mmu.c 110.3 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
A
Avi Kivity 已提交
25

26
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
27 28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
32
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/compiler.h>
35
#include <linux/srcu.h>
36
#include <linux/slab.h>
37
#include <linux/uaccess.h>
A
Avi Kivity 已提交
38

A
Avi Kivity 已提交
39 40
#include <asm/page.h>
#include <asm/cmpxchg.h>
41
#include <asm/io.h>
42
#include <asm/vmx.h>
A
Avi Kivity 已提交
43

44 45 46 47 48 49 50
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
51
bool tdp_enabled = false;
52

53 54 55 56
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
57 58 59
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
60
};
61

62
#undef MMU_DEBUG
63 64 65 66 67 68 69 70 71 72 73 74 75

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

76
#ifdef MMU_DEBUG
77
static bool dbg = 0;
78
module_param(dbg, bool, 0644);
79
#endif
A
Avi Kivity 已提交
80

81 82 83
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
84 85 86 87 88
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
89
#endif
A
Avi Kivity 已提交
90

91 92
#define PTE_PREFETCH_NUM		8

93
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
94 95 96 97 98
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
99
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
100 101 102 103 104 105 106 107

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
108
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
109

110 111 112
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
113 114 115 116 117

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


118
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
119 120
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 122 123 124 125 126
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127 128 129 130

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
137

138 139 140 141 142
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

143 144
#include <trace/events/kvm.h>

145 146 147
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

148 149
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150

151 152
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

153 154 155
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

156 157 158
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
159 160
};

161 162 163 164
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
165
	int level;
166 167 168 169 170 171 172 173
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

174 175 176 177 178 179
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

180
static struct kmem_cache *pte_list_desc_cache;
181
static struct kmem_cache *mmu_page_header_cache;
182
static struct percpu_counter kvm_total_used_mmu_pages;
183

S
Sheng Yang 已提交
184 185 186 187 188
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
189 190 191
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
192
static void mmu_free_roots(struct kvm_vcpu *vcpu);
193 194 195 196 197 198 199

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

200 201 202 203 204 205 206 207
/*
 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
 * number.
 */
#define MMIO_SPTE_GEN_LOW_SHIFT		3
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

208
#define MMIO_GEN_SHIFT			19
209 210
#define MMIO_GEN_LOW_SHIFT		9
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 212
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

	WARN_ON(gen > MMIO_MAX_GEN);

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

236 237
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
238 239 240 241 242 243
	/*
	 * Init kvm generation close to MMIO_MAX_GEN to easily test the
	 * code of handling generation number wrap-around.
	 */
	return (kvm_memslots(kvm)->generation +
		      MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
244 245
}

246 247
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
248
{
249 250
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
251

252
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 254
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

255
	trace_mark_mmio_spte(sptep, gfn, access, gen);
256
	mmu_spte_set(sptep, mask);
257 258 259 260 261 262 263 264 265
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
266 267
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) >> PAGE_SHIFT;
268 269 270 271
}

static unsigned get_mmio_spte_access(u64 spte)
{
272 273
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) & ~PAGE_MASK;
274 275
}

276 277
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
278 279
{
	if (unlikely(is_noslot_pfn(pfn))) {
280
		mark_mmio_spte(kvm, sptep, gfn, access);
281 282 283 284 285
		return true;
	}

	return false;
}
286

287 288
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
289 290 291 292 293 294 295
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
296 297
}

298 299 300 301 302
static inline u64 rsvd_bits(int s, int e)
{
	return ((1ULL << (e - s + 1)) - 1) << s;
}

S
Sheng Yang 已提交
303
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
305 306 307 308 309 310 311 312 313
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
314 315 316 317 318
static int is_cpuid_PSE36(void)
{
	return 1;
}

319 320
static int is_nx(struct kvm_vcpu *vcpu)
{
321
	return vcpu->arch.efer & EFER_NX;
322 323
}

324 325
static int is_shadow_present_pte(u64 pte)
{
326
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 328
}

M
Marcelo Tosatti 已提交
329 330 331 332 333
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

334
static int is_rmap_spte(u64 pte)
335
{
336
	return is_shadow_present_pte(pte);
337 338
}

339 340 341 342
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
343
	if (is_large_pte(pte))
344 345 346 347
		return 1;
	return 0;
}

348
static pfn_t spte_to_pfn(u64 pte)
349
{
350
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
351 352
}

353 354 355 356 357 358 359
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

360
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
361
static void __set_spte(u64 *sptep, u64 spte)
362
{
363
	*sptep = spte;
364 365
}

366
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367
{
368 369 370 371 372 373 374
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
375 376 377 378 379

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
380 381 382 383 384 385

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
386
#else
387 388 389 390 391 392 393
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
394

395 396 397 398 399 400 401 402 403 404 405 406
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

407 408 409
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
410

411 412 413 414 415 416 417 418 419 420 421 422 423
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
442
	count_spte_clear(sptep, spte);
443 444 445 446 447 448 449 450 451 452 453
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
454 455
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
456
	count_spte_clear(sptep, spte);
457 458 459

	return orig.spte;
}
460 461 462 463

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
464 465 466 467 468 469 470 471 472 473 474 475 476 477
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
518 519
#endif

520 521
static bool spte_is_locklessly_modifiable(u64 spte)
{
522 523
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
524 525
}

526 527
static bool spte_has_volatile_bits(u64 spte)
{
528 529 530 531 532 533 534 535 536
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

537 538 539 540 541 542
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

543 544
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
545 546 547 548 549
		return false;

	return true;
}

550 551 552 553 554
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
569 570 571 572 573 574
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
575
 */
576
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
577
{
578
	u64 old_spte = *sptep;
579
	bool ret = false;
580 581

	WARN_ON(!is_rmap_spte(new_spte));
582

583 584 585 586
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
587

588
	if (!spte_has_volatile_bits(old_spte))
589
		__update_clear_spte_fast(sptep, new_spte);
590
	else
591
		old_spte = __update_clear_spte_slow(sptep, new_spte);
592

593 594 595 596 597
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
598 599 600
	if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
		ret = true;

601
	if (!shadow_accessed_mask)
602
		return ret;
603 604 605 606 607

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
608 609

	return ret;
610 611
}

612 613 614 615 616 617 618 619 620 621 622
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
623
		__update_clear_spte_fast(sptep, 0ull);
624
	else
625
		old_spte = __update_clear_spte_slow(sptep, 0ull);
626 627 628 629 630

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
631 632 633 634 635 636 637 638

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));

639 640 641 642 643 644 645 646 647 648 649 650 651 652
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
653
	__update_clear_spte_fast(sptep, 0ull);
654 655
}

656 657 658 659 660 661 662
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
663 664 665 666 667 668 669 670 671 672 673
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
674 675 676 677
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
678 679 680 681 682 683 684 685
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
686 687
}

688
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
689
				  struct kmem_cache *base_cache, int min)
690 691 692 693
{
	void *obj;

	if (cache->nobjs >= min)
694
		return 0;
695
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
696
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
697
		if (!obj)
698
			return -ENOMEM;
699 700
		cache->objects[cache->nobjs++] = obj;
	}
701
	return 0;
702 703
}

704 705 706 707 708
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

709 710
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
711 712
{
	while (mc->nobjs)
713
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714 715
}

A
Avi Kivity 已提交
716
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
717
				       int min)
A
Avi Kivity 已提交
718
{
719
	void *page;
A
Avi Kivity 已提交
720 721 722 723

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
724
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
725 726
		if (!page)
			return -ENOMEM;
727
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
728 729 730 731 732 733 734
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
735
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
736 737
}

738
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
739
{
740 741
	int r;

742
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
743
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
744 745
	if (r)
		goto out;
746
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
747 748
	if (r)
		goto out;
749
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
750
				   mmu_page_header_cache, 4);
751 752
out:
	return r;
753 754 755 756
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
757 758
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
759
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
760 761
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
762 763
}

764
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
765 766 767 768 769 770 771 772
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

773
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
774
{
775
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
776 777
}

778
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
779
{
780
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
781 782
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
799
/*
800 801
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
802
 */
803 804 805
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
806 807 808
{
	unsigned long idx;

809
	idx = gfn_to_index(gfn, slot->base_gfn, level);
810
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
811 812 813 814
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
815
	struct kvm_memory_slot *slot;
816
	struct kvm_lpage_info *linfo;
817
	int i;
M
Marcelo Tosatti 已提交
818

A
Avi Kivity 已提交
819
	slot = gfn_to_memslot(kvm, gfn);
820 821
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
822 823
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
824
	}
825
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
826 827 828 829
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
830
	struct kvm_memory_slot *slot;
831
	struct kvm_lpage_info *linfo;
832
	int i;
M
Marcelo Tosatti 已提交
833

A
Avi Kivity 已提交
834
	slot = gfn_to_memslot(kvm, gfn);
835 836
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
837 838 839
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
840
	}
841
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
842 843
}

844 845 846
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
847
{
848
	struct kvm_memory_slot *slot;
849
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
850

A
Avi Kivity 已提交
851
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
852
	if (slot) {
853 854
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
855 856 857 858 859
	}

	return 1;
}

860
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
861
{
J
Joerg Roedel 已提交
862
	unsigned long page_size;
863
	int i, ret = 0;
M
Marcelo Tosatti 已提交
864

J
Joerg Roedel 已提交
865
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
866

867 868 869 870 871 872 873 874
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

875
	return ret;
M
Marcelo Tosatti 已提交
876 877
}

878 879 880
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
881 882
{
	struct kvm_memory_slot *slot;
883 884 885 886 887 888 889 890 891 892 893

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
894
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
895 896 897 898 899
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
900

901 902 903 904 905
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
906
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
907 908

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
909 910 911 912
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
913 914
}

915
/*
916
 * Pte mapping structures:
917
 *
918
 * If pte_list bit zero is zero, then pte_list point to the spte.
919
 *
920 921
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
922
 *
923
 * Returns the number of pte entries before the spte was added or zero if
924 925
 * the spte was not added.
 *
926
 */
927 928
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
929
{
930
	struct pte_list_desc *desc;
931
	int i, count = 0;
932

933 934 935 936 937 938 939
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
940
		desc->sptes[1] = spte;
941
		*pte_list = (unsigned long)desc | 1;
942
		++count;
943
	} else {
944 945 946
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
947
			desc = desc->more;
948
			count += PTE_LIST_EXT;
949
		}
950 951
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
952 953
			desc = desc->more;
		}
A
Avi Kivity 已提交
954
		for (i = 0; desc->sptes[i]; ++i)
955
			++count;
A
Avi Kivity 已提交
956
		desc->sptes[i] = spte;
957
	}
958
	return count;
959 960
}

961 962 963
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
964 965 966
{
	int j;

967
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
968
		;
A
Avi Kivity 已提交
969 970
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
971 972 973
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
974
		*pte_list = (unsigned long)desc->sptes[0];
975 976 977 978
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
979 980
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
981 982
}

983
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
984
{
985 986
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
987 988
	int i;

989 990
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
991
		BUG();
992 993 994 995
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
996 997
			BUG();
		}
998
		*pte_list = 0;
999
	} else {
1000 1001
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1002 1003
		prev_desc = NULL;
		while (desc) {
1004
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1005
				if (desc->sptes[i] == spte) {
1006
					pte_list_desc_remove_entry(pte_list,
1007
							       desc, i,
1008 1009 1010 1011 1012 1013
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1014
		pr_err("pte_list_remove: %p many->many\n", spte);
1015 1016 1017 1018
		BUG();
	}
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1039
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1040
				    struct kvm_memory_slot *slot)
1041
{
1042
	unsigned long idx;
1043

1044
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1045
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1046 1047
}

1048 1049 1050 1051 1052 1053 1054 1055
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1056
	return __gfn_to_rmap(gfn, level, slot);
1057 1058
}

1059 1060 1061 1062 1063 1064 1065 1066
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1151
static void drop_spte(struct kvm *kvm, u64 *sptep)
1152
{
1153
	if (mmu_spte_clear_track_bits(sptep))
1154
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1178
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1179 1180
 * spte writ-protection is caused by protecting shadow page table.
 * @flush indicates whether tlb need be flushed.
1181 1182 1183 1184 1185 1186 1187
 *
 * Note: write protection is difference between drity logging and spte
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1188
 *
1189
 * Return true if the spte is dropped.
1190
 */
1191 1192
static bool
spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1193 1194 1195
{
	u64 spte = *sptep;

1196 1197
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198 1199 1200 1201
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1202 1203 1204 1205 1206
	if (__drop_large_spte(kvm, sptep)) {
		*flush |= true;
		return true;
	}

1207 1208
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1209
	spte = spte & ~PT_WRITABLE_MASK;
1210

1211 1212
	*flush |= mmu_spte_update(sptep, spte);
	return false;
1213 1214
}

1215
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1216
				 bool pt_protect)
1217
{
1218 1219
	u64 *sptep;
	struct rmap_iterator iter;
1220
	bool flush = false;
1221

1222 1223
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1224 1225 1226 1227
		if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
			sptep = rmap_get_first(*rmapp, &iter);
			continue;
		}
1228

1229
		sptep = rmap_get_next(&iter);
1230
	}
1231

1232
	return flush;
1233 1234
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1248 1249 1250
{
	unsigned long *rmapp;

1251
	while (mask) {
1252 1253
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1254
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1255

1256 1257 1258
		/* clear the first set bit */
		mask &= mask - 1;
	}
1259 1260
}

1261
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1262 1263
{
	struct kvm_memory_slot *slot;
1264 1265
	unsigned long *rmapp;
	int i;
1266
	bool write_protected = false;
1267 1268

	slot = gfn_to_memslot(kvm, gfn);
1269 1270 1271 1272

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1273
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1274 1275 1276
	}

	return write_protected;
1277 1278
}

F
Frederik Deweerdt 已提交
1279
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1280
			   struct kvm_memory_slot *slot, unsigned long data)
1281
{
1282 1283
	u64 *sptep;
	struct rmap_iterator iter;
1284 1285
	int need_tlb_flush = 0;

1286 1287 1288 1289 1290
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);

		drop_spte(kvm, sptep);
1291 1292
		need_tlb_flush = 1;
	}
1293

1294 1295 1296
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1297
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1298
			     struct kvm_memory_slot *slot, unsigned long data)
1299
{
1300 1301
	u64 *sptep;
	struct rmap_iterator iter;
1302
	int need_flush = 0;
1303
	u64 new_spte;
1304 1305 1306 1307 1308
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1309 1310 1311 1312 1313

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);

1314
		need_flush = 1;
1315

1316
		if (pte_write(*ptep)) {
1317 1318
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1319
		} else {
1320
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1321 1322 1323 1324
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1325
			new_spte &= ~shadow_accessed_mask;
1326 1327 1328 1329

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1330 1331
		}
	}
1332

1333 1334 1335 1336 1337 1338
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1339 1340 1341 1342 1343 1344
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1345
					       struct kvm_memory_slot *slot,
1346
					       unsigned long data))
1347
{
1348
	int j;
1349
	int ret = 0;
1350
	struct kvm_memslots *slots;
1351
	struct kvm_memory_slot *memslot;
1352

1353
	slots = kvm_memslots(kvm);
1354

1355
	kvm_for_each_memslot(memslot, slots) {
1356
		unsigned long hva_start, hva_end;
1357
		gfn_t gfn_start, gfn_end;
1358

1359 1360 1361 1362 1363 1364 1365
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1366
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1367
		 */
1368
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1369
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1370

1371 1372 1373 1374
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1375

1376 1377 1378 1379 1380 1381
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1382

1383
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1384

1385 1386
			for (; idx <= idx_end; ++idx)
				ret |= handler(kvm, rmapp++, memslot, data);
1387 1388 1389
		}
	}

1390
	return ret;
1391 1392
}

1393 1394 1395
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1396
					 struct kvm_memory_slot *slot,
1397 1398 1399
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1400 1401 1402 1403
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1404 1405 1406
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1407 1408 1409 1410 1411
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1412 1413
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1414
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1415 1416
}

F
Frederik Deweerdt 已提交
1417
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1418
			 struct kvm_memory_slot *slot, unsigned long data)
1419
{
1420
	u64 *sptep;
1421
	struct rmap_iterator uninitialized_var(iter);
1422 1423
	int young = 0;

1424
	/*
1425 1426
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
1427 1428 1429 1430 1431
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1432 1433 1434 1435
	if (!shadow_accessed_mask) {
		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
		goto out;
	}
1436

1437 1438
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1439
		BUG_ON(!is_shadow_present_pte(*sptep));
1440

1441
		if (*sptep & shadow_accessed_mask) {
1442
			young = 1;
1443 1444
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1445 1446
		}
	}
1447 1448 1449
out:
	/* @data has hva passed to kvm_age_hva(). */
	trace_kvm_age_page(data, slot, young);
1450 1451 1452
	return young;
}

A
Andrea Arcangeli 已提交
1453
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1454
			      struct kvm_memory_slot *slot, unsigned long data)
A
Andrea Arcangeli 已提交
1455
{
1456 1457
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1468 1469
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1470
		BUG_ON(!is_shadow_present_pte(*sptep));
1471

1472
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1473 1474 1475 1476 1477 1478 1479 1480
			young = 1;
			break;
		}
	}
out:
	return young;
}

1481 1482
#define RMAP_RECYCLE_THRESHOLD 1000

1483
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1484 1485
{
	unsigned long *rmapp;
1486 1487 1488
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1489

1490
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1491

1492
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1493 1494 1495
	kvm_flush_remote_tlbs(vcpu->kvm);
}

1496 1497
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
1498
	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1499 1500
}

A
Andrea Arcangeli 已提交
1501 1502 1503 1504 1505
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1506
#ifdef MMU_DEBUG
1507
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1508
{
1509 1510 1511
	u64 *pos;
	u64 *end;

1512
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1513
		if (is_shadow_present_pte(*pos)) {
1514
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1515
			       pos, *pos);
A
Avi Kivity 已提交
1516
			return 0;
1517
		}
A
Avi Kivity 已提交
1518 1519
	return 1;
}
1520
#endif
A
Avi Kivity 已提交
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1534
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1535
{
1536
	ASSERT(is_empty_shadow_page(sp->spt));
1537
	hlist_del(&sp->hash_link);
1538 1539
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1540 1541
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1542
	kmem_cache_free(mmu_page_header_cache, sp);
1543 1544
}

1545 1546
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1547
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1548 1549
}

1550
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1551
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1552 1553 1554 1555
{
	if (!parent_pte)
		return;

1556
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1557 1558
}

1559
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1560 1561
				       u64 *parent_pte)
{
1562
	pte_list_remove(parent_pte, &sp->parent_ptes);
1563 1564
}

1565 1566 1567 1568
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1569
	mmu_spte_clear_no_track(parent_pte);
1570 1571
}

1572 1573
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1574
{
1575
	struct kvm_mmu_page *sp;
1576

1577 1578
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1579
	if (!direct)
1580
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1581
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1582 1583 1584 1585 1586 1587

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1588 1589 1590 1591 1592
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1593 1594
}

1595
static void mark_unsync(u64 *spte);
1596
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1597
{
1598
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1599 1600
}

1601
static void mark_unsync(u64 *spte)
1602
{
1603
	struct kvm_mmu_page *sp;
1604
	unsigned int index;
1605

1606
	sp = page_header(__pa(spte));
1607 1608
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1609
		return;
1610
	if (sp->unsync_children++)
1611
		return;
1612
	kvm_mmu_mark_parents_unsync(sp);
1613 1614
}

1615
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1616
			       struct kvm_mmu_page *sp)
1617 1618 1619 1620
{
	return 1;
}

M
Marcelo Tosatti 已提交
1621 1622 1623 1624
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1625 1626
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1627
				 const void *pte)
1628 1629 1630 1631
{
	WARN_ON(1);
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1642 1643
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1644
{
1645
	int i;
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1662

1663
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1664
		struct kvm_mmu_page *child;
1665 1666
		u64 ent = sp->spt[i];

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1696 1697 1698
	}


1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1710 1711 1712 1713 1714
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1715
	trace_kvm_mmu_sync_page(sp);
1716 1717 1718 1719
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1720 1721 1722 1723
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1735 1736 1737 1738 1739 1740 1741 1742
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1743

1744
/* @sp->gfn should be write-protected at the call site */
1745
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1746
			   struct list_head *invalid_list, bool clear_unsync)
1747
{
1748
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1749
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1750 1751 1752
		return 1;
	}

1753
	if (clear_unsync)
1754 1755
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1756
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1757
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1758 1759 1760 1761 1762 1763 1764
		return 1;
	}

	kvm_mmu_flush_tlb(vcpu);
	return 0;
}

1765 1766 1767
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1768
	LIST_HEAD(invalid_list);
1769 1770
	int ret;

1771
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1772
	if (ret)
1773 1774
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1775 1776 1777
	return ret;
}

1778 1779 1780 1781 1782 1783 1784
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1785 1786
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1787
{
1788
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1789 1790
}

1791 1792 1793 1794
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1795
	LIST_HEAD(invalid_list);
1796 1797
	bool flush = false;

1798
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1799
		if (!s->unsync)
1800 1801 1802
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1803
		kvm_unlink_unsync_page(vcpu->kvm, s);
1804
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1805
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1806
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1807 1808 1809 1810 1811
			continue;
		}
		flush = true;
	}

1812
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1813 1814 1815 1816
	if (flush)
		kvm_mmu_flush_tlb(vcpu);
}

1817 1818 1819
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1820 1821
};

1822 1823 1824 1825 1826 1827
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1828 1829 1830
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1849
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1850
{
1851 1852 1853 1854 1855
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1866 1867
}

1868 1869 1870
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1871
{
1872 1873 1874
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1875

1876 1877 1878 1879 1880 1881 1882
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1883
	LIST_HEAD(invalid_list);
1884 1885 1886

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1887
		bool protected = false;
1888 1889 1890 1891 1892 1893 1894

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1895
		for_each_sp(pages, sp, parents, i) {
1896
			kvm_sync_page(vcpu, sp, &invalid_list);
1897 1898
			mmu_pages_clear_parents(&parents);
		}
1899
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1900
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1901 1902
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1925 1926 1927 1928 1929
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1930 1931 1932 1933
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1934
					     int direct,
1935
					     unsigned access,
1936
					     u64 *parent_pte)
1937 1938 1939
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1940 1941
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1942

1943
	role = vcpu->arch.mmu.base_role;
1944
	role.level = level;
1945
	role.direct = direct;
1946
	if (role.direct)
1947
		role.cr4_pae = 0;
1948
	role.access = access;
1949 1950
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1951 1952 1953 1954
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1955
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1956 1957 1958
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1959 1960
		if (!need_sync && sp->unsync)
			need_sync = true;
1961

1962 1963
		if (sp->role.word != role.word)
			continue;
1964

1965 1966
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1967

1968 1969
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1970
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1971 1972 1973
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1974

1975
		__clear_sp_write_flooding_count(sp);
1976 1977 1978
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1979
	++vcpu->kvm->stat.mmu_cache_miss;
1980
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1981 1982 1983 1984
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1985 1986
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1987
	if (!direct) {
1988 1989
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1990 1991 1992
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1993 1994
		account_shadowed(vcpu->kvm, gfn);
	}
1995
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1996
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1997
	trace_kvm_mmu_get_page(sp, true);
1998
	return sp;
1999 2000
}

2001 2002 2003 2004 2005 2006
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2007 2008 2009 2010 2011 2012

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2027

2028 2029 2030 2031 2032
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2033 2034
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2035
{
2036
	if (is_last_spte(spte, iterator->level)) {
2037 2038 2039 2040
		iterator->level = 0;
		return;
	}

2041
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2042 2043 2044
	--iterator->level;
}

2045 2046 2047 2048 2049
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2050
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2051 2052 2053
{
	u64 spte;

2054 2055 2056
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2057
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2058 2059 2060 2061
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2062

2063
	mmu_spte_set(sptep, spte);
2064 2065
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2083
		drop_parent_pte(child, sptep);
2084 2085 2086 2087
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2088
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2089 2090 2091 2092 2093 2094 2095
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2096
		if (is_last_spte(pte, sp->role.level)) {
2097
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2098 2099 2100
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2101
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2102
			drop_parent_pte(child, spte);
2103
		}
X
Xiao Guangrong 已提交
2104 2105 2106 2107
		return true;
	}

	if (is_mmio_spte(pte))
2108
		mmu_spte_clear_no_track(spte);
2109

X
Xiao Guangrong 已提交
2110
	return false;
2111 2112
}

2113
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2114
					 struct kvm_mmu_page *sp)
2115
{
2116 2117
	unsigned i;

2118 2119
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2120 2121
}

2122
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2123
{
2124
	mmu_page_remove_parent_pte(sp, parent_pte);
2125 2126
}

2127
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2128
{
2129 2130
	u64 *sptep;
	struct rmap_iterator iter;
2131

2132 2133
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2134 2135
}

2136
static int mmu_zap_unsync_children(struct kvm *kvm,
2137 2138
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2139
{
2140 2141 2142
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2143

2144
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2145
		return 0;
2146 2147 2148 2149 2150 2151

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2152
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2153
			mmu_pages_clear_parents(&parents);
2154
			zapped++;
2155 2156 2157 2158 2159
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2160 2161
}

2162 2163
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2164
{
2165
	int ret;
A
Avi Kivity 已提交
2166

2167
	trace_kvm_mmu_prepare_zap_page(sp);
2168
	++kvm->stat.mmu_shadow_zapped;
2169
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2170
	kvm_mmu_page_unlink_children(kvm, sp);
2171
	kvm_mmu_unlink_parents(kvm, sp);
2172

2173
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2174
		unaccount_shadowed(kvm, sp->gfn);
2175

2176 2177
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2178
	if (!sp->root_count) {
2179 2180
		/* Count self */
		ret++;
2181
		list_move(&sp->link, invalid_list);
2182
		kvm_mod_used_mmu_pages(kvm, -1);
2183
	} else {
A
Avi Kivity 已提交
2184
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2185 2186 2187 2188 2189 2190 2191

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2192
	}
2193 2194

	sp->role.invalid = 1;
2195
	return ret;
2196 2197
}

2198 2199 2200
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2201
	struct kvm_mmu_page *sp, *nsp;
2202 2203 2204 2205

	if (list_empty(invalid_list))
		return;

2206 2207 2208 2209 2210
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2211

2212 2213 2214 2215 2216
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2217

2218
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2219
		WARN_ON(!sp->role.invalid || sp->root_count);
2220
		kvm_mmu_free_page(sp);
2221
	}
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2239 2240
/*
 * Changing the number of mmu pages allocated to the vm
2241
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2242
 */
2243
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2244
{
2245
	LIST_HEAD(invalid_list);
2246

2247 2248
	spin_lock(&kvm->mmu_lock);

2249
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2250 2251 2252 2253
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2254

2255
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2256
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2257 2258
	}

2259
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2260 2261

	spin_unlock(&kvm->mmu_lock);
2262 2263
}

2264
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2265
{
2266
	struct kvm_mmu_page *sp;
2267
	LIST_HEAD(invalid_list);
2268 2269
	int r;

2270
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2271
	r = 0;
2272
	spin_lock(&kvm->mmu_lock);
2273
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2274
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2275 2276
			 sp->role.word);
		r = 1;
2277
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2278
	}
2279
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2280 2281
	spin_unlock(&kvm->mmu_lock);

2282
	return r;
2283
}
2284
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2285

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2379
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2380 2381 2382 2383 2384 2385 2386 2387 2388
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2389
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2390

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2401 2402
{
	struct kvm_mmu_page *s;
2403

2404
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2405
		if (s->unsync)
2406
			continue;
2407 2408
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2409 2410 2411 2412 2413 2414
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2415 2416 2417
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2418
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2419 2420 2421
		if (!can_unsync)
			return 1;

2422
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2423
			return 1;
2424

G
Gleb Natapov 已提交
2425
		if (!s->unsync)
2426
			need_unsync = true;
2427
	}
2428 2429
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2430 2431 2432
	return 0;
}

A
Avi Kivity 已提交
2433
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2434
		    unsigned pte_access, int level,
2435
		    gfn_t gfn, pfn_t pfn, bool speculative,
2436
		    bool can_unsync, bool host_writable)
2437
{
2438
	u64 spte;
M
Marcelo Tosatti 已提交
2439
	int ret = 0;
S
Sheng Yang 已提交
2440

2441
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2442 2443
		return 0;

2444
	spte = PT_PRESENT_MASK;
2445
	if (!speculative)
2446
		spte |= shadow_accessed_mask;
2447

S
Sheng Yang 已提交
2448 2449 2450 2451
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2452

2453
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2454
		spte |= shadow_user_mask;
2455

2456
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2457
		spte |= PT_PAGE_SIZE_MASK;
2458
	if (tdp_enabled)
2459 2460
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
			kvm_is_mmio_pfn(pfn));
2461

2462
	if (host_writable)
2463
		spte |= SPTE_HOST_WRITEABLE;
2464 2465
	else
		pte_access &= ~ACC_WRITE_MASK;
2466

2467
	spte |= (u64)pfn << PAGE_SHIFT;
2468

2469
	if (pte_access & ACC_WRITE_MASK) {
2470

X
Xiao Guangrong 已提交
2471
		/*
2472 2473 2474 2475
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2476
		 */
2477
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2478
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2479
			goto done;
2480

2481
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2482

2483 2484 2485 2486 2487 2488
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2489
		if (!can_unsync && is_writable_pte(*sptep))
2490 2491
			goto set_pte;

2492
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2493
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2494
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2495
			ret = 1;
2496
			pte_access &= ~ACC_WRITE_MASK;
2497
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2498 2499 2500 2501 2502 2503
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2504
set_pte:
2505
	if (mmu_spte_update(sptep, spte))
2506
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2507
done:
M
Marcelo Tosatti 已提交
2508 2509 2510
	return ret;
}

A
Avi Kivity 已提交
2511
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2512 2513 2514
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2515 2516
{
	int was_rmapped = 0;
2517
	int rmap_count;
M
Marcelo Tosatti 已提交
2518

2519 2520
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2521

A
Avi Kivity 已提交
2522
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2523 2524 2525 2526
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2527 2528
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2529
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2530
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2531 2532

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2533
			drop_parent_pte(child, sptep);
2534
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2535
		} else if (pfn != spte_to_pfn(*sptep)) {
2536
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2537
				 spte_to_pfn(*sptep), pfn);
2538
			drop_spte(vcpu->kvm, sptep);
2539
			kvm_flush_remote_tlbs(vcpu->kvm);
2540 2541
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2542
	}
2543

2544 2545
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2546
		if (write_fault)
2547
			*emulate = 1;
2548
		kvm_mmu_flush_tlb(vcpu);
2549
	}
M
Marcelo Tosatti 已提交
2550

2551 2552 2553
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2554
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2555
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2556
		 is_large_pte(*sptep)? "2MB" : "4kB",
2557 2558
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2559
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2560 2561
		++vcpu->kvm->stat.lpages;

2562 2563 2564 2565 2566 2567
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2568
	}
2569

X
Xiao Guangrong 已提交
2570
	kvm_release_pfn_clean(pfn);
2571 2572
}

A
Avi Kivity 已提交
2573 2574
static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
{
2575
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
2576 2577
}

2578 2579 2580 2581 2582
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2583
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2584
	if (!slot)
2585
		return KVM_PFN_ERR_FAULT;
2586

2587
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2600
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2601 2602 2603 2604 2605 2606 2607
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2608
		mmu_set_spte(vcpu, start, access, 0, NULL,
2609 2610
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2627
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2658
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2659 2660
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2661
{
2662
	struct kvm_shadow_walk_iterator iterator;
2663
	struct kvm_mmu_page *sp;
2664
	int emulate = 0;
2665
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2666

2667
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2668
		if (iterator.level == level) {
2669
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2670 2671
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2672
			direct_pte_prefetch(vcpu, iterator.sptep);
2673 2674
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2675 2676
		}

2677
		if (!is_shadow_present_pte(*iterator.sptep)) {
2678 2679 2680 2681
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2682 2683 2684
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2685

2686
			link_shadow_page(iterator.sptep, sp, true);
2687 2688
		}
	}
2689
	return emulate;
A
Avi Kivity 已提交
2690 2691
}

H
Huang Ying 已提交
2692
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2693
{
H
Huang Ying 已提交
2694 2695 2696 2697 2698 2699 2700
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2701

H
Huang Ying 已提交
2702
	send_sig_info(SIGBUS, &info, tsk);
2703 2704
}

2705
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2706
{
X
Xiao Guangrong 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2716
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2717
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2718
		return 0;
2719
	}
2720

2721
	return -EFAULT;
2722 2723
}

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2737
	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2759
			kvm_get_pfn(pfn);
2760 2761 2762 2763 2764
			*pfnp = pfn;
		}
	}
}

2765 2766 2767 2768 2769 2770
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2771
	if (unlikely(is_error_pfn(pfn))) {
2772 2773 2774 2775
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2776
	if (unlikely(is_noslot_pfn(pfn)))
2777 2778 2779 2780 2781 2782 2783
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2784 2785
static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
{
2786 2787 2788 2789 2790 2791 2792
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp = page_header(__pa(sptep));
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
	bool ret = false;
	u64 spte = 0ull;

	if (!page_fault_can_be_fast(vcpu, error_code))
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

	if (!is_last_spte(spte, level))
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
	ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
exit:
X
Xiao Guangrong 已提交
2882 2883
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2884 2885 2886 2887 2888
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2889
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2890
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2891
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2892

2893 2894
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2895 2896
{
	int r;
2897
	int level;
2898
	int force_pt_level;
2899
	pfn_t pfn;
2900
	unsigned long mmu_seq;
2901
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2902

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2913

2914 2915 2916
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2917

2918 2919 2920
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2921
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2922
	smp_rmb();
2923

2924
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2925
		return 0;
2926

2927 2928
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2929

2930
	spin_lock(&vcpu->kvm->mmu_lock);
2931
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2932
		goto out_unlock;
2933
	make_mmu_pages_available(vcpu);
2934 2935
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2936 2937
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2938 2939 2940
	spin_unlock(&vcpu->kvm->mmu_lock);


2941
	return r;
2942 2943 2944 2945 2946

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2947 2948 2949
}


2950 2951 2952
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2953
	struct kvm_mmu_page *sp;
2954
	LIST_HEAD(invalid_list);
2955

2956
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2957
		return;
2958

2959 2960 2961
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2962
		hpa_t root = vcpu->arch.mmu.root_hpa;
2963

2964
		spin_lock(&vcpu->kvm->mmu_lock);
2965 2966
		sp = page_header(root);
		--sp->root_count;
2967 2968 2969 2970
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2971
		spin_unlock(&vcpu->kvm->mmu_lock);
2972
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2973 2974
		return;
	}
2975 2976

	spin_lock(&vcpu->kvm->mmu_lock);
2977
	for (i = 0; i < 4; ++i) {
2978
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2979

A
Avi Kivity 已提交
2980 2981
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
2982 2983
			sp = page_header(root);
			--sp->root_count;
2984
			if (!sp->root_count && sp->role.invalid)
2985 2986
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
2987
		}
2988
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2989
	}
2990
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2991
	spin_unlock(&vcpu->kvm->mmu_lock);
2992
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2993 2994
}

2995 2996 2997 2998 2999
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3000
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3001 3002 3003 3004 3005 3006
		ret = 1;
	}

	return ret;
}

3007 3008 3009
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3010
	unsigned i;
3011 3012 3013

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3014
		make_mmu_pages_available(vcpu);
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3026
			make_mmu_pages_available(vcpu);
3027 3028
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3029 3030 3031 3032 3033 3034 3035
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3036
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3037 3038 3039 3040 3041 3042 3043
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3044
{
3045
	struct kvm_mmu_page *sp;
3046 3047 3048
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3049

3050
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3051

3052 3053 3054 3055 3056 3057 3058 3059
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3060
		hpa_t root = vcpu->arch.mmu.root_hpa;
3061 3062

		ASSERT(!VALID_PAGE(root));
3063

3064
		spin_lock(&vcpu->kvm->mmu_lock);
3065
		make_mmu_pages_available(vcpu);
3066 3067
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3068 3069
		root = __pa(sp->spt);
		++sp->root_count;
3070
		spin_unlock(&vcpu->kvm->mmu_lock);
3071
		vcpu->arch.mmu.root_hpa = root;
3072
		return 0;
3073
	}
3074

3075 3076
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3077 3078
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3079
	 */
3080 3081 3082 3083
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3084
	for (i = 0; i < 4; ++i) {
3085
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3086 3087

		ASSERT(!VALID_PAGE(root));
3088
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3089
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3090
			if (!is_present_gpte(pdptr)) {
3091
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3092 3093
				continue;
			}
A
Avi Kivity 已提交
3094
			root_gfn = pdptr >> PAGE_SHIFT;
3095 3096
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3097
		}
3098
		spin_lock(&vcpu->kvm->mmu_lock);
3099
		make_mmu_pages_available(vcpu);
3100
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3101
				      PT32_ROOT_LEVEL, 0,
3102
				      ACC_ALL, NULL);
3103 3104
		root = __pa(sp->spt);
		++sp->root_count;
3105 3106
		spin_unlock(&vcpu->kvm->mmu_lock);

3107
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3108
	}
3109
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3136
	return 0;
3137 3138
}

3139 3140 3141 3142 3143 3144 3145 3146
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3147 3148 3149 3150 3151
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3152 3153 3154
	if (vcpu->arch.mmu.direct_map)
		return;

3155 3156
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3157

3158
	vcpu_clear_mmio_info(vcpu, ~0ul);
3159
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3160
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3161 3162 3163
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3164
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3165 3166 3167 3168 3169
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3170
		if (root && VALID_PAGE(root)) {
3171 3172 3173 3174 3175
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3176
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3177 3178 3179 3180 3181 3182
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3183
	spin_unlock(&vcpu->kvm->mmu_lock);
3184 3185
}

3186
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3187
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3188
{
3189 3190
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3191 3192 3193
	return vaddr;
}

3194
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3195 3196
					 u32 access,
					 struct x86_exception *exception)
3197
{
3198 3199
	if (exception)
		exception->error_code = 0;
3200 3201 3202
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
}

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3245
		return RET_MMIO_PF_EMULATE;
3246 3247 3248 3249 3250 3251 3252

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3253 3254 3255
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3256 3257
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3258 3259

		trace_handle_mmio_page_fault(addr, gfn, access);
3260
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3261
		return RET_MMIO_PF_EMULATE;
3262 3263 3264 3265 3266 3267 3268
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3269
		return RET_MMIO_PF_BUG;
3270 3271 3272 3273 3274

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3275
	return RET_MMIO_PF_RETRY;
3276 3277 3278 3279 3280 3281 3282 3283 3284
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3285
	WARN_ON(ret == RET_MMIO_PF_BUG);
3286 3287 3288
	return ret;
}

A
Avi Kivity 已提交
3289
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3290
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3291
{
3292
	gfn_t gfn;
3293
	int r;
A
Avi Kivity 已提交
3294

3295
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3296

3297 3298 3299 3300 3301 3302
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3303

3304 3305 3306
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3307

A
Avi Kivity 已提交
3308
	ASSERT(vcpu);
3309
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3310

3311
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3312

3313
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3314
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3315 3316
}

3317
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3318 3319
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3320

3321
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3322
	arch.gfn = gfn;
3323
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3324
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337

	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3338
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3339
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3340 3341 3342
{
	bool async;

3343
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3344 3345 3346 3347

	if (!async)
		return false; /* *pfn has correct page already */

3348
	if (!prefault && can_do_async_pf(vcpu)) {
3349
		trace_kvm_try_async_get_page(gva, gfn);
3350 3351 3352 3353 3354 3355 3356 3357
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3358
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3359 3360 3361 3362

	return false;
}

G
Gleb Natapov 已提交
3363
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3364
			  bool prefault)
3365
{
3366
	pfn_t pfn;
3367
	int r;
3368
	int level;
3369
	int force_pt_level;
M
Marcelo Tosatti 已提交
3370
	gfn_t gfn = gpa >> PAGE_SHIFT;
3371
	unsigned long mmu_seq;
3372 3373
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3374 3375 3376 3377

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3378 3379 3380 3381 3382 3383
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3384

3385 3386 3387 3388
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3389 3390 3391 3392 3393 3394
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3395

3396 3397 3398
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3399
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3400
	smp_rmb();
3401

3402
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3403 3404
		return 0;

3405 3406 3407
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3408
	spin_lock(&vcpu->kvm->mmu_lock);
3409
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3410
		goto out_unlock;
3411
	make_mmu_pages_available(vcpu);
3412 3413
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3414
	r = __direct_map(vcpu, gpa, write, map_writable,
3415
			 level, gfn, pfn, prefault);
3416 3417 3418
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3419 3420 3421 3422 3423

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3424 3425
}

A
Avi Kivity 已提交
3426 3427
static void nonpaging_free(struct kvm_vcpu *vcpu)
{
3428
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3429 3430
}

3431 3432
static int nonpaging_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3433 3434 3435 3436 3437
{
	context->new_cr3 = nonpaging_new_cr3;
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
	context->free = nonpaging_free;
3438
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3439
	context->invlpg = nonpaging_invlpg;
3440
	context->update_pte = nonpaging_update_pte;
3441
	context->root_level = 0;
A
Avi Kivity 已提交
3442
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3443
	context->root_hpa = INVALID_PAGE;
3444
	context->direct_map = true;
3445
	context->nx = false;
A
Avi Kivity 已提交
3446 3447 3448
	return 0;
}

3449
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3450
{
A
Avi Kivity 已提交
3451
	++vcpu->stat.tlb_flush;
3452
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
A
Avi Kivity 已提交
3453 3454 3455 3456
}

static void paging_new_cr3(struct kvm_vcpu *vcpu)
{
3457
	pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3458
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3459 3460
}

3461 3462
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3463
	return kvm_read_cr3(vcpu);
3464 3465
}

3466 3467
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3468
{
3469
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3470 3471 3472 3473 3474 3475 3476
}

static void paging_free(struct kvm_vcpu *vcpu)
{
	nonpaging_free(vcpu);
}

3477 3478
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3479 3480 3481 3482 3483 3484 3485 3486
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3487
		mark_mmio_spte(kvm, sptep, gfn, access);
3488 3489 3490 3491 3492 3493
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3503 3504 3505 3506 3507
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3508 3509 3510 3511 3512 3513 3514 3515
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3516
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3517
				  struct kvm_mmu *context)
3518 3519 3520 3521
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;

3522 3523
	context->bad_mt_xwr = 0;

3524
	if (!context->nx)
3525
		exb_bit_rsvd = rsvd_bits(63, 63);
3526
	switch (context->root_level) {
3527 3528 3529 3530
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3531 3532 3533 3534 3535 3536 3537
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3538 3539 3540 3541 3542 3543 3544 3545
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3546 3547 3548
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3549
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3550
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3551 3552 3553 3554 3555
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3556
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3557 3558 3559 3560 3561 3562 3563
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3564
			rsvd_bits(maxphyaddr, 51);
3565 3566 3567
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3568 3569 3570
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 29);
3571
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3572 3573
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3574
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3575 3576 3577 3578
		break;
	}
}

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

static void update_permission_bitmask(struct kvm_vcpu *vcpu,
		struct kvm_mmu *mmu, bool ept)
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
{
	unsigned bit, byte, pfec;
	u8 map;
	bool fault, x, w, u, wf, uf, ff, smep;

	smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
				x &= !(smep && u && !uf);
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3640 3641 3642 3643 3644 3645 3646 3647

			fault = (ff && !x) || (uf && !u) || (wf && !w);
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3666 3667 3668
static int paging64_init_context_common(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context,
					int level)
A
Avi Kivity 已提交
3669
{
3670
	context->nx = is_nx(vcpu);
3671
	context->root_level = level;
3672

3673
	reset_rsvds_bits_mask(vcpu, context);
3674
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3675
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3676 3677 3678 3679 3680

	ASSERT(is_pae(vcpu));
	context->new_cr3 = paging_new_cr3;
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3681
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3682
	context->invlpg = paging64_invlpg;
3683
	context->update_pte = paging64_update_pte;
A
Avi Kivity 已提交
3684
	context->free = paging_free;
3685
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3686
	context->root_hpa = INVALID_PAGE;
3687
	context->direct_map = false;
A
Avi Kivity 已提交
3688 3689 3690
	return 0;
}

3691 3692
static int paging64_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
3693
{
3694
	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3695 3696
}

3697 3698
static int paging32_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
A
Avi Kivity 已提交
3699
{
3700
	context->nx = false;
3701
	context->root_level = PT32_ROOT_LEVEL;
3702

3703
	reset_rsvds_bits_mask(vcpu, context);
3704
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3705
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3706 3707 3708 3709 3710

	context->new_cr3 = paging_new_cr3;
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
	context->free = paging_free;
3711
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3712
	context->invlpg = paging32_invlpg;
3713
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3714
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3715
	context->root_hpa = INVALID_PAGE;
3716
	context->direct_map = false;
A
Avi Kivity 已提交
3717 3718 3719
	return 0;
}

3720 3721
static int paging32E_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3722
{
3723
	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3724 3725
}

3726 3727
static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
{
3728
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3729

3730
	context->base_role.word = 0;
3731 3732 3733
	context->new_cr3 = nonpaging_new_cr3;
	context->page_fault = tdp_page_fault;
	context->free = nonpaging_free;
3734
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3735
	context->invlpg = nonpaging_invlpg;
3736
	context->update_pte = nonpaging_update_pte;
3737
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3738
	context->root_hpa = INVALID_PAGE;
3739
	context->direct_map = true;
3740
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3741
	context->get_cr3 = get_cr3;
3742
	context->get_pdptr = kvm_pdptr_read;
3743
	context->inject_page_fault = kvm_inject_page_fault;
3744 3745

	if (!is_paging(vcpu)) {
3746
		context->nx = false;
3747 3748 3749
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3750
		context->nx = is_nx(vcpu);
3751
		context->root_level = PT64_ROOT_LEVEL;
3752 3753
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3754
	} else if (is_pae(vcpu)) {
3755
		context->nx = is_nx(vcpu);
3756
		context->root_level = PT32E_ROOT_LEVEL;
3757 3758
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3759
	} else {
3760
		context->nx = false;
3761
		context->root_level = PT32_ROOT_LEVEL;
3762 3763
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3764 3765
	}

3766
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3767
	update_last_pte_bitmap(vcpu, context);
3768

3769 3770 3771
	return 0;
}

3772
int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3773
{
3774
	int r;
3775
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3776
	ASSERT(vcpu);
3777
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3778 3779

	if (!is_paging(vcpu))
3780
		r = nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3781
	else if (is_long_mode(vcpu))
3782
		r = paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3783
	else if (is_pae(vcpu))
3784
		r = paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3785
	else
3786
		r = paging32_init_context(vcpu, context);
3787

3788
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3789
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3790
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3791 3792
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3793 3794 3795 3796 3797 3798 3799

	return r;
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
{
3800
	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3801

3802 3803
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3804
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3805
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3806 3807

	return r;
A
Avi Kivity 已提交
3808 3809
}

3810 3811 3812 3813 3814
static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3815
	g_context->get_pdptr         = kvm_pdptr_read;
3816 3817 3818 3819 3820 3821 3822 3823 3824
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3825
		g_context->nx = false;
3826 3827 3828
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3829
		g_context->nx = is_nx(vcpu);
3830
		g_context->root_level = PT64_ROOT_LEVEL;
3831
		reset_rsvds_bits_mask(vcpu, g_context);
3832 3833
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3834
		g_context->nx = is_nx(vcpu);
3835
		g_context->root_level = PT32E_ROOT_LEVEL;
3836
		reset_rsvds_bits_mask(vcpu, g_context);
3837 3838
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3839
		g_context->nx = false;
3840
		g_context->root_level = PT32_ROOT_LEVEL;
3841
		reset_rsvds_bits_mask(vcpu, g_context);
3842 3843 3844
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3845
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3846
	update_last_pte_bitmap(vcpu, g_context);
3847

3848 3849 3850
	return 0;
}

3851 3852
static int init_kvm_mmu(struct kvm_vcpu *vcpu)
{
3853 3854 3855
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3856 3857 3858 3859 3860
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

A
Avi Kivity 已提交
3861 3862 3863
static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
3864 3865
	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
		/* mmu.free() should set root_hpa = INVALID_PAGE */
3866
		vcpu->arch.mmu.free(vcpu);
A
Avi Kivity 已提交
3867 3868 3869
}

int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3870 3871
{
	destroy_kvm_mmu(vcpu);
3872
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3873
}
3874
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3875 3876

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3877
{
3878 3879
	int r;

3880
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3881 3882
	if (r)
		goto out;
3883
	r = mmu_alloc_roots(vcpu);
3884
	kvm_mmu_sync_roots(vcpu);
3885 3886
	if (r)
		goto out;
3887
	/* set_cr3() should ensure TLB has been flushed */
3888
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3889 3890
out:
	return r;
A
Avi Kivity 已提交
3891
}
A
Avi Kivity 已提交
3892 3893 3894 3895 3896 3897
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
}
3898
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3899

3900
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3901 3902
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3903
{
3904
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3905 3906
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3907
        }
3908

A
Avi Kivity 已提交
3909
	++vcpu->kvm->stat.mmu_pte_updated;
3910
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3911 3912
}

3913 3914 3915 3916 3917 3918 3919 3920
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3921 3922
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3923 3924 3925
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3926 3927
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3928
{
3929 3930 3931 3932
	if (zap_page)
		return;

	if (remote_flush)
3933
		kvm_flush_remote_tlbs(vcpu->kvm);
3934
	else if (local_flush)
3935 3936 3937
		kvm_mmu_flush_tlb(vcpu);
}

3938 3939
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3940
{
3941 3942
	u64 gentry;
	int r;
3943 3944 3945

	/*
	 * Assume that the pte write on a page table of the same type
3946 3947
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3948
	 */
3949
	if (is_pae(vcpu) && *bytes == 4) {
3950
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3951 3952
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3953
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3954 3955
		if (r)
			gentry = 0;
3956 3957 3958
		new = (const u8 *)&gentry;
	}

3959
	switch (*bytes) {
3960 3961 3962 3963 3964 3965 3966 3967 3968
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3969 3970
	}

3971 3972 3973 3974 3975 3976 3977
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
3978
static bool detect_write_flooding(struct kvm_mmu_page *sp)
3979
{
3980 3981 3982 3983
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
3984
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3985
		return false;
3986

3987
	return ++sp->write_flooding_count >= 3;
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4004 4005 4006 4007 4008 4009 4010 4011

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4058
	bool remote_flush, local_flush, zap_page;
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4082
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4083

4084
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4085
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4086
		if (detect_write_misaligned(sp, gpa, bytes) ||
4087
		      detect_write_flooding(sp)) {
4088
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4089
						     &invalid_list);
A
Avi Kivity 已提交
4090
			++vcpu->kvm->stat.mmu_flooded;
4091 4092
			continue;
		}
4093 4094 4095 4096 4097

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4098
		local_flush = true;
4099
		while (npte--) {
4100
			entry = *spte;
4101
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4102 4103
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4104
			      & mask.word) && rmap_can_add(vcpu))
4105
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4106
			if (need_remote_flush(entry, *spte))
4107
				remote_flush = true;
4108
			++spte;
4109 4110
		}
	}
4111
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4112
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4113
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4114
	spin_unlock(&vcpu->kvm->mmu_lock);
4115 4116
}

4117 4118
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4119 4120
	gpa_t gpa;
	int r;
4121

4122
	if (vcpu->arch.mmu.direct_map)
4123 4124
		return 0;

4125
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4126 4127

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4128

4129
	return r;
4130
}
4131
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4132

4133
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4134
{
4135
	LIST_HEAD(invalid_list);
4136

4137 4138 4139
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4140 4141 4142
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4143

A
Avi Kivity 已提交
4144
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4145
	}
4146
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4147 4148
}

4149 4150 4151 4152 4153 4154 4155 4156
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4157 4158
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4159
{
4160
	int r, emulation_type = EMULTYPE_RETRY;
4161 4162
	enum emulation_result er;

G
Gleb Natapov 已提交
4163
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4164 4165 4166 4167 4168 4169 4170 4171
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4172 4173 4174 4175
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4176 4177 4178 4179

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4180
	case EMULATE_USER_EXIT:
4181
		++vcpu->stat.mmio_exits;
4182
		/* fall through */
4183
	case EMULATE_FAIL:
4184
		return 0;
4185 4186 4187 4188 4189 4190 4191 4192
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4193 4194 4195 4196 4197 4198 4199 4200
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
	kvm_mmu_flush_tlb(vcpu);
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4201 4202 4203 4204 4205 4206
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4207 4208 4209 4210 4211 4212
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4213 4214
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4215
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4216 4217
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4218 4219 4220 4221
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4222
	struct page *page;
A
Avi Kivity 已提交
4223 4224 4225 4226
	int i;

	ASSERT(vcpu);

4227 4228 4229 4230 4231 4232 4233
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4234 4235
		return -ENOMEM;

4236
	vcpu->arch.mmu.pae_root = page_address(page);
4237
	for (i = 0; i < 4; ++i)
4238
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4239

A
Avi Kivity 已提交
4240 4241 4242
	return 0;
}

4243
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4244 4245
{
	ASSERT(vcpu);
4246 4247 4248 4249 4250

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4251

4252 4253
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4254

4255 4256 4257
int kvm_mmu_setup(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
4258
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4259

4260
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4261 4262
}

4263
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4264
{
4265 4266 4267
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4268

4269 4270
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4271

4272 4273
	spin_lock(&kvm->mmu_lock);

4274 4275 4276 4277
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4278

4279 4280
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4281

4282 4283 4284
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4285 4286 4287 4288 4289

			if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
				kvm_flush_remote_tlbs(kvm);
				cond_resched_lock(&kvm->mmu_lock);
			}
4290
		}
A
Avi Kivity 已提交
4291
	}
4292

4293
	kvm_flush_remote_tlbs(kvm);
4294
	spin_unlock(&kvm->mmu_lock);
A
Avi Kivity 已提交
4295
}
4296

X
Xiao Guangrong 已提交
4297
#define BATCH_ZAP_PAGES	10
4298 4299 4300
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4301
	int batch = 0;
4302 4303 4304 4305

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4306 4307
		int ret;

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4323 4324 4325 4326
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4327
		if (batch >= BATCH_ZAP_PAGES &&
4328
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4329
			batch = 0;
4330 4331 4332
			goto restart;
		}

4333 4334
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4335 4336 4337
		batch += ret;

		if (ret)
4338 4339 4340
			goto restart;
	}

4341 4342 4343 4344
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4345
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4360
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4361 4362
	kvm->arch.mmu_valid_gen++;

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4374 4375 4376 4377
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4378 4379 4380 4381 4382
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4383 4384 4385 4386 4387 4388
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4389
	if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4390
		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4391
		kvm_mmu_invalidate_zap_all_pages(kvm);
4392
	}
4393 4394
}

4395
static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4396 4397
{
	struct kvm *kvm;
4398
	int nr_to_scan = sc->nr_to_scan;
4399 4400 4401

	if (nr_to_scan == 0)
		goto out;
4402

4403
	raw_spin_lock(&kvm_lock);
4404 4405

	list_for_each_entry(kvm, &vm_list, vm_list) {
4406
		int idx;
4407
		LIST_HEAD(invalid_list);
4408

4409 4410 4411 4412 4413 4414 4415 4416
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4417 4418 4419 4420 4421 4422
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4423 4424
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4425 4426
			continue;

4427
		idx = srcu_read_lock(&kvm->srcu);
4428 4429
		spin_lock(&kvm->mmu_lock);

4430 4431 4432 4433 4434 4435
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4436
		prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4437
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4438

4439
unlock:
4440
		spin_unlock(&kvm->mmu_lock);
4441
		srcu_read_unlock(&kvm->srcu, idx);
4442 4443 4444

		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4445 4446
	}

4447
	raw_spin_unlock(&kvm_lock);
4448

4449 4450
out:
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4451 4452 4453 4454 4455 4456 4457
}

static struct shrinker mmu_shrinker = {
	.shrink = mmu_shrink,
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4458
static void mmu_destroy_caches(void)
4459
{
4460 4461
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4462 4463
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4464 4465 4466 4467
}

int kvm_mmu_module_init(void)
{
4468 4469
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4470
					    0, 0, NULL);
4471
	if (!pte_list_desc_cache)
4472 4473
		goto nomem;

4474 4475
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4476
						  0, 0, NULL);
4477 4478 4479
	if (!mmu_page_header_cache)
		goto nomem;

4480 4481 4482
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
		goto nomem;

4483 4484
	register_shrinker(&mmu_shrinker);

4485 4486 4487
	return 0;

nomem:
4488
	mmu_destroy_caches();
4489 4490 4491
	return -ENOMEM;
}

4492 4493 4494 4495 4496 4497 4498
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4499
	struct kvm_memslots *slots;
4500
	struct kvm_memory_slot *memslot;
4501

4502 4503
	slots = kvm_memslots(kvm);

4504 4505
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4506 4507 4508 4509 4510 4511 4512 4513

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4514 4515 4516
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4517
	u64 spte;
4518 4519
	int nr_sptes = 0;

4520 4521 4522
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4523
		nr_sptes++;
4524
		if (!is_shadow_present_pte(spte))
4525 4526
			break;
	}
4527
	walk_shadow_page_lockless_end(vcpu);
4528 4529 4530 4531 4532

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4533 4534 4535 4536 4537 4538 4539
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

	destroy_kvm_mmu(vcpu);
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4540 4541 4542 4543 4544 4545 4546
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4547 4548
	mmu_audit_disable();
}