 2954
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
2964
	 */
2965
	return calc_delta_fair(gran, se);
2966 2967
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
2990
	gran = wakeup_gran(curr, se);
2991 2992 2993 2994 2995 2996
	if (vdiff > gran)
		return 1;

	return 0;
}

2997 2998
static void set_last_buddy(struct sched_entity *se)
{
2999 3000 3001 3002 3003
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
3004 3005 3006 3007
}

static void set_next_buddy(struct sched_entity *se)
{
3008 3009 3010 3011 3012
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
3013 3014
}

3015 3016
static void set_skip_buddy(struct sched_entity *se)
{
3017 3018
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
3019 3020
}

3021 3022 3023
/*
 * Preempt the current task with a newly woken task if needed:
 */
3024
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3025 3026
{
	struct task_struct *curr = rq->curr;
3027
	struct sched_entity *se = &curr->se, *pse = &p->se;
3028
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3029
	int scale = cfs_rq->nr_running >= sched_nr_latency;
3030
	int next_buddy_marked = 0;
3031

I
Ingo Molnar 已提交
3032 3033 3034
	if (unlikely(se == pse))
		return;

3035
	/*
3036
	 * This is possible from callers such as move_task(), in which we
3037 3038 3039 3040 3041 3042 3043
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

3044
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
3045
		set_next_buddy(pse);
3046 3047
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
3048

3049 3050 3051
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
3052 3053 3054 3055 3056 3057
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
3058 3059 3060 3061
	 */
	if (test_tsk_need_resched(curr))
		return;

3062 3063 3064 3065 3066
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

3067
	/*
3068 3069
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
3070
	 */
3071
	if (unlikely(p->policy != SCHED_NORMAL))
3072
		return;
3073

3074
	find_matching_se(&se, &pse);
3075
	update_curr(cfs_rq_of(se));
3076
	BUG_ON(!pse);
3077 3078 3079 3080 3081 3082 3083
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
3084
		goto preempt;
3085
	}
3086

3087
	return;
3088

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
3105 3106
}

3107
static struct task_struct *pick_next_task_fair(struct rq *rq)
3108
{
P
Peter Zijlstra 已提交
3109
	struct task_struct *p;
3110 3111 3112
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

3113
	if (!cfs_rq->nr_running)
3114 3115 3116
		return NULL;

	do {
3117
		se = pick_next_entity(cfs_rq);
3118
		set_next_entity(cfs_rq, se);
3119 3120 3121
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
3122
	p = task_of(se);
3123 3124
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
3125 3126

	return p;
3127 3128 3129 3130 3131
}

/*
 * Account for a descheduled task:
 */
3132
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3133 3134 3135 3136 3137 3138
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3139
		put_prev_entity(cfs_rq, se);
3140 3141 3142
	}
}

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
3168 3169 3170 3171 3172 3173
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
3174 3175 3176 3177 3178
	}

	set_skip_buddy(se);
}

3179 3180 3181 3182
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

3183 3184
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

3195
#ifdef CONFIG_SMP
3196 3197 3198 3199
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

3200 3201
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

3202
#define LBF_ALL_PINNED	0x01
3203
#define LBF_NEED_BREAK	0x02
3204
#define LBF_SOME_PINNED 0x04
3205 3206 3207 3208 3209

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
3210
	int			src_cpu;
3211 3212 3213 3214

	int			dst_cpu;
	struct rq		*dst_rq;

3215 3216
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
3217
	enum cpu_idle_type	idle;
3218
	long			imbalance;
3219 3220 3221
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

3222
	unsigned int		flags;
3223 3224 3225 3226

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
3227 3228
};

3229
/*
3230
 * move_task - move a task from one runqueue to another runqueue.
3231 3232
 * Both runqueues must be locked.
 */
3233
static void move_task(struct task_struct *p, struct lb_env *env)
3234
{
3235 3236 3237 3238
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
3239 3240
}

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

3273 3274 3275 3276
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
3277
int can_migrate_task(struct task_struct *p, struct lb_env *env)
3278 3279 3280 3281 3282 3283 3284 3285
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3286
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3287 3288
		int new_dst_cpu;

3289
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
			return 0;

		new_dst_cpu = cpumask_first_and(env->dst_grpmask,
						tsk_cpus_allowed(p));
		if (new_dst_cpu < nr_cpu_ids) {
			env->flags |= LBF_SOME_PINNED;
			env->new_dst_cpu = new_dst_cpu;
		}
3308 3309
		return 0;
	}
3310 3311

	/* Record that we found atleast one task that could run on dst_cpu */
3312
	env->flags &= ~LBF_ALL_PINNED;
3313

3314
	if (task_running(env->src_rq, p)) {
3315
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3316 3317 3318 3319 3320 3321 3322 3323 3324
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3325
	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3326
	if (!tsk_cache_hot ||
3327
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3328 3329
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
3330
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3331
			schedstat_inc(p, se.statistics.nr_forced_migrations);
3332 3333 3334 3335 3336 3337
		}
#endif
		return 1;
	}

	if (tsk_cache_hot) {
3338
		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3339 3340 3341 3342 3343
		return 0;
	}
	return 1;
}

3344 3345 3346 3347 3348 3349 3350
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
3351
static int move_one_task(struct lb_env *env)
3352 3353 3354
{
	struct task_struct *p, *n;

3355 3356 3357
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
			continue;
3358

3359 3360
		if (!can_migrate_task(p, env))
			continue;
3361

3362 3363 3364 3365 3366 3367 3368 3369
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
3370 3371 3372 3373
	}
	return 0;
}

3374 3375
static unsigned long task_h_load(struct task_struct *p);

3376 3377
static const unsigned int sched_nr_migrate_break = 32;

3378
/*
3379
 * move_tasks tries to move up to imbalance weighted load from busiest to
3380 3381 3382 3383 3384 3385
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
3386
{
3387 3388
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
3389 3390
	unsigned long load;
	int pulled = 0;
3391

3392
	if (env->imbalance <= 0)
3393
		return 0;
3394

3395 3396
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
3397

3398 3399
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
3400
		if (env->loop > env->loop_max)
3401
			break;
3402 3403

		/* take a breather every nr_migrate tasks */
3404
		if (env->loop > env->loop_break) {
3405
			env->loop_break += sched_nr_migrate_break;
3406
			env->flags |= LBF_NEED_BREAK;
3407
			break;
3408
		}
3409

3410
		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3411 3412 3413
			goto next;

		load = task_h_load(p);
3414

3415
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3416 3417
			goto next;

3418
		if ((load / 2) > env->imbalance)
3419
			goto next;
3420

3421 3422
		if (!can_migrate_task(p, env))
			goto next;
3423

3424
		move_task(p, env);
3425
		pulled++;
3426
		env->imbalance -= load;
3427 3428

#ifdef CONFIG_PREEMPT
3429 3430 3431 3432 3433
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3434
		if (env->idle == CPU_NEWLY_IDLE)
3435
			break;
3436 3437
#endif

3438 3439 3440 3441
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
3442
		if (env->imbalance <= 0)
3443
			break;
3444 3445 3446

		continue;
next:
3447
		list_move_tail(&p->se.group_node, tasks);
3448
	}
3449

3450
	/*
3451 3452 3453
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
3454
	 */
3455
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
3456

3457
	return pulled;
3458 3459
}

P
Peter Zijlstra 已提交
3460
#ifdef CONFIG_FAIR_GROUP_SCHED
3461 3462 3463
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
3464
static int update_shares_cpu(struct task_group *tg, int cpu)
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
{
	struct cfs_rq *cfs_rq;
	unsigned long flags;
	struct rq *rq;

	if (!tg->se[cpu])
		return 0;

	rq = cpu_rq(cpu);
	cfs_rq = tg->cfs_rq[cpu];

	raw_spin_lock_irqsave(&rq->lock, flags);

	update_rq_clock(rq);
3479
	update_cfs_load(cfs_rq, 1);
3480 3481 3482 3483 3484

	/*
	 * We need to update shares after updating tg->load_weight in
	 * order to adjust the weight of groups with long running tasks.
	 */
3485
	update_cfs_shares(cfs_rq);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

	raw_spin_unlock_irqrestore(&rq->lock, flags);

	return 0;
}

static void update_shares(int cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(cpu);

	rcu_read_lock();
3498 3499 3500 3501
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
3502 3503 3504 3505 3506
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;

3507
		update_shares_cpu(cfs_rq->tg, cpu);
3508
	}
3509 3510 3511
	rcu_read_unlock();
}

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
/*
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
static int tg_load_down(struct task_group *tg, void *data)
{
	unsigned long load;
	long cpu = (long)data;

	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->se[cpu]->load.weight;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}

	tg->cfs_rq[cpu]->h_load = load;

	return 0;
}

static void update_h_load(long cpu)
{
3537 3538 3539 3540 3541 3542 3543 3544
	struct rq *rq = cpu_rq(cpu);
	unsigned long now = jiffies;

	if (rq->h_load_throttle == now)
		return;

	rq->h_load_throttle = now;

3545
	rcu_read_lock();
3546
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3547
	rcu_read_unlock();
3548 3549
}

3550
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
3551
{
3552 3553
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
	unsigned long load;
P
Peter Zijlstra 已提交
3554

3555 3556
	load = p->se.load.weight;
	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
P
Peter Zijlstra 已提交
3557

3558
	return load;
P
Peter Zijlstra 已提交
3559 3560
}
#else
3561 3562 3563 3564
static inline void update_shares(int cpu)
{
}

3565
static inline void update_h_load(long cpu)
P
Peter Zijlstra 已提交
3566 3567 3568
{
}

3569
static unsigned long task_h_load(struct task_struct *p)
3570
{
3571
	return p->se.load.weight;
3572
}
P
Peter Zijlstra 已提交
3573
#endif
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
3591
	unsigned long this_has_capacity;
3592
	unsigned int  this_idle_cpus;
3593 3594

	/* Statistics of the busiest group */
3595
	unsigned int  busiest_idle_cpus;
3596 3597 3598
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
3599
	unsigned long busiest_group_capacity;
3600
	unsigned long busiest_has_capacity;
3601
	unsigned int  busiest_group_weight;
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

	int group_imb; /* Is there imbalance in this sd */
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
3615 3616
	unsigned long idle_cpus;
	unsigned long group_weight;
3617
	int group_imb; /* Is there an imbalance in the group ? */
3618
	int group_has_capacity; /* Is there extra capacity in the group? */
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
};

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
3649
	return SCHED_POWER_SCALE;
3650 3651 3652 3653 3654 3655 3656 3657 3658
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
3659
	unsigned long weight = sd->span_weight;
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
3675
	u64 total, available, age_stamp, avg;
3676

3677 3678 3679 3680 3681 3682 3683 3684
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

	total = sched_avg_period() + (rq->clock - age_stamp);
3685

3686
	if (unlikely(total < avg)) {
3687 3688 3689
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
3690
		available = total - avg;
3691
	}
3692

3693 3694
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
3695

3696
	total >>= SCHED_POWER_SHIFT;
3697 3698 3699 3700 3701 3702

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
3703
	unsigned long weight = sd->span_weight;
3704
	unsigned long power = SCHED_POWER_SCALE;
3705 3706 3707 3708 3709 3710 3711 3712
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3713
		power >>= SCHED_POWER_SHIFT;
3714 3715
	}

3716
	sdg->sgp->power_orig = power;
3717 3718 3719 3720 3721 3722

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3723
	power >>= SCHED_POWER_SHIFT;
3724

3725
	power *= scale_rt_power(cpu);
3726
	power >>= SCHED_POWER_SHIFT;
3727 3728 3729 3730

	if (!power)
		power = 1;

3731
	cpu_rq(cpu)->cpu_power = power;
3732
	sdg->sgp->power = power;
3733 3734
}

3735
void update_group_power(struct sched_domain *sd, int cpu)
3736 3737 3738 3739
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;
3740 3741 3742 3743 3744
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
3745 3746 3747 3748 3749 3750 3751 3752

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

P
Peter Zijlstra 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

		for_each_cpu(cpu, sched_group_cpus(sdg))
			power += power_of(cpu);
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
3773

3774
	sdg->sgp->power_orig = sdg->sgp->power = power;
3775 3776
}

3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
3788
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3789
	 */
P
Peter Zijlstra 已提交
3790
	if (!(sd->flags & SD_SHARE_CPUPOWER))
3791 3792 3793 3794 3795
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
3796
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3797 3798 3799 3800 3801
		return 1;

	return 0;
}

3802 3803
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3804
 * @env: The load balancing environment.
3805 3806 3807 3808 3809 3810
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3811 3812
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
3813
			int local_group, int *balance, struct sg_lb_stats *sgs)
3814
{
3815 3816
	unsigned long nr_running, max_nr_running, min_nr_running;
	unsigned long load, max_cpu_load, min_cpu_load;
3817
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3818
	unsigned long avg_load_per_task = 0;
3819
	int i;
3820

3821
	if (local_group)
P
Peter Zijlstra 已提交
3822
		balance_cpu = group_balance_cpu(group);
3823 3824 3825 3826

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3827
	max_nr_running = 0;
3828
	min_nr_running = ~0UL;
3829

3830
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
3831 3832
		struct rq *rq = cpu_rq(i);

3833 3834
		nr_running = rq->nr_running;

3835 3836
		/* Bias balancing toward cpus of our domain */
		if (local_group) {
P
Peter Zijlstra 已提交
3837 3838
			if (idle_cpu(i) && !first_idle_cpu &&
					cpumask_test_cpu(i, sched_group_mask(group))) {
3839
				first_idle_cpu = 1;
3840 3841
				balance_cpu = i;
			}
3842 3843

			load = target_load(i, load_idx);
3844 3845
		} else {
			load = source_load(i, load_idx);
3846
			if (load > max_cpu_load)
3847 3848 3849
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
3850 3851 3852 3853 3854

			if (nr_running > max_nr_running)
				max_nr_running = nr_running;
			if (min_nr_running > nr_running)
				min_nr_running = nr_running;
3855 3856 3857
		}

		sgs->group_load += load;
3858
		sgs->sum_nr_running += nr_running;
3859
		sgs->sum_weighted_load += weighted_cpuload(i);
3860 3861
		if (idle_cpu(i))
			sgs->idle_cpus++;
3862 3863 3864 3865 3866 3867 3868 3869
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
3870
	if (local_group) {
3871
		if (env->idle != CPU_NEWLY_IDLE) {
3872
			if (balance_cpu != env->dst_cpu) {
3873 3874 3875
				*balance = 0;
				return;
			}
3876
			update_group_power(env->sd, env->dst_cpu);
3877
		} else if (time_after_eq(jiffies, group->sgp->next_update))
3878
			update_group_power(env->sd, env->dst_cpu);
3879 3880 3881
	}

	/* Adjust by relative CPU power of the group */
3882
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3883 3884 3885

	/*
	 * Consider the group unbalanced when the imbalance is larger
P
Peter Zijlstra 已提交
3886
	 * than the average weight of a task.
3887 3888 3889 3890 3891 3892
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3893 3894
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3895

3896 3897
	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
	    (max_nr_running - min_nr_running) > 1)
3898 3899
		sgs->group_imb = 1;

3900
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3901
						SCHED_POWER_SCALE);
3902
	if (!sgs->group_capacity)
3903
		sgs->group_capacity = fix_small_capacity(env->sd, group);
3904
	sgs->group_weight = group->group_weight;
3905 3906 3907

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
3908 3909
}

3910 3911
/**
 * update_sd_pick_busiest - return 1 on busiest group
3912
 * @env: The load balancing environment.
3913 3914
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
3915
 * @sgs: sched_group statistics
3916 3917 3918 3919
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
3920
static bool update_sd_pick_busiest(struct lb_env *env,
3921 3922
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
3923
				   struct sg_lb_stats *sgs)
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
3939 3940
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

3951
/**
3952
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3953
 * @env: The load balancing environment.
3954 3955 3956
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
3957
static inline void update_sd_lb_stats(struct lb_env *env,
3958
					int *balance, struct sd_lb_stats *sds)
3959
{
3960 3961
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
3962 3963 3964 3965 3966 3967
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

3968
	load_idx = get_sd_load_idx(env->sd, env->idle);
3969 3970 3971 3972

	do {
		int local_group;

3973
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
3974
		memset(&sgs, 0, sizeof(sgs));
3975
		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
3976

P
Peter Zijlstra 已提交
3977
		if (local_group && !(*balance))
3978 3979 3980
			return;

		sds->total_load += sgs.group_load;
3981
		sds->total_pwr += sg->sgp->power;
3982 3983 3984

		/*
		 * In case the child domain prefers tasks go to siblings
3985
		 * first, lower the sg capacity to one so that we'll try
3986 3987 3988 3989 3990 3991
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
3992
		 */
3993
		if (prefer_sibling && !local_group && sds->this_has_capacity)
3994 3995 3996 3997
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
3998
			sds->this = sg;
3999 4000
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
4001
			sds->this_has_capacity = sgs.group_has_capacity;
4002
			sds->this_idle_cpus = sgs.idle_cpus;
4003
		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4004
			sds->max_load = sgs.avg_load;
4005
			sds->busiest = sg;
4006
			sds->busiest_nr_running = sgs.sum_nr_running;
4007
			sds->busiest_idle_cpus = sgs.idle_cpus;
4008
			sds->busiest_group_capacity = sgs.group_capacity;
4009
			sds->busiest_load_per_task = sgs.sum_weighted_load;
4010
			sds->busiest_has_capacity = sgs.group_has_capacity;
4011
			sds->busiest_group_weight = sgs.group_weight;
4012 4013 4014
			sds->group_imb = sgs.group_imb;
		}

4015
		sg = sg->next;
4016
	} while (sg != env->sd->groups);
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
4036 4037 4038
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
4039
 * @env: The load balancing environment.
4040 4041
 * @sds: Statistics of the sched_domain which is to be packed
 */
4042
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4043 4044 4045
{
	int busiest_cpu;

4046
	if (!(env->sd->flags & SD_ASYM_PACKING))
4047 4048 4049 4050 4051 4052
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
4053
	if (env->dst_cpu > busiest_cpu)
4054 4055
		return 0;

4056 4057 4058
	env->imbalance = DIV_ROUND_CLOSEST(
		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);

4059
	return 1;
4060 4061 4062 4063 4064 4065
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
4066
 * @env: The load balancing environment.
4067 4068
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
4069 4070
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4071 4072 4073
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
4074
	unsigned long scaled_busy_load_per_task;
4075 4076 4077 4078 4079 4080

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
4081
	} else {
4082
		sds->this_load_per_task =
4083 4084
			cpu_avg_load_per_task(env->dst_cpu);
	}
4085

4086
	scaled_busy_load_per_task = sds->busiest_load_per_task
4087
					 * SCHED_POWER_SCALE;
4088
	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4089 4090 4091

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
4092
		env->imbalance = sds->busiest_load_per_task;
4093 4094 4095 4096 4097 4098 4099 4100 4101
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

4102
	pwr_now += sds->busiest->sgp->power *
4103
			min(sds->busiest_load_per_task, sds->max_load);
4104
	pwr_now += sds->this->sgp->power *
4105
			min(sds->this_load_per_task, sds->this_load);
4106
	pwr_now /= SCHED_POWER_SCALE;
4107 4108

	/* Amount of load we'd subtract */
4109
	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4110
		sds->busiest->sgp->power;
4111
	if (sds->max_load > tmp)
4112
		pwr_move += sds->busiest->sgp->power *
4113 4114 4115
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
4116
	if (sds->max_load * sds->busiest->sgp->power <
4117
		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4118 4119
		tmp = (sds->max_load * sds->busiest->sgp->power) /
			sds->this->sgp->power;
4120
	else
4121
		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4122 4123
			sds->this->sgp->power;
	pwr_move += sds->this->sgp->power *
4124
			min(sds->this_load_per_task, sds->this_load + tmp);
4125
	pwr_move /= SCHED_POWER_SCALE;
4126 4127 4128

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
4129
		env->imbalance = sds->busiest_load_per_task;
4130 4131 4132 4133 4134
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
4135
 * @env: load balance environment
4136 4137
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
4138
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4139
{
4140 4141 4142 4143 4144 4145 4146 4147
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

4148 4149 4150 4151 4152 4153
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
4154 4155
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
4156 4157
	}

4158 4159 4160 4161 4162 4163 4164
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

4165
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4166

4167
		load_above_capacity /= sds->busiest->sgp->power;
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4181 4182

	/* How much load to actually move to equalise the imbalance */
4183
	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4184
		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4185
			/ SCHED_POWER_SCALE;
4186 4187 4188

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
4189
	 * there is no guarantee that any tasks will be moved so we'll have
4190 4191 4192
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
4193 4194
	if (env->imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(env, sds);
4195 4196

}
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
4210
 * @env: The load balancing environment.
4211 4212 4213 4214 4215 4216 4217 4218 4219
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
4220
find_busiest_group(struct lb_env *env, int *balance)
4221 4222 4223 4224 4225 4226 4227 4228 4229
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
4230
	update_sd_lb_stats(env, balance, &sds);
4231

4232 4233 4234
	/*
	 * this_cpu is not the appropriate cpu to perform load balancing at
	 * this level.
4235
	 */
P
Peter Zijlstra 已提交
4236
	if (!(*balance))
4237 4238
		goto ret;

4239 4240
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
4241 4242
		return sds.busiest;

4243
	/* There is no busy sibling group to pull tasks from */
4244 4245 4246
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

4247
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4248

P
Peter Zijlstra 已提交
4249 4250 4251 4252 4253 4254 4255 4256
	/*
	 * If the busiest group is imbalanced the below checks don't
	 * work because they assumes all things are equal, which typically
	 * isn't true due to cpus_allowed constraints and the like.
	 */
	if (sds.group_imb)
		goto force_balance;

4257
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4258
	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4259 4260 4261
			!sds.busiest_has_capacity)
		goto force_balance;

4262 4263 4264 4265
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
4266 4267 4268
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

4269 4270 4271 4272
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
4273 4274 4275
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

4276
	if (env->idle == CPU_IDLE) {
4277 4278 4279 4280 4281 4282
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
4283
		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4284 4285
		    sds.busiest_nr_running <= sds.busiest_group_weight)
			goto out_balanced;
4286 4287 4288 4289 4290
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
4291
		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4292
			goto out_balanced;
4293
	}
4294

4295
force_balance:
4296
	/* Looks like there is an imbalance. Compute it */
4297
	calculate_imbalance(env, &sds);
4298 4299 4300 4301
	return sds.busiest;

out_balanced:
ret:
4302
	env->imbalance = 0;
4303 4304 4305 4306 4307 4308
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4309
static struct rq *find_busiest_queue(struct lb_env *env,
4310
				     struct sched_group *group)
4311 4312 4313 4314 4315 4316 4317
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
4318 4319
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
4320 4321
		unsigned long wl;

4322
		if (!capacity)
4323
			capacity = fix_small_capacity(env->sd, group);
4324

4325
		if (!cpumask_test_cpu(i, env->cpus))
4326 4327 4328
			continue;

		rq = cpu_rq(i);
4329
		wl = weighted_cpuload(i);
4330

4331 4332 4333 4334
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
4335
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4336 4337
			continue;

4338 4339 4340 4341 4342 4343
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
4344
		wl = (wl * SCHED_POWER_SCALE) / power;
4345

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
4362
DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4363

4364
static int need_active_balance(struct lb_env *env)
4365
{
4366 4367 4368
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
4369 4370 4371 4372 4373 4374

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
4375
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4376
			return 1;
4377 4378 4379 4380 4381
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

4382 4383
static int active_load_balance_cpu_stop(void *data);

4384 4385 4386 4387 4388 4389 4390 4391
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
4392 4393
	int ld_moved, cur_ld_moved, active_balance = 0;
	int lb_iterations, max_lb_iterations;
4394 4395 4396 4397 4398
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);

4399 4400
	struct lb_env env = {
		.sd		= sd,
4401 4402
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
4403
		.dst_grpmask    = sched_group_cpus(sd->groups),
4404
		.idle		= idle,
4405
		.loop_break	= sched_nr_migrate_break,
4406
		.cpus		= cpus,
4407 4408
	};

4409
	cpumask_copy(cpus, cpu_active_mask);
4410
	max_lb_iterations = cpumask_weight(env.dst_grpmask);
4411 4412 4413 4414

	schedstat_inc(sd, lb_count[idle]);

redo:
4415
	group = find_busiest_group(&env, balance);
4416 4417 4418 4419 4420 4421 4422 4423 4424

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4425
	busiest = find_busiest_queue(&env, group);
4426 4427 4428 4429 4430
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

4431
	BUG_ON(busiest == env.dst_rq);
4432

4433
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4434 4435

	ld_moved = 0;
4436
	lb_iterations = 1;
4437 4438 4439 4440 4441 4442 4443
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
4444
		env.flags |= LBF_ALL_PINNED;
4445 4446 4447
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
4448

4449
		update_h_load(env.src_cpu);
4450
more_balance:
4451
		local_irq_save(flags);
4452
		double_rq_lock(env.dst_rq, busiest);
4453 4454 4455 4456 4457 4458 4459

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
4460
		double_rq_unlock(env.dst_rq, busiest);
4461 4462
		local_irq_restore(flags);

4463 4464 4465 4466 4467
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

4468 4469 4470
		/*
		 * some other cpu did the load balance for us.
		 */
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
				lb_iterations++ < max_lb_iterations) {

4496
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
			env.dst_cpu	 = env.new_dst_cpu;
			env.flags	&= ~LBF_SOME_PINNED;
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
4507 4508

		/* All tasks on this runqueue were pinned by CPU affinity */
4509
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
4510
			cpumask_clear_cpu(cpu_of(busiest), cpus);
4511 4512 4513
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
4514
				goto redo;
4515
			}
4516 4517 4518 4519 4520 4521
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
4522 4523 4524 4525 4526 4527 4528 4529
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
4530

4531
		if (need_active_balance(&env)) {
4532 4533
			raw_spin_lock_irqsave(&busiest->lock, flags);

4534 4535 4536
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
4537 4538
			 */
			if (!cpumask_test_cpu(this_cpu,
4539
					tsk_cpus_allowed(busiest->curr))) {
4540 4541
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
4542
				env.flags |= LBF_ALL_PINNED;
4543 4544 4545
				goto out_one_pinned;
			}

4546 4547 4548 4549 4550
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
4551 4552 4553 4554 4555 4556
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4557

4558
			if (active_balance) {
4559 4560 4561
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
4562
			}
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
4596
	if (((env.flags & LBF_ALL_PINNED) &&
4597
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4598 4599 4600
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

4601
	ld_moved = 0;
4602 4603 4604 4605 4606 4607 4608 4609
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4610
void idle_balance(int this_cpu, struct rq *this_rq)
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

4621 4622 4623 4624 4625
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

P
Paul Turner 已提交
4626
	update_shares(this_cpu);
4627
	rcu_read_lock();
4628 4629
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
4630
		int balance = 1;
4631 4632 4633 4634

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

4635
		if (sd->flags & SD_BALANCE_NEWIDLE) {
4636
			/* If we've pulled tasks over stop searching: */
4637 4638 4639
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
4640 4641 4642 4643

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
4644 4645
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4646
			break;
N
Nikhil Rao 已提交
4647
		}
4648
	}
4649
	rcu_read_unlock();
4650 4651 4652

	raw_spin_lock(&this_rq->lock);

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
4663 4664 4665 4666
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
4667
 */
4668
static int active_load_balance_cpu_stop(void *data)
4669
{
4670 4671
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
4672
	int target_cpu = busiest_rq->push_cpu;
4673
	struct rq *target_rq = cpu_rq(target_cpu);
4674
	struct sched_domain *sd;
4675 4676 4677 4678 4679 4680 4681

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
4682 4683 4684

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
4685
		goto out_unlock;
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
4698
	rcu_read_lock();
4699 4700 4701 4702 4703 4704 4705
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
4706 4707
		struct lb_env env = {
			.sd		= sd,
4708 4709 4710 4711
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
4712 4713 4714
			.idle		= CPU_IDLE,
		};

4715 4716
		schedstat_inc(sd, alb_count);

4717
		if (move_one_task(&env))
4718 4719 4720 4721
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4722
	rcu_read_unlock();
4723
	double_unlock_balance(busiest_rq, target_rq);
4724 4725 4726 4727
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
4728 4729 4730
}

#ifdef CONFIG_NO_HZ
4731 4732 4733 4734 4735 4736
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
4737
static struct {
4738
	cpumask_var_t idle_cpus_mask;
4739
	atomic_t nr_cpus;
4740 4741
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
4742

4743
static inline int find_new_ilb(int call_cpu)
4744
{
4745
	int ilb = cpumask_first(nohz.idle_cpus_mask);
4746

4747 4748 4749 4750
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
4751 4752
}

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

4764
	ilb_cpu = find_new_ilb(cpu);
4765

4766 4767
	if (ilb_cpu >= nr_cpu_ids)
		return;
4768

4769
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4770 4771 4772 4773 4774 4775 4776 4777
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
4778 4779 4780
	return;
}

4781
static inline void nohz_balance_exit_idle(int cpu)
4782 4783 4784 4785 4786 4787 4788 4789
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	clear_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	set_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

4820
/*
4821
 * This routine will record that the cpu is going idle with tick stopped.
4822
 * This info will be used in performing idle load balancing in the future.
4823
 */
4824
void nohz_balance_enter_idle(int cpu)
4825
{
4826 4827 4828 4829 4830 4831
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

4832 4833
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
4834

4835 4836 4837
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4838
}
4839 4840 4841 4842 4843 4844

static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
4845
		nohz_balance_exit_idle(smp_processor_id());
4846 4847 4848 4849 4850
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
4851 4852 4853 4854
#endif

static DEFINE_SPINLOCK(balancing);

4855 4856 4857 4858
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
4859
void update_max_interval(void)
4860 4861 4862 4863
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
4875
	struct sched_domain *sd;
4876 4877 4878 4879 4880
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

P
Peter Zijlstra 已提交
4881 4882
	update_shares(cpu);

4883
	rcu_read_lock();
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
4894
		interval = clamp(interval, 1UL, max_load_balance_interval);
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * We've pulled tasks over so either we're no
4907
				 * longer idle.
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
				 */
				idle = CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}
4929
	rcu_read_unlock();
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

4940
#ifdef CONFIG_NO_HZ
4941
/*
4942
 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4943 4944
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
4945 4946 4947 4948 4949 4950
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

4951 4952 4953
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
4954 4955

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4956
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
4957 4958 4959 4960 4961 4962 4963
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
4964
		if (need_resched())
4965 4966
			break;

V
Vincent Guittot 已提交
4967 4968 4969 4970 4971 4972
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
4973 4974 4975 4976 4977 4978 4979

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
4980 4981
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
4982 4983 4984
}

/*
4985 4986 4987 4988 4989 4990 4991
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
4992 4993 4994 4995
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
4996
	struct sched_domain *sd;
4997

4998
	if (unlikely(idle_cpu(cpu)))
4999 5000
		return 0;

5001 5002 5003 5004
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
5005
	set_cpu_sd_state_busy();
5006
	nohz_balance_exit_idle(cpu);
5007 5008 5009 5010 5011 5012 5013

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
5014 5015

	if (time_before(now, nohz.next_balance))
5016 5017
		return 0;

5018 5019
	if (rq->nr_running >= 2)
		goto need_kick;
5020

5021
	rcu_read_lock();
5022 5023 5024 5025
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5026

5027
		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5028
			goto need_kick_unlock;
5029 5030 5031 5032

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
5033
			goto need_kick_unlock;
5034 5035 5036

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
5037
	}
5038
	rcu_read_unlock();
5039
	return 0;
5040 5041 5042

need_kick_unlock:
	rcu_read_unlock();
5043 5044
need_kick:
	return 1;
5045 5046 5047 5048 5049 5050 5051 5052 5053
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
5054 5055 5056 5057
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
5058
	enum cpu_idle_type idle = this_rq->idle_balance ?
5059 5060 5061 5062 5063
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
5064
	 * If this cpu has a pending nohz_balance_kick, then do the
5065 5066 5067
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
5068
	nohz_idle_balance(this_cpu, idle);
5069 5070 5071 5072
}

static inline int on_null_domain(int cpu)
{
5073
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5074 5075 5076 5077 5078
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
5079
void trigger_load_balance(struct rq *rq, int cpu)
5080 5081 5082 5083 5084
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
5085
#ifdef CONFIG_NO_HZ
5086
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5087 5088
		nohz_balancer_kick(cpu);
#endif
5089 5090
}

5091 5092 5093 5094 5095 5096 5097 5098
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
5099 5100 5101

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
5102 5103
}

5104
#endif /* CONFIG_SMP */
5105

5106 5107 5108
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
5109
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5110 5111 5112 5113 5114 5115
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
5116
		entity_tick(cfs_rq, se, queued);
5117
	}
5118 5119 5120

	if (sched_feat_numa(NUMA))
		task_tick_numa(rq, curr);
5121 5122 5123
}

/*
P
Peter Zijlstra 已提交
5124 5125 5126
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
5127
 */
P
Peter Zijlstra 已提交
5128
static void task_fork_fair(struct task_struct *p)
5129
{
5130 5131
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
5132
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
5133 5134 5135
	struct rq *rq = this_rq();
	unsigned long flags;

5136
	raw_spin_lock_irqsave(&rq->lock, flags);
5137

5138 5139
	update_rq_clock(rq);

5140 5141 5142
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

5143 5144
	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
P
Peter Zijlstra 已提交
5145
		__set_task_cpu(p, this_cpu);
5146 5147
		rcu_read_unlock();
	}
5148

5149
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
5150

5151 5152
	if (curr)
		se->vruntime = curr->vruntime;
5153
	place_entity(cfs_rq, se, 1);
5154

P
Peter Zijlstra 已提交
5155
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
5156
		/*
5157 5158 5159
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
5160
		swap(curr->vruntime, se->vruntime);
5161
		resched_task(rq->curr);
5162
	}
5163

5164 5165
	se->vruntime -= cfs_rq->min_vruntime;

5166
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5167 5168
}

5169 5170 5171 5172
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
5173 5174
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5175
{
P
Peter Zijlstra 已提交
5176 5177 5178
	if (!p->se.on_rq)
		return;

5179 5180 5181 5182 5183
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
5184
	if (rq->curr == p) {
5185 5186 5187
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
5188
		check_preempt_curr(rq, p, 0);
5189 5190
}

P
Peter Zijlstra 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
}

5215 5216 5217
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
5218
static void switched_to_fair(struct rq *rq, struct task_struct *p)
5219
{
P
Peter Zijlstra 已提交
5220 5221 5222
	if (!p->se.on_rq)
		return;

5223 5224 5225 5226 5227
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
5228
	if (rq->curr == p)
5229 5230
		resched_task(rq->curr);
	else
5231
		check_preempt_curr(rq, p, 0);
5232 5233
}

5234 5235 5236 5237 5238 5239 5240 5241 5242
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

5243 5244 5245 5246 5247 5248 5249
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
5250 5251
}

5252 5253 5254 5255 5256 5257 5258 5259 5260
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
}

P
Peter Zijlstra 已提交
5261
#ifdef CONFIG_FAIR_GROUP_SCHED
5262
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
5263
{
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
5277 5278 5279 5280 5281 5282
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
5283 5284
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
5285 5286 5287 5288
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
5289
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5290 5291
		on_rq = 1;

5292 5293 5294
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
5295
	if (!on_rq)
5296
		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
P
Peter Zijlstra 已提交
5297
}
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
#ifdef CONFIG_SMP
	/* allow initial update_cfs_load() to truncate */
	cfs_rq->load_stamp = 1;
P
Peter Zijlstra 已提交
5384
#endif
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
5453

5454
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

5469 5470 5471
/*
 * All the scheduling class methods:
 */
5472
const struct sched_class fair_sched_class = {
5473
	.next			= &idle_sched_class,
5474 5475 5476
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
5477
	.yield_to_task		= yield_to_task_fair,
5478

I
Ingo Molnar 已提交
5479
	.check_preempt_curr	= check_preempt_wakeup,
5480 5481 5482 5483

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

5484
#ifdef CONFIG_SMP
L
Li Zefan 已提交
5485 5486
	.select_task_rq		= select_task_rq_fair,

5487 5488
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
5489 5490

	.task_waking		= task_waking_fair,
5491
#endif
5492

5493
	.set_curr_task          = set_curr_task_fair,
5494
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
5495
	.task_fork		= task_fork_fair,
5496 5497

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
5498
	.switched_from		= switched_from_fair,
5499
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
5500

5501 5502
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
5503
#ifdef CONFIG_FAIR_GROUP_SCHED
5504
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
5505
#endif
5506 5507 5508
};

#ifdef CONFIG_SCHED_DEBUG
5509
void print_cfs_stats(struct seq_file *m, int cpu)
5510 5511 5512
{
	struct cfs_rq *cfs_rq;

5513
	rcu_read_lock();
5514
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5515
		print_cfs_rq(m, cpu, cfs_rq);
5516
	rcu_read_unlock();
5517 5518
}
#endif
5519 5520 5521 5522 5523 5524 5525

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

#ifdef CONFIG_NO_HZ
5526
	nohz.next_balance = jiffies;
5527
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5528
	cpu_notifier(sched_ilb_notifier, 0);
5529 5530 5531 5532
#endif
#endif /* SMP */

}