mmu.c 119.7 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65

#ifdef MMU_DEBUG
66 67
static bool dbg = 0;
module_param(dbg, bool, 0644);
68 69 70

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71
#define MMU_WARN_ON(x) WARN_ON(x)
72 73 74
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
75
#define MMU_WARN_ON(x) do { } while (0)
76
#endif
A
Avi Kivity 已提交
77

78 79
#define PTE_PREFETCH_NUM		8

80
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
81 82 83 84 85
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
86
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
87 88 89 90 91 92 93 94

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
95
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
96

97 98 99
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
100 101 102 103 104

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


105
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
106 107
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 109 110 111 112 113
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 119 120
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121

122 123
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
124

125 126 127 128 129
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

130 131
#include <trace/events/kvm.h>

132 133 134
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

135 136
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137

138 139
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

140 141 142
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

143 144 145
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
146 147
};

148 149 150 151
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
152
	int level;
153 154 155 156 157 158 159 160
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

161 162 163 164 165 166
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

167
static struct kmem_cache *pte_list_desc_cache;
168
static struct kmem_cache *mmu_page_header_cache;
169
static struct percpu_counter kvm_total_used_mmu_pages;
170

S
Sheng Yang 已提交
171 172 173 174 175
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
176 177 178
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
179
static void mmu_free_roots(struct kvm_vcpu *vcpu);
180 181 182 183 184 185 186

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

187
/*
188 189 190 191 192 193 194
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
195
 */
196
#define MMIO_SPTE_GEN_LOW_SHIFT		2
197 198
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

199 200 201
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203 204 205 206 207

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
208
	WARN_ON(gen & ~MMIO_GEN_MASK);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

226 227
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
228
	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 230
}

231 232
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
233
{
234 235
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
236

237
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 239
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

240
	trace_mark_mmio_spte(sptep, gfn, access, gen);
241
	mmu_spte_set(sptep, mask);
242 243 244 245 246 247 248 249 250
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
251
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252
	return (spte & ~mask) >> PAGE_SHIFT;
253 254 255 256
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
257
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258
	return (spte & ~mask) & ~PAGE_MASK;
259 260
}

261 262
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
263 264
{
	if (unlikely(is_noslot_pfn(pfn))) {
265
		mark_mmio_spte(kvm, sptep, gfn, access);
266 267 268 269 270
		return true;
	}

	return false;
}
271

272 273
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
274 275 276 277 278 279 280
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
281 282
}

S
Sheng Yang 已提交
283
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
285 286 287 288 289 290 291 292 293
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
294 295 296 297 298
static int is_cpuid_PSE36(void)
{
	return 1;
}

299 300
static int is_nx(struct kvm_vcpu *vcpu)
{
301
	return vcpu->arch.efer & EFER_NX;
302 303
}

304 305
static int is_shadow_present_pte(u64 pte)
{
306
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 308
}

M
Marcelo Tosatti 已提交
309 310 311 312 313
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

314
static int is_rmap_spte(u64 pte)
315
{
316
	return is_shadow_present_pte(pte);
317 318
}

319 320 321 322
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
323
	if (is_large_pte(pte))
324 325 326 327
		return 1;
	return 0;
}

328
static pfn_t spte_to_pfn(u64 pte)
329
{
330
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 332
}

333 334 335 336 337 338 339
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

340
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
341
static void __set_spte(u64 *sptep, u64 spte)
342
{
343
	*sptep = spte;
344 345
}

346
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347
{
348 349 350 351 352 353 354
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
355 356 357 358 359

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
360 361 362 363 364 365

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
366
#else
367 368 369 370 371 372 373
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
374

375 376 377 378 379 380 381 382 383 384 385 386
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

387 388 389
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
390

391 392 393 394 395 396 397 398 399 400 401 402 403
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
404 405
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
422
	count_spte_clear(sptep, spte);
423 424 425 426 427 428 429 430 431 432 433
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434 435
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
436
	count_spte_clear(sptep, spte);
437 438 439

	return orig.spte;
}
440 441 442 443

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
498 499
#endif

500 501
static bool spte_is_locklessly_modifiable(u64 spte)
{
502 503
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 505
}

506 507
static bool spte_has_volatile_bits(u64 spte)
{
508 509 510 511 512 513 514 515 516
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

517 518 519 520 521 522
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

523 524
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525 526 527 528 529
		return false;

	return true;
}

530 531 532 533 534
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

535 536 537 538 539
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
554 555 556 557 558 559
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
560
 */
561
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562
{
563
	u64 old_spte = *sptep;
564
	bool ret = false;
565 566

	WARN_ON(!is_rmap_spte(new_spte));
567

568 569 570 571
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
572

573
	if (!spte_has_volatile_bits(old_spte))
574
		__update_clear_spte_fast(sptep, new_spte);
575
	else
576
		old_spte = __update_clear_spte_slow(sptep, new_spte);
577

578 579 580 581 582
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
583 584
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
585 586
		ret = true;

587
	if (!shadow_accessed_mask)
588
		return ret;
589

590 591 592 593 594 595 596 597
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

598 599 600 601
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602 603

	return ret;
604 605
}

606 607 608 609 610 611 612 613 614 615 616
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
617
		__update_clear_spte_fast(sptep, 0ull);
618
	else
619
		old_spte = __update_clear_spte_slow(sptep, 0ull);
620 621 622 623 624

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
625 626 627 628 629 630

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
631
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
647
	__update_clear_spte_fast(sptep, 0ull);
648 649
}

650 651 652 653 654 655 656
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
657 658 659 660 661 662 663 664 665 666 667
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
668 669 670 671
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
672 673 674 675 676 677 678 679
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
680 681
}

682
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683
				  struct kmem_cache *base_cache, int min)
684 685 686 687
{
	void *obj;

	if (cache->nobjs >= min)
688
		return 0;
689
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691
		if (!obj)
692
			return -ENOMEM;
693 694
		cache->objects[cache->nobjs++] = obj;
	}
695
	return 0;
696 697
}

698 699 700 701 702
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

703 704
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
705 706
{
	while (mc->nobjs)
707
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 709
}

A
Avi Kivity 已提交
710
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711
				       int min)
A
Avi Kivity 已提交
712
{
713
	void *page;
A
Avi Kivity 已提交
714 715 716 717

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
719 720
		if (!page)
			return -ENOMEM;
721
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
722 723 724 725 726 727 728
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
729
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
730 731
}

732
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733
{
734 735
	int r;

736
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738 739
	if (r)
		goto out;
740
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741 742
	if (r)
		goto out;
743
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744
				   mmu_page_header_cache, 4);
745 746
out:
	return r;
747 748 749 750
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
751 752
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
753
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754 755
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
756 757
}

758
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 760 761 762 763 764 765 766
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

767
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768
{
769
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 771
}

772
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773
{
774
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 776
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
793
/*
794 795
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
796
 */
797 798 799
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
800 801 802
{
	unsigned long idx;

803
	idx = gfn_to_index(gfn, slot->base_gfn, level);
804
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
805 806 807 808
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
809
	struct kvm_memory_slot *slot;
810
	struct kvm_lpage_info *linfo;
811
	int i;
M
Marcelo Tosatti 已提交
812

A
Avi Kivity 已提交
813
	slot = gfn_to_memslot(kvm, gfn);
814 815
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
816 817
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
818
	}
819
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
820 821 822 823
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
824
	struct kvm_memory_slot *slot;
825
	struct kvm_lpage_info *linfo;
826
	int i;
M
Marcelo Tosatti 已提交
827

A
Avi Kivity 已提交
828
	slot = gfn_to_memslot(kvm, gfn);
829 830
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
831 832 833
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
834
	}
835
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
836 837
}

838 839 840
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
841
{
842
	struct kvm_memory_slot *slot;
843
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
844

A
Avi Kivity 已提交
845
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
846
	if (slot) {
847 848
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
849 850 851 852 853
	}

	return 1;
}

854
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
855
{
J
Joerg Roedel 已提交
856
	unsigned long page_size;
857
	int i, ret = 0;
M
Marcelo Tosatti 已提交
858

J
Joerg Roedel 已提交
859
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
860

861 862 863 864 865 866 867 868
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

869
	return ret;
M
Marcelo Tosatti 已提交
870 871
}

872 873 874
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
875 876
{
	struct kvm_memory_slot *slot;
877 878 879 880 881 882 883 884 885 886 887

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
888
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
889 890 891 892 893
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
894

895 896 897 898 899
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
900
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
901 902

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
903 904 905 906
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
907 908
}

909
/*
910
 * Pte mapping structures:
911
 *
912
 * If pte_list bit zero is zero, then pte_list point to the spte.
913
 *
914 915
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
916
 *
917
 * Returns the number of pte entries before the spte was added or zero if
918 919
 * the spte was not added.
 *
920
 */
921 922
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
923
{
924
	struct pte_list_desc *desc;
925
	int i, count = 0;
926

927 928 929 930 931 932 933
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
934
		desc->sptes[1] = spte;
935
		*pte_list = (unsigned long)desc | 1;
936
		++count;
937
	} else {
938 939 940
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
941
			desc = desc->more;
942
			count += PTE_LIST_EXT;
943
		}
944 945
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
946 947
			desc = desc->more;
		}
A
Avi Kivity 已提交
948
		for (i = 0; desc->sptes[i]; ++i)
949
			++count;
A
Avi Kivity 已提交
950
		desc->sptes[i] = spte;
951
	}
952
	return count;
953 954
}

955 956 957
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
958 959 960
{
	int j;

961
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
962
		;
A
Avi Kivity 已提交
963 964
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
965 966 967
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
968
		*pte_list = (unsigned long)desc->sptes[0];
969 970 971 972
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
973 974
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
975 976
}

977
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
978
{
979 980
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
981 982
	int i;

983 984
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
985
		BUG();
986 987 988 989
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
990 991
			BUG();
		}
992
		*pte_list = 0;
993
	} else {
994 995
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
996 997
		prev_desc = NULL;
		while (desc) {
998
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
999
				if (desc->sptes[i] == spte) {
1000
					pte_list_desc_remove_entry(pte_list,
1001
							       desc, i,
1002 1003 1004 1005 1006 1007
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1008
		pr_err("pte_list_remove: %p many->many\n", spte);
1009 1010 1011 1012
		BUG();
	}
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1033
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1034
				    struct kvm_memory_slot *slot)
1035
{
1036
	unsigned long idx;
1037

1038
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1039
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1040 1041
}

1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1050
	return __gfn_to_rmap(gfn, level, slot);
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1145
static void drop_spte(struct kvm *kvm, u64 *sptep)
1146
{
1147
	if (mmu_spte_clear_track_bits(sptep))
1148
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1172
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1173
 * spte write-protection is caused by protecting shadow page table.
1174
 *
T
Tiejun Chen 已提交
1175
 * Note: write protection is difference between dirty logging and spte
1176 1177 1178 1179 1180
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1181
 *
1182
 * Return true if tlb need be flushed.
1183
 */
1184
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1185 1186 1187
{
	u64 spte = *sptep;

1188 1189
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1190 1191 1192 1193
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1194 1195
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1196
	spte = spte & ~PT_WRITABLE_MASK;
1197

1198
	return mmu_spte_update(sptep, spte);
1199 1200
}

1201
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1202
				 bool pt_protect)
1203
{
1204 1205
	u64 *sptep;
	struct rmap_iterator iter;
1206
	bool flush = false;
1207

1208 1209
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1210

1211
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1212
		sptep = rmap_get_next(&iter);
1213
	}
1214

1215
	return flush;
1216 1217
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));

		flush |= spte_clear_dirty(kvm, sptep);
		sptep = rmap_get_next(&iter);
	}

	return flush;
}

static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));

		flush |= spte_set_dirty(kvm, sptep);
		sptep = rmap_get_next(&iter);
	}

	return flush;
}

1272
/**
1273
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1274 1275 1276 1277 1278 1279 1280 1281
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1282
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1283 1284
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1285 1286 1287
{
	unsigned long *rmapp;

1288
	while (mask) {
1289 1290
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1291
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1292

1293 1294 1295
		/* clear the first set bit */
		mask &= mask - 1;
	}
1296 1297
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
	unsigned long *rmapp;

	while (mask) {
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmapp);

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1341
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1342 1343
{
	struct kvm_memory_slot *slot;
1344 1345
	unsigned long *rmapp;
	int i;
1346
	bool write_protected = false;
1347 1348

	slot = gfn_to_memslot(kvm, gfn);
1349 1350 1351 1352

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1353
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1354 1355 1356
	}

	return write_protected;
1357 1358
}

F
Frederik Deweerdt 已提交
1359
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1360 1361
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
1362
{
1363 1364
	u64 *sptep;
	struct rmap_iterator iter;
1365 1366
	int need_tlb_flush = 0;

1367 1368
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1369 1370
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1371 1372

		drop_spte(kvm, sptep);
1373 1374
		need_tlb_flush = 1;
	}
1375

1376 1377 1378
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1379
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1380 1381
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1382
{
1383 1384
	u64 *sptep;
	struct rmap_iterator iter;
1385
	int need_flush = 0;
1386
	u64 new_spte;
1387 1388 1389 1390 1391
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1392 1393 1394

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
1395 1396
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1397

1398
		need_flush = 1;
1399

1400
		if (pte_write(*ptep)) {
1401 1402
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1403
		} else {
1404
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1405 1406 1407 1408
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1409
			new_spte &= ~shadow_accessed_mask;
1410 1411 1412 1413

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1414 1415
		}
	}
1416

1417 1418 1419 1420 1421 1422
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1423 1424 1425 1426 1427 1428
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1429
					       struct kvm_memory_slot *slot,
1430 1431
					       gfn_t gfn,
					       int level,
1432
					       unsigned long data))
1433
{
1434
	int j;
1435
	int ret = 0;
1436
	struct kvm_memslots *slots;
1437
	struct kvm_memory_slot *memslot;
1438

1439
	slots = kvm_memslots(kvm);
1440

1441
	kvm_for_each_memslot(memslot, slots) {
1442
		unsigned long hva_start, hva_end;
1443
		gfn_t gfn_start, gfn_end;
1444

1445 1446 1447 1448 1449 1450 1451
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1452
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1453
		 */
1454
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1455
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1456

1457 1458 1459 1460
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1461
			gfn_t gfn = gfn_start;
1462

1463 1464 1465 1466 1467 1468
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1469

1470
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1471

1472 1473 1474 1475
			for (; idx <= idx_end;
			       ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
				ret |= handler(kvm, rmapp++, memslot,
					       gfn, j, data);
1476 1477 1478
		}
	}

1479
	return ret;
1480 1481
}

1482 1483 1484
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1485
					 struct kvm_memory_slot *slot,
1486
					 gfn_t gfn, int level,
1487 1488 1489
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1490 1491 1492 1493
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1494 1495 1496
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1497 1498 1499 1500 1501
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1502 1503
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1504
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1505 1506
}

F
Frederik Deweerdt 已提交
1507
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1508 1509
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1510
{
1511
	u64 *sptep;
1512
	struct rmap_iterator uninitialized_var(iter);
1513 1514
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1515
	BUG_ON(!shadow_accessed_mask);
1516

1517 1518
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1519
		BUG_ON(!is_shadow_present_pte(*sptep));
1520

1521
		if (*sptep & shadow_accessed_mask) {
1522
			young = 1;
1523 1524
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1525 1526
		}
	}
1527
	trace_kvm_age_page(gfn, level, slot, young);
1528 1529 1530
	return young;
}

A
Andrea Arcangeli 已提交
1531
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1532 1533
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1534
{
1535 1536
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1547 1548
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1549
		BUG_ON(!is_shadow_present_pte(*sptep));
1550

1551
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1552 1553 1554 1555 1556 1557 1558 1559
			young = 1;
			break;
		}
	}
out:
	return young;
}

1560 1561
#define RMAP_RECYCLE_THRESHOLD 1000

1562
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1563 1564
{
	unsigned long *rmapp;
1565 1566 1567
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1568

1569
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1570

1571
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1572 1573 1574
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1575
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1576
{
A
Andres Lagar-Cavilla 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1598 1599
}

A
Andrea Arcangeli 已提交
1600 1601 1602 1603 1604
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1605
#ifdef MMU_DEBUG
1606
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1607
{
1608 1609 1610
	u64 *pos;
	u64 *end;

1611
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1612
		if (is_shadow_present_pte(*pos)) {
1613
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1614
			       pos, *pos);
A
Avi Kivity 已提交
1615
			return 0;
1616
		}
A
Avi Kivity 已提交
1617 1618
	return 1;
}
1619
#endif
A
Avi Kivity 已提交
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1633
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1634
{
1635
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1636
	hlist_del(&sp->hash_link);
1637 1638
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1639 1640
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1641
	kmem_cache_free(mmu_page_header_cache, sp);
1642 1643
}

1644 1645
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1646
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1647 1648
}

1649
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1650
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1651 1652 1653 1654
{
	if (!parent_pte)
		return;

1655
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1656 1657
}

1658
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1659 1660
				       u64 *parent_pte)
{
1661
	pte_list_remove(parent_pte, &sp->parent_ptes);
1662 1663
}

1664 1665 1666 1667
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1668
	mmu_spte_clear_no_track(parent_pte);
1669 1670
}

1671 1672
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1673
{
1674
	struct kvm_mmu_page *sp;
1675

1676 1677
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1678
	if (!direct)
1679
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1680
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1681 1682 1683 1684 1685 1686

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1687 1688 1689 1690 1691
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1692 1693
}

1694
static void mark_unsync(u64 *spte);
1695
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1696
{
1697
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1698 1699
}

1700
static void mark_unsync(u64 *spte)
1701
{
1702
	struct kvm_mmu_page *sp;
1703
	unsigned int index;
1704

1705
	sp = page_header(__pa(spte));
1706 1707
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1708
		return;
1709
	if (sp->unsync_children++)
1710
		return;
1711
	kvm_mmu_mark_parents_unsync(sp);
1712 1713
}

1714
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1715
			       struct kvm_mmu_page *sp)
1716 1717 1718 1719
{
	return 1;
}

M
Marcelo Tosatti 已提交
1720 1721 1722 1723
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1724 1725
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1726
				 const void *pte)
1727 1728 1729 1730
{
	WARN_ON(1);
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1741 1742
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1743
{
1744
	int i;
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1761

1762
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1763
		struct kvm_mmu_page *child;
1764 1765
		u64 ent = sp->spt[i];

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1795 1796 1797
	}


1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1809 1810 1811 1812 1813
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1814
	trace_kvm_mmu_sync_page(sp);
1815 1816 1817 1818
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1819 1820 1821 1822
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1834 1835 1836 1837 1838 1839 1840 1841
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1842

1843
/* @sp->gfn should be write-protected at the call site */
1844
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1845
			   struct list_head *invalid_list, bool clear_unsync)
1846
{
1847
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1848
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1849 1850 1851
		return 1;
	}

1852
	if (clear_unsync)
1853 1854
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1855
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1856
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1857 1858 1859
		return 1;
	}

1860
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1861 1862 1863
	return 0;
}

1864 1865 1866
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1867
	LIST_HEAD(invalid_list);
1868 1869
	int ret;

1870
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1871
	if (ret)
1872 1873
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1874 1875 1876
	return ret;
}

1877 1878 1879 1880 1881 1882 1883
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1884 1885
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1886
{
1887
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1888 1889
}

1890 1891 1892 1893
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1894
	LIST_HEAD(invalid_list);
1895 1896
	bool flush = false;

1897
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1898
		if (!s->unsync)
1899 1900 1901
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1902
		kvm_unlink_unsync_page(vcpu->kvm, s);
1903
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1904
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1905
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1906 1907 1908 1909 1910
			continue;
		}
		flush = true;
	}

1911
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1912
	if (flush)
1913
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1914 1915
}

1916 1917 1918
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1919 1920
};

1921 1922 1923 1924 1925 1926
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1927 1928 1929
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1948
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1949
{
1950 1951 1952 1953 1954
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1965 1966
}

1967 1968 1969
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1970
{
1971 1972 1973
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1974

1975 1976 1977 1978 1979 1980 1981
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1982
	LIST_HEAD(invalid_list);
1983 1984 1985

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1986
		bool protected = false;
1987 1988 1989 1990 1991 1992 1993

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1994
		for_each_sp(pages, sp, parents, i) {
1995
			kvm_sync_page(vcpu, sp, &invalid_list);
1996 1997
			mmu_pages_clear_parents(&parents);
		}
1998
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1999
		cond_resched_lock(&vcpu->kvm->mmu_lock);
2000 2001
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
2002 2003
}

2004 2005 2006 2007 2008 2009 2010 2011
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2024 2025 2026 2027 2028
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2029 2030 2031 2032
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2033
					     int direct,
2034
					     unsigned access,
2035
					     u64 *parent_pte)
2036 2037 2038
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2039 2040
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2041

2042
	role = vcpu->arch.mmu.base_role;
2043
	role.level = level;
2044
	role.direct = direct;
2045
	if (role.direct)
2046
		role.cr4_pae = 0;
2047
	role.access = access;
2048 2049
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2050 2051 2052 2053
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2054
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2055 2056 2057
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

2058 2059
		if (!need_sync && sp->unsync)
			need_sync = true;
2060

2061 2062
		if (sp->role.word != role.word)
			continue;
2063

2064 2065
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
2066

2067 2068
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
2069
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2070 2071 2072
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
2073

2074
		__clear_sp_write_flooding_count(sp);
2075 2076 2077
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
2078
	++vcpu->kvm->stat.mmu_cache_miss;
2079
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2080 2081 2082 2083
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
2084 2085
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2086
	if (!direct) {
2087 2088
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
2089 2090 2091
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

2092 2093
		account_shadowed(vcpu->kvm, gfn);
	}
2094
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2095
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
2096
	trace_kvm_mmu_get_page(sp, true);
2097
	return sp;
2098 2099
}

2100 2101 2102 2103 2104 2105
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2106 2107 2108 2109 2110 2111

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2126

2127 2128 2129 2130 2131
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2132 2133
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2134
{
2135
	if (is_last_spte(spte, iterator->level)) {
2136 2137 2138 2139
		iterator->level = 0;
		return;
	}

2140
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2141 2142 2143
	--iterator->level;
}

2144 2145 2146 2147 2148
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2149
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2150 2151 2152
{
	u64 spte;

2153 2154 2155
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2156
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2157 2158 2159 2160
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2161

2162
	mmu_spte_set(sptep, spte);
2163 2164
}

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2182
		drop_parent_pte(child, sptep);
2183 2184 2185 2186
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2187
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2188 2189 2190 2191 2192 2193 2194
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2195
		if (is_last_spte(pte, sp->role.level)) {
2196
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2197 2198 2199
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2200
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2201
			drop_parent_pte(child, spte);
2202
		}
X
Xiao Guangrong 已提交
2203 2204 2205 2206
		return true;
	}

	if (is_mmio_spte(pte))
2207
		mmu_spte_clear_no_track(spte);
2208

X
Xiao Guangrong 已提交
2209
	return false;
2210 2211
}

2212
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2213
					 struct kvm_mmu_page *sp)
2214
{
2215 2216
	unsigned i;

2217 2218
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2219 2220
}

2221
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2222
{
2223
	mmu_page_remove_parent_pte(sp, parent_pte);
2224 2225
}

2226
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2227
{
2228 2229
	u64 *sptep;
	struct rmap_iterator iter;
2230

2231 2232
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2233 2234
}

2235
static int mmu_zap_unsync_children(struct kvm *kvm,
2236 2237
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2238
{
2239 2240 2241
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2242

2243
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2244
		return 0;
2245 2246 2247 2248 2249 2250

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2251
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2252
			mmu_pages_clear_parents(&parents);
2253
			zapped++;
2254 2255 2256 2257 2258
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2259 2260
}

2261 2262
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2263
{
2264
	int ret;
A
Avi Kivity 已提交
2265

2266
	trace_kvm_mmu_prepare_zap_page(sp);
2267
	++kvm->stat.mmu_shadow_zapped;
2268
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2269
	kvm_mmu_page_unlink_children(kvm, sp);
2270
	kvm_mmu_unlink_parents(kvm, sp);
2271

2272
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2273
		unaccount_shadowed(kvm, sp->gfn);
2274

2275 2276
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2277
	if (!sp->root_count) {
2278 2279
		/* Count self */
		ret++;
2280
		list_move(&sp->link, invalid_list);
2281
		kvm_mod_used_mmu_pages(kvm, -1);
2282
	} else {
A
Avi Kivity 已提交
2283
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2284 2285 2286 2287 2288 2289 2290

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2291
	}
2292 2293

	sp->role.invalid = 1;
2294
	return ret;
2295 2296
}

2297 2298 2299
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2300
	struct kvm_mmu_page *sp, *nsp;
2301 2302 2303 2304

	if (list_empty(invalid_list))
		return;

2305 2306 2307 2308 2309
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2310

2311 2312 2313 2314 2315
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2316

2317
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2318
		WARN_ON(!sp->role.invalid || sp->root_count);
2319
		kvm_mmu_free_page(sp);
2320
	}
2321 2322
}

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2338 2339
/*
 * Changing the number of mmu pages allocated to the vm
2340
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2341
 */
2342
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2343
{
2344
	LIST_HEAD(invalid_list);
2345

2346 2347
	spin_lock(&kvm->mmu_lock);

2348
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2349 2350 2351 2352
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2353

2354
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2355
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2356 2357
	}

2358
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2359 2360

	spin_unlock(&kvm->mmu_lock);
2361 2362
}

2363
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2364
{
2365
	struct kvm_mmu_page *sp;
2366
	LIST_HEAD(invalid_list);
2367 2368
	int r;

2369
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2370
	r = 0;
2371
	spin_lock(&kvm->mmu_lock);
2372
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2373
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2374 2375
			 sp->role.word);
		r = 1;
2376
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2377
	}
2378
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2379 2380
	spin_unlock(&kvm->mmu_lock);

2381
	return r;
2382
}
2383
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2384

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2478
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2479 2480 2481 2482 2483 2484 2485 2486 2487
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2488
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2500 2501
{
	struct kvm_mmu_page *s;
2502

2503
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2504
		if (s->unsync)
2505
			continue;
2506 2507
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2508 2509 2510 2511 2512 2513
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2514 2515 2516
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2517
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2518 2519 2520
		if (!can_unsync)
			return 1;

2521
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2522
			return 1;
2523

G
Gleb Natapov 已提交
2524
		if (!s->unsync)
2525
			need_unsync = true;
2526
	}
2527 2528
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2529 2530 2531
	return 0;
}

A
Avi Kivity 已提交
2532
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2533
		    unsigned pte_access, int level,
2534
		    gfn_t gfn, pfn_t pfn, bool speculative,
2535
		    bool can_unsync, bool host_writable)
2536
{
2537
	u64 spte;
M
Marcelo Tosatti 已提交
2538
	int ret = 0;
S
Sheng Yang 已提交
2539

2540
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2541 2542
		return 0;

2543
	spte = PT_PRESENT_MASK;
2544
	if (!speculative)
2545
		spte |= shadow_accessed_mask;
2546

S
Sheng Yang 已提交
2547 2548 2549 2550
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2551

2552
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2553
		spte |= shadow_user_mask;
2554

2555
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2556
		spte |= PT_PAGE_SIZE_MASK;
2557
	if (tdp_enabled)
2558
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2559
			kvm_is_reserved_pfn(pfn));
2560

2561
	if (host_writable)
2562
		spte |= SPTE_HOST_WRITEABLE;
2563 2564
	else
		pte_access &= ~ACC_WRITE_MASK;
2565

2566
	spte |= (u64)pfn << PAGE_SHIFT;
2567

2568
	if (pte_access & ACC_WRITE_MASK) {
2569

X
Xiao Guangrong 已提交
2570
		/*
2571 2572 2573 2574
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2575
		 */
2576
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2577
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2578
			goto done;
2579

2580
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2581

2582 2583 2584 2585 2586 2587
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2588
		if (!can_unsync && is_writable_pte(*sptep))
2589 2590
			goto set_pte;

2591
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2592
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2593
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2594
			ret = 1;
2595
			pte_access &= ~ACC_WRITE_MASK;
2596
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2597 2598 2599
		}
	}

2600
	if (pte_access & ACC_WRITE_MASK) {
2601
		mark_page_dirty(vcpu->kvm, gfn);
2602 2603
		spte |= shadow_dirty_mask;
	}
2604

2605
set_pte:
2606
	if (mmu_spte_update(sptep, spte))
2607
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2608
done:
M
Marcelo Tosatti 已提交
2609 2610 2611
	return ret;
}

A
Avi Kivity 已提交
2612
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2613 2614 2615
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2616 2617
{
	int was_rmapped = 0;
2618
	int rmap_count;
M
Marcelo Tosatti 已提交
2619

2620 2621
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2622

A
Avi Kivity 已提交
2623
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2624 2625 2626 2627
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2628 2629
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2630
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2631
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2632 2633

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2634
			drop_parent_pte(child, sptep);
2635
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2636
		} else if (pfn != spte_to_pfn(*sptep)) {
2637
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2638
				 spte_to_pfn(*sptep), pfn);
2639
			drop_spte(vcpu->kvm, sptep);
2640
			kvm_flush_remote_tlbs(vcpu->kvm);
2641 2642
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2643
	}
2644

2645 2646
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2647
		if (write_fault)
2648
			*emulate = 1;
2649
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2650
	}
M
Marcelo Tosatti 已提交
2651

2652 2653 2654
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2655
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2656
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2657
		 is_large_pte(*sptep)? "2MB" : "4kB",
2658 2659
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2660
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2661 2662
		++vcpu->kvm->stat.lpages;

2663 2664 2665 2666 2667 2668
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2669
	}
2670

X
Xiao Guangrong 已提交
2671
	kvm_release_pfn_clean(pfn);
2672 2673
}

2674 2675 2676 2677 2678
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2679
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2680
	if (!slot)
2681
		return KVM_PFN_ERR_FAULT;
2682

2683
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2696
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2697 2698 2699 2700 2701 2702 2703
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2704
		mmu_set_spte(vcpu, start, access, 0, NULL,
2705 2706
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2723
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2754
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2755 2756
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2757
{
2758
	struct kvm_shadow_walk_iterator iterator;
2759
	struct kvm_mmu_page *sp;
2760
	int emulate = 0;
2761
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2762

2763 2764 2765
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2766
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2767
		if (iterator.level == level) {
2768
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2769 2770
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2771
			direct_pte_prefetch(vcpu, iterator.sptep);
2772 2773
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2774 2775
		}

2776
		drop_large_spte(vcpu, iterator.sptep);
2777
		if (!is_shadow_present_pte(*iterator.sptep)) {
2778 2779 2780 2781
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2782 2783 2784
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2785

2786
			link_shadow_page(iterator.sptep, sp, true);
2787 2788
		}
	}
2789
	return emulate;
A
Avi Kivity 已提交
2790 2791
}

H
Huang Ying 已提交
2792
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2793
{
H
Huang Ying 已提交
2794 2795 2796 2797 2798 2799 2800
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2801

H
Huang Ying 已提交
2802
	send_sig_info(SIGBUS, &info, tsk);
2803 2804
}

2805
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2806
{
X
Xiao Guangrong 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2816
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2817
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2818
		return 0;
2819
	}
2820

2821
	return -EFAULT;
2822 2823
}

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2837
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2859
			kvm_get_pfn(pfn);
2860 2861 2862 2863 2864
			*pfnp = pfn;
		}
	}
}

2865 2866 2867 2868 2869 2870
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2871
	if (unlikely(is_error_pfn(pfn))) {
2872 2873 2874 2875
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2876
	if (unlikely(is_noslot_pfn(pfn)))
2877 2878 2879 2880 2881 2882 2883
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2884
static bool page_fault_can_be_fast(u32 error_code)
2885
{
2886 2887 2888 2889 2890 2891 2892
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2906 2907
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2946
	struct kvm_mmu_page *sp;
2947 2948 2949
	bool ret = false;
	u64 spte = 0ull;

2950 2951 2952
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2953
	if (!page_fault_can_be_fast(error_code))
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2970 2971
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

3005 3006 3007 3008 3009
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
3010
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
3011
exit:
X
Xiao Guangrong 已提交
3012 3013
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
3014 3015 3016 3017 3018
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

3019
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3020
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
3021
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3022

3023 3024
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3025 3026
{
	int r;
3027
	int level;
3028
	int force_pt_level;
3029
	pfn_t pfn;
3030
	unsigned long mmu_seq;
3031
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3032

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3043

3044 3045 3046
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
3047

3048 3049 3050
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3051
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3052
	smp_rmb();
3053

3054
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3055
		return 0;
3056

3057 3058
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3059

3060
	spin_lock(&vcpu->kvm->mmu_lock);
3061
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3062
		goto out_unlock;
3063
	make_mmu_pages_available(vcpu);
3064 3065
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3066 3067
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
3068 3069 3070
	spin_unlock(&vcpu->kvm->mmu_lock);


3071
	return r;
3072 3073 3074 3075 3076

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3077 3078 3079
}


3080 3081 3082
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3083
	struct kvm_mmu_page *sp;
3084
	LIST_HEAD(invalid_list);
3085

3086
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3087
		return;
3088

3089 3090 3091
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3092
		hpa_t root = vcpu->arch.mmu.root_hpa;
3093

3094
		spin_lock(&vcpu->kvm->mmu_lock);
3095 3096
		sp = page_header(root);
		--sp->root_count;
3097 3098 3099 3100
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3101
		spin_unlock(&vcpu->kvm->mmu_lock);
3102
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3103 3104
		return;
	}
3105 3106

	spin_lock(&vcpu->kvm->mmu_lock);
3107
	for (i = 0; i < 4; ++i) {
3108
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3109

A
Avi Kivity 已提交
3110 3111
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3112 3113
			sp = page_header(root);
			--sp->root_count;
3114
			if (!sp->root_count && sp->role.invalid)
3115 3116
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3117
		}
3118
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3119
	}
3120
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3121
	spin_unlock(&vcpu->kvm->mmu_lock);
3122
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3123 3124
}

3125 3126 3127 3128 3129
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3130
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3131 3132 3133 3134 3135 3136
		ret = 1;
	}

	return ret;
}

3137 3138 3139
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3140
	unsigned i;
3141 3142 3143

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3144
		make_mmu_pages_available(vcpu);
3145 3146 3147 3148 3149 3150 3151 3152 3153
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3154
			MMU_WARN_ON(VALID_PAGE(root));
3155
			spin_lock(&vcpu->kvm->mmu_lock);
3156
			make_mmu_pages_available(vcpu);
3157 3158
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3159 3160 3161 3162 3163 3164 3165
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3166
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3167 3168 3169 3170 3171 3172 3173
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3174
{
3175
	struct kvm_mmu_page *sp;
3176 3177 3178
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3179

3180
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3181

3182 3183 3184 3185 3186 3187 3188 3189
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3190
		hpa_t root = vcpu->arch.mmu.root_hpa;
3191

3192
		MMU_WARN_ON(VALID_PAGE(root));
3193

3194
		spin_lock(&vcpu->kvm->mmu_lock);
3195
		make_mmu_pages_available(vcpu);
3196 3197
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3198 3199
		root = __pa(sp->spt);
		++sp->root_count;
3200
		spin_unlock(&vcpu->kvm->mmu_lock);
3201
		vcpu->arch.mmu.root_hpa = root;
3202
		return 0;
3203
	}
3204

3205 3206
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3207 3208
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3209
	 */
3210 3211 3212 3213
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3214
	for (i = 0; i < 4; ++i) {
3215
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3216

3217
		MMU_WARN_ON(VALID_PAGE(root));
3218
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3219
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3220
			if (!is_present_gpte(pdptr)) {
3221
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3222 3223
				continue;
			}
A
Avi Kivity 已提交
3224
			root_gfn = pdptr >> PAGE_SHIFT;
3225 3226
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3227
		}
3228
		spin_lock(&vcpu->kvm->mmu_lock);
3229
		make_mmu_pages_available(vcpu);
3230
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3231
				      PT32_ROOT_LEVEL, 0,
3232
				      ACC_ALL, NULL);
3233 3234
		root = __pa(sp->spt);
		++sp->root_count;
3235 3236
		spin_unlock(&vcpu->kvm->mmu_lock);

3237
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3238
	}
3239
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3266
	return 0;
3267 3268
}

3269 3270 3271 3272 3273 3274 3275 3276
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3277 3278 3279 3280 3281
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3282 3283 3284
	if (vcpu->arch.mmu.direct_map)
		return;

3285 3286
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3287

3288
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3289
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3290
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3291 3292 3293
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3294
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3295 3296 3297 3298 3299
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3300
		if (root && VALID_PAGE(root)) {
3301 3302 3303 3304 3305
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3306
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3307 3308 3309 3310 3311 3312
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3313
	spin_unlock(&vcpu->kvm->mmu_lock);
3314
}
N
Nadav Har'El 已提交
3315
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3316

3317
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3318
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3319
{
3320 3321
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3322 3323 3324
	return vaddr;
}

3325
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3326 3327
					 u32 access,
					 struct x86_exception *exception)
3328
{
3329 3330
	if (exception)
		exception->error_code = 0;
3331
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3332 3333
}

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3362 3363 3364
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3379
		return RET_MMIO_PF_EMULATE;
3380 3381 3382 3383 3384 3385 3386

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3387 3388 3389
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3390 3391
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3392 3393

		trace_handle_mmio_page_fault(addr, gfn, access);
3394
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3395
		return RET_MMIO_PF_EMULATE;
3396 3397 3398 3399 3400 3401 3402
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3403
		return RET_MMIO_PF_BUG;
3404 3405 3406 3407 3408

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3409
	return RET_MMIO_PF_RETRY;
3410 3411 3412 3413 3414 3415 3416 3417 3418
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3419
	WARN_ON(ret == RET_MMIO_PF_BUG);
3420 3421 3422
	return ret;
}

A
Avi Kivity 已提交
3423
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3424
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3425
{
3426
	gfn_t gfn;
3427
	int r;
A
Avi Kivity 已提交
3428

3429
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3430

3431 3432 3433 3434 3435 3436
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3437

3438 3439 3440
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3441

3442
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3443

3444
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3445

3446
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3447
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3448 3449
}

3450
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3451 3452
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3453

3454
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3455
	arch.gfn = gfn;
3456
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3457
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3458

3459
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3471
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3472
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3473 3474 3475
{
	bool async;

3476
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3477 3478 3479 3480

	if (!async)
		return false; /* *pfn has correct page already */

3481
	if (!prefault && can_do_async_pf(vcpu)) {
3482
		trace_kvm_try_async_get_page(gva, gfn);
3483 3484 3485 3486 3487 3488 3489 3490
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3491
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3492 3493 3494 3495

	return false;
}

G
Gleb Natapov 已提交
3496
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3497
			  bool prefault)
3498
{
3499
	pfn_t pfn;
3500
	int r;
3501
	int level;
3502
	int force_pt_level;
M
Marcelo Tosatti 已提交
3503
	gfn_t gfn = gpa >> PAGE_SHIFT;
3504
	unsigned long mmu_seq;
3505 3506
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3507

3508
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3509

3510 3511 3512 3513 3514 3515
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3516

3517 3518 3519 3520
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3521 3522 3523 3524 3525 3526
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3527

3528 3529 3530
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3531
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3532
	smp_rmb();
3533

3534
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3535 3536
		return 0;

3537 3538 3539
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3540
	spin_lock(&vcpu->kvm->mmu_lock);
3541
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3542
		goto out_unlock;
3543
	make_mmu_pages_available(vcpu);
3544 3545
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3546
	r = __direct_map(vcpu, gpa, write, map_writable,
3547
			 level, gfn, pfn, prefault);
3548 3549 3550
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3551 3552 3553 3554 3555

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3556 3557
}

3558 3559
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3560 3561 3562
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3563
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3564
	context->invlpg = nonpaging_invlpg;
3565
	context->update_pte = nonpaging_update_pte;
3566
	context->root_level = 0;
A
Avi Kivity 已提交
3567
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3568
	context->root_hpa = INVALID_PAGE;
3569
	context->direct_map = true;
3570
	context->nx = false;
A
Avi Kivity 已提交
3571 3572
}

3573
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3574
{
3575
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3576 3577
}

3578 3579
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3580
	return kvm_read_cr3(vcpu);
3581 3582
}

3583 3584
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3585
{
3586
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3587 3588
}

3589 3590
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3591 3592 3593 3594 3595 3596 3597 3598
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3599
		mark_mmio_spte(kvm, sptep, gfn, access);
3600 3601 3602 3603 3604 3605
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3615 3616 3617 3618 3619
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3620 3621 3622 3623 3624 3625 3626 3627
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3628
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3629
				  struct kvm_mmu *context)
3630 3631 3632
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3633
	u64 gbpages_bit_rsvd = 0;
3634
	u64 nonleaf_bit8_rsvd = 0;
3635

3636 3637
	context->bad_mt_xwr = 0;

3638
	if (!context->nx)
3639
		exb_bit_rsvd = rsvd_bits(63, 63);
3640 3641
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3642 3643 3644 3645 3646 3647 3648 3649

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
	if (guest_cpuid_is_amd(vcpu))
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3650
	switch (context->root_level) {
3651 3652 3653 3654
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3655 3656 3657 3658 3659 3660 3661
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3662 3663 3664 3665 3666 3667 3668 3669
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3670 3671
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3672
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3673
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3674
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3675 3676 3677 3678 3679
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3680
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3681 3682 3683
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3684
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3685
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3686
			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3687
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3688
			rsvd_bits(maxphyaddr, 51);
3689 3690 3691
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3692
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3693
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3694
			rsvd_bits(13, 29);
3695
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3696 3697
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3698
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3699 3700 3701 3702
		break;
	}
}

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3735
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3736
		struct kvm_mmu *mmu, bool ept)
3737 3738 3739
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3740
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3741

F
Feng Wu 已提交
3742
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3743
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3744 3745 3746 3747 3748 3749
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3750 3751 3752 3753 3754 3755
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3756 3757 3758 3759 3760
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3761 3762 3763 3764 3765 3766
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3767
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3788 3789 3790
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3791

F
Feng Wu 已提交
3792 3793
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3794 3795 3796 3797 3798 3799
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3818 3819 3820
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3821
{
3822
	context->nx = is_nx(vcpu);
3823
	context->root_level = level;
3824

3825
	reset_rsvds_bits_mask(vcpu, context);
3826
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3827
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3828

3829
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
3830 3831
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3832
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3833
	context->invlpg = paging64_invlpg;
3834
	context->update_pte = paging64_update_pte;
3835
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3836
	context->root_hpa = INVALID_PAGE;
3837
	context->direct_map = false;
A
Avi Kivity 已提交
3838 3839
}

3840 3841
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3842
{
3843
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3844 3845
}

3846 3847
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3848
{
3849
	context->nx = false;
3850
	context->root_level = PT32_ROOT_LEVEL;
3851

3852
	reset_rsvds_bits_mask(vcpu, context);
3853
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3854
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3855 3856 3857

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3858
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3859
	context->invlpg = paging32_invlpg;
3860
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3861
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3862
	context->root_hpa = INVALID_PAGE;
3863
	context->direct_map = false;
A
Avi Kivity 已提交
3864 3865
}

3866 3867
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3868
{
3869
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3870 3871
}

3872
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3873
{
3874
	struct kvm_mmu *context = &vcpu->arch.mmu;
3875

3876
	context->base_role.word = 0;
3877
	context->page_fault = tdp_page_fault;
3878
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3879
	context->invlpg = nonpaging_invlpg;
3880
	context->update_pte = nonpaging_update_pte;
3881
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3882
	context->root_hpa = INVALID_PAGE;
3883
	context->direct_map = true;
3884
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3885
	context->get_cr3 = get_cr3;
3886
	context->get_pdptr = kvm_pdptr_read;
3887
	context->inject_page_fault = kvm_inject_page_fault;
3888 3889

	if (!is_paging(vcpu)) {
3890
		context->nx = false;
3891 3892 3893
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3894
		context->nx = is_nx(vcpu);
3895
		context->root_level = PT64_ROOT_LEVEL;
3896 3897
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3898
	} else if (is_pae(vcpu)) {
3899
		context->nx = is_nx(vcpu);
3900
		context->root_level = PT32E_ROOT_LEVEL;
3901 3902
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3903
	} else {
3904
		context->nx = false;
3905
		context->root_level = PT32_ROOT_LEVEL;
3906 3907
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3908 3909
	}

3910
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3911
	update_last_pte_bitmap(vcpu, context);
3912 3913
}

3914
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3915
{
3916
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3917 3918
	struct kvm_mmu *context = &vcpu->arch.mmu;

3919
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
3920 3921

	if (!is_paging(vcpu))
3922
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3923
	else if (is_long_mode(vcpu))
3924
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3925
	else if (is_pae(vcpu))
3926
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3927
	else
3928
		paging32_init_context(vcpu, context);
3929

3930 3931 3932 3933
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
3934
		= smep && !is_write_protection(vcpu);
3935 3936 3937
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3938
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
3939
{
3940 3941
	struct kvm_mmu *context = &vcpu->arch.mmu;

3942
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3961
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3962
{
3963 3964 3965 3966 3967 3968 3969
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3970 3971
}

3972
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3973 3974 3975 3976
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3977
	g_context->get_pdptr         = kvm_pdptr_read;
3978 3979 3980 3981 3982 3983 3984 3985 3986
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3987
		g_context->nx = false;
3988 3989 3990
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3991
		g_context->nx = is_nx(vcpu);
3992
		g_context->root_level = PT64_ROOT_LEVEL;
3993
		reset_rsvds_bits_mask(vcpu, g_context);
3994 3995
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3996
		g_context->nx = is_nx(vcpu);
3997
		g_context->root_level = PT32E_ROOT_LEVEL;
3998
		reset_rsvds_bits_mask(vcpu, g_context);
3999 4000
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4001
		g_context->nx = false;
4002
		g_context->root_level = PT32_ROOT_LEVEL;
4003
		reset_rsvds_bits_mask(vcpu, g_context);
4004 4005 4006
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4007
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
4008
	update_last_pte_bitmap(vcpu, g_context);
4009 4010
}

4011
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4012
{
4013
	if (mmu_is_nested(vcpu))
4014
		init_kvm_nested_mmu(vcpu);
4015
	else if (tdp_enabled)
4016
		init_kvm_tdp_mmu(vcpu);
4017
	else
4018
		init_kvm_softmmu(vcpu);
4019 4020
}

4021
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4022
{
4023
	kvm_mmu_unload(vcpu);
4024
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4025
}
4026
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4027 4028

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4029
{
4030 4031
	int r;

4032
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4033 4034
	if (r)
		goto out;
4035
	r = mmu_alloc_roots(vcpu);
4036
	kvm_mmu_sync_roots(vcpu);
4037 4038
	if (r)
		goto out;
4039
	/* set_cr3() should ensure TLB has been flushed */
4040
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4041 4042
out:
	return r;
A
Avi Kivity 已提交
4043
}
A
Avi Kivity 已提交
4044 4045 4046 4047 4048
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4049
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4050
}
4051
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4052

4053
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4054 4055
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4056
{
4057
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4058 4059
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4060
        }
4061

A
Avi Kivity 已提交
4062
	++vcpu->kvm->stat.mmu_pte_updated;
4063
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4064 4065
}

4066 4067 4068 4069 4070 4071 4072 4073
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4074 4075
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4076 4077 4078
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4079 4080
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
4081
{
4082 4083 4084 4085
	if (zap_page)
		return;

	if (remote_flush)
4086
		kvm_flush_remote_tlbs(vcpu->kvm);
4087
	else if (local_flush)
4088
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4089 4090
}

4091 4092
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4093
{
4094 4095
	u64 gentry;
	int r;
4096 4097 4098

	/*
	 * Assume that the pte write on a page table of the same type
4099 4100
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4101
	 */
4102
	if (is_pae(vcpu) && *bytes == 4) {
4103
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4104 4105
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4106
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
4107 4108
		if (r)
			gentry = 0;
4109 4110 4111
		new = (const u8 *)&gentry;
	}

4112
	switch (*bytes) {
4113 4114 4115 4116 4117 4118 4119 4120 4121
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4122 4123
	}

4124 4125 4126 4127 4128 4129 4130
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4131
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4132
{
4133 4134 4135 4136
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4137
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4138
		return false;
4139

4140
	return ++sp->write_flooding_count >= 3;
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4157 4158 4159 4160 4161 4162 4163 4164

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4211
	bool remote_flush, local_flush, zap_page;
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4235
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4236

4237
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4238
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4239
		if (detect_write_misaligned(sp, gpa, bytes) ||
4240
		      detect_write_flooding(sp)) {
4241
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4242
						     &invalid_list);
A
Avi Kivity 已提交
4243
			++vcpu->kvm->stat.mmu_flooded;
4244 4245
			continue;
		}
4246 4247 4248 4249 4250

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4251
		local_flush = true;
4252
		while (npte--) {
4253
			entry = *spte;
4254
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4255 4256
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4257
			      & mask.word) && rmap_can_add(vcpu))
4258
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4259
			if (need_remote_flush(entry, *spte))
4260
				remote_flush = true;
4261
			++spte;
4262 4263
		}
	}
4264
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4265
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4266
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4267
	spin_unlock(&vcpu->kvm->mmu_lock);
4268 4269
}

4270 4271
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4272 4273
	gpa_t gpa;
	int r;
4274

4275
	if (vcpu->arch.mmu.direct_map)
4276 4277
		return 0;

4278
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4279 4280

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4281

4282
	return r;
4283
}
4284
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4285

4286
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4287
{
4288
	LIST_HEAD(invalid_list);
4289

4290 4291 4292
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4293 4294 4295
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4296

A
Avi Kivity 已提交
4297
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4298
	}
4299
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4300 4301
}

4302 4303 4304 4305 4306 4307 4308 4309
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4310 4311
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4312
{
4313
	int r, emulation_type = EMULTYPE_RETRY;
4314 4315
	enum emulation_result er;

G
Gleb Natapov 已提交
4316
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4317 4318 4319 4320 4321 4322 4323 4324
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4325 4326 4327 4328
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4329 4330 4331 4332

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4333
	case EMULATE_USER_EXIT:
4334
		++vcpu->stat.mmio_exits;
4335
		/* fall through */
4336
	case EMULATE_FAIL:
4337
		return 0;
4338 4339 4340 4341 4342 4343 4344 4345
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4346 4347 4348
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4349
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4350 4351 4352 4353
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4354 4355 4356 4357 4358 4359
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4360 4361 4362 4363 4364 4365
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4366 4367
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4368
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4369 4370
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4371 4372 4373 4374
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4375
	struct page *page;
A
Avi Kivity 已提交
4376 4377
	int i;

4378 4379 4380 4381 4382 4383 4384
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4385 4386
		return -ENOMEM;

4387
	vcpu->arch.mmu.pae_root = page_address(page);
4388
	for (i = 0; i < 4; ++i)
4389
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4390

A
Avi Kivity 已提交
4391 4392 4393
	return 0;
}

4394
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4395
{
4396 4397 4398 4399
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4400

4401 4402
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4403

4404
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4405
{
4406
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4407

4408
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4409 4410
}

4411
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4412
{
4413 4414 4415
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
4416
	bool flush = false;
A
Avi Kivity 已提交
4417

4418 4419
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4420

4421 4422
	spin_lock(&kvm->mmu_lock);

4423 4424 4425 4426
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4427

4428 4429
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4430

4431 4432
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
4433 4434
				flush |= __rmap_write_protect(kvm, rmapp,
						false);
4435

4436
			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4437
				cond_resched_lock(&kvm->mmu_lock);
4438
		}
A
Avi Kivity 已提交
4439
	}
4440

4441
	spin_unlock(&kvm->mmu_lock);
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4461 4462
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4463
}
4464

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
	gfn_t last_gfn;
	unsigned long *rmapp;
	unsigned long last_index, index;
	bool flush = false;

	last_gfn = memslot->base_gfn + memslot->npages - 1;

	spin_lock(&kvm->mmu_lock);

	rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1];
	last_index = gfn_to_index(last_gfn, memslot->base_gfn,
			PT_PAGE_TABLE_LEVEL);

	for (index = 0; index <= last_index; ++index, ++rmapp) {
		if (*rmapp)
			flush |= __rmap_clear_dirty(kvm, rmapp);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock))
			cond_resched_lock(&kvm->mmu_lock);
	}

	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t last_gfn;
	int i;
	bool flush = false;

	last_gfn = memslot->base_gfn + memslot->npages - 1;

	spin_lock(&kvm->mmu_lock);

	for (i = PT_PAGE_TABLE_LEVEL + 1; /* skip rmap for 4K page */
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;

		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);

		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				flush |= __rmap_write_protect(kvm, rmapp,
						false);

			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
				cond_resched_lock(&kvm->mmu_lock);
		}
	}
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
	gfn_t last_gfn;
	int i;
	bool flush = false;

	last_gfn = memslot->base_gfn + memslot->npages - 1;

	spin_lock(&kvm->mmu_lock);

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;

		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);

		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				flush |= __rmap_set_dirty(kvm, rmapp);

			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
				cond_resched_lock(&kvm->mmu_lock);
		}
	}

	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4580
#define BATCH_ZAP_PAGES	10
4581 4582 4583
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4584
	int batch = 0;
4585 4586 4587 4588

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4589 4590
		int ret;

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4606 4607 4608 4609
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4610
		if (batch >= BATCH_ZAP_PAGES &&
4611
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4612
			batch = 0;
4613 4614 4615
			goto restart;
		}

4616 4617
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4618 4619 4620
		batch += ret;

		if (ret)
4621 4622 4623
			goto restart;
	}

4624 4625 4626 4627
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4628
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4643
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4644 4645
	kvm->arch.mmu_valid_gen++;

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4657 4658 4659 4660
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4661 4662 4663 4664 4665
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4666 4667 4668 4669 4670 4671
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4672
	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4673
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4674
		kvm_mmu_invalidate_zap_all_pages(kvm);
4675
	}
4676 4677
}

4678 4679
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4680 4681
{
	struct kvm *kvm;
4682
	int nr_to_scan = sc->nr_to_scan;
4683
	unsigned long freed = 0;
4684

4685
	spin_lock(&kvm_lock);
4686 4687

	list_for_each_entry(kvm, &vm_list, vm_list) {
4688
		int idx;
4689
		LIST_HEAD(invalid_list);
4690

4691 4692 4693 4694 4695 4696 4697 4698
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4699 4700 4701 4702 4703 4704
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4705 4706
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4707 4708
			continue;

4709
		idx = srcu_read_lock(&kvm->srcu);
4710 4711
		spin_lock(&kvm->mmu_lock);

4712 4713 4714 4715 4716 4717
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4718 4719
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4720
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4721

4722
unlock:
4723
		spin_unlock(&kvm->mmu_lock);
4724
		srcu_read_unlock(&kvm->srcu, idx);
4725

4726 4727 4728 4729 4730
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4731 4732
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4733 4734
	}

4735
	spin_unlock(&kvm_lock);
4736 4737 4738 4739 4740 4741
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4742
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4743 4744 4745
}

static struct shrinker mmu_shrinker = {
4746 4747
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4748 4749 4750
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4751
static void mmu_destroy_caches(void)
4752
{
4753 4754
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4755 4756
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4757 4758 4759 4760
}

int kvm_mmu_module_init(void)
{
4761 4762
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4763
					    0, 0, NULL);
4764
	if (!pte_list_desc_cache)
4765 4766
		goto nomem;

4767 4768
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4769
						  0, 0, NULL);
4770 4771 4772
	if (!mmu_page_header_cache)
		goto nomem;

4773
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4774 4775
		goto nomem;

4776 4777
	register_shrinker(&mmu_shrinker);

4778 4779 4780
	return 0;

nomem:
4781
	mmu_destroy_caches();
4782 4783 4784
	return -ENOMEM;
}

4785 4786 4787 4788 4789 4790 4791
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4792
	struct kvm_memslots *slots;
4793
	struct kvm_memory_slot *memslot;
4794

4795 4796
	slots = kvm_memslots(kvm);

4797 4798
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4799 4800 4801 4802 4803 4804 4805 4806

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4807 4808 4809
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4810
	u64 spte;
4811 4812
	int nr_sptes = 0;

4813 4814 4815
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4816 4817 4818
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4819
		nr_sptes++;
4820
		if (!is_shadow_present_pte(spte))
4821 4822
			break;
	}
4823
	walk_shadow_page_lockless_end(vcpu);
4824 4825 4826 4827 4828

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4829 4830
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
4831
	kvm_mmu_unload(vcpu);
4832 4833
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4834 4835 4836 4837 4838 4839 4840
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4841 4842
	mmu_audit_disable();
}