mmu.c 112.0 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
A
Avi Kivity 已提交
25

26
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
27 28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
32
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/compiler.h>
35
#include <linux/srcu.h>
36
#include <linux/slab.h>
37
#include <linux/uaccess.h>
A
Avi Kivity 已提交
38

A
Avi Kivity 已提交
39 40
#include <asm/page.h>
#include <asm/cmpxchg.h>
41
#include <asm/io.h>
42
#include <asm/vmx.h>
A
Avi Kivity 已提交
43

44 45 46 47 48 49 50
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
51
bool tdp_enabled = false;
52

53 54 55 56
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
57 58 59
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
60
};
61

62
#undef MMU_DEBUG
63 64 65 66 67 68 69 70 71 72 73 74 75

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

76
#ifdef MMU_DEBUG
77
static bool dbg = 0;
78
module_param(dbg, bool, 0644);
79
#endif
A
Avi Kivity 已提交
80

81 82 83
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
84 85 86 87 88
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
89
#endif
A
Avi Kivity 已提交
90

91 92
#define PTE_PREFETCH_NUM		8

93
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
94 95 96 97 98
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
99
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
100 101 102 103 104 105 106 107

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
108
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
109

110 111 112
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
113 114 115 116 117

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


118
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
119 120
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 122 123 124 125 126
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127 128 129 130

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
137

138 139 140 141 142
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

143 144
#include <trace/events/kvm.h>

145 146 147
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

148 149
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150

151 152
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

153 154 155
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

156 157 158
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
159 160
};

161 162 163 164
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
165
	int level;
166 167 168 169 170 171 172 173
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

174 175 176 177 178 179
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

180
static struct kmem_cache *pte_list_desc_cache;
181
static struct kmem_cache *mmu_page_header_cache;
182
static struct percpu_counter kvm_total_used_mmu_pages;
183

S
Sheng Yang 已提交
184 185 186 187 188
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
189 190 191
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
192
static void mmu_free_roots(struct kvm_vcpu *vcpu);
193 194 195 196 197 198 199

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

200 201 202 203 204 205 206 207
/*
 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
 * number.
 */
#define MMIO_SPTE_GEN_LOW_SHIFT		3
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

208
#define MMIO_GEN_SHIFT			19
209 210
#define MMIO_GEN_LOW_SHIFT		9
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 212
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

	WARN_ON(gen > MMIO_MAX_GEN);

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

236 237
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
238 239 240 241 242 243
	/*
	 * Init kvm generation close to MMIO_MAX_GEN to easily test the
	 * code of handling generation number wrap-around.
	 */
	return (kvm_memslots(kvm)->generation +
		      MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
244 245
}

246 247
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
248
{
249 250
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
251

252
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 254
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

255
	trace_mark_mmio_spte(sptep, gfn, access, gen);
256
	mmu_spte_set(sptep, mask);
257 258 259 260 261 262 263 264 265
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
266 267
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) >> PAGE_SHIFT;
268 269 270 271
}

static unsigned get_mmio_spte_access(u64 spte)
{
272 273
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) & ~PAGE_MASK;
274 275
}

276 277
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
278 279
{
	if (unlikely(is_noslot_pfn(pfn))) {
280
		mark_mmio_spte(kvm, sptep, gfn, access);
281 282 283 284 285
		return true;
	}

	return false;
}
286

287 288
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
289 290 291 292 293 294 295
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
296 297
}

298 299 300 301 302
static inline u64 rsvd_bits(int s, int e)
{
	return ((1ULL << (e - s + 1)) - 1) << s;
}

S
Sheng Yang 已提交
303
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
305 306 307 308 309 310 311 312 313
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
314 315 316 317 318
static int is_cpuid_PSE36(void)
{
	return 1;
}

319 320
static int is_nx(struct kvm_vcpu *vcpu)
{
321
	return vcpu->arch.efer & EFER_NX;
322 323
}

324 325
static int is_shadow_present_pte(u64 pte)
{
326
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 328
}

M
Marcelo Tosatti 已提交
329 330 331 332 333
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

334
static int is_rmap_spte(u64 pte)
335
{
336
	return is_shadow_present_pte(pte);
337 338
}

339 340 341 342
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
343
	if (is_large_pte(pte))
344 345 346 347
		return 1;
	return 0;
}

348
static pfn_t spte_to_pfn(u64 pte)
349
{
350
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
351 352
}

353 354 355 356 357 358 359
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

360
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
361
static void __set_spte(u64 *sptep, u64 spte)
362
{
363
	*sptep = spte;
364 365
}

366
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367
{
368 369 370 371 372 373 374
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
375 376 377 378 379

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
380 381 382 383 384 385

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
386
#else
387 388 389 390 391 392 393
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
394

395 396 397 398 399 400 401 402 403 404 405 406
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

407 408 409
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
410

411 412 413 414 415 416 417 418 419 420 421 422 423
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
442
	count_spte_clear(sptep, spte);
443 444 445 446 447 448 449 450 451 452 453
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
454 455
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
456
	count_spte_clear(sptep, spte);
457 458 459

	return orig.spte;
}
460 461 462 463

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
464 465 466 467 468 469 470 471 472 473 474 475 476 477
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
518 519
#endif

520 521
static bool spte_is_locklessly_modifiable(u64 spte)
{
522 523
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
524 525
}

526 527
static bool spte_has_volatile_bits(u64 spte)
{
528 529 530 531 532 533 534 535 536
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

537 538 539 540 541 542
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

543 544
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
545 546 547 548 549
		return false;

	return true;
}

550 551 552 553 554
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
569 570 571 572 573 574
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
575
 */
576
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
577
{
578
	u64 old_spte = *sptep;
579
	bool ret = false;
580 581

	WARN_ON(!is_rmap_spte(new_spte));
582

583 584 585 586
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
587

588
	if (!spte_has_volatile_bits(old_spte))
589
		__update_clear_spte_fast(sptep, new_spte);
590
	else
591
		old_spte = __update_clear_spte_slow(sptep, new_spte);
592

593 594 595 596 597
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
598 599
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
600 601
		ret = true;

602
	if (!shadow_accessed_mask)
603
		return ret;
604 605 606 607 608

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
609 610

	return ret;
611 612
}

613 614 615 616 617 618 619 620 621 622 623
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
624
		__update_clear_spte_fast(sptep, 0ull);
625
	else
626
		old_spte = __update_clear_spte_slow(sptep, 0ull);
627 628 629 630 631

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
632 633 634 635 636 637 638 639

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));

640 641 642 643 644 645 646 647 648 649 650 651 652 653
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
654
	__update_clear_spte_fast(sptep, 0ull);
655 656
}

657 658 659 660 661 662 663
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
664 665 666 667 668 669 670 671 672 673 674
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
675 676 677 678
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
679 680 681 682 683 684 685 686
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
687 688
}

689
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
690
				  struct kmem_cache *base_cache, int min)
691 692 693 694
{
	void *obj;

	if (cache->nobjs >= min)
695
		return 0;
696
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
697
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
698
		if (!obj)
699
			return -ENOMEM;
700 701
		cache->objects[cache->nobjs++] = obj;
	}
702
	return 0;
703 704
}

705 706 707 708 709
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

710 711
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
712 713
{
	while (mc->nobjs)
714
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
715 716
}

A
Avi Kivity 已提交
717
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
718
				       int min)
A
Avi Kivity 已提交
719
{
720
	void *page;
A
Avi Kivity 已提交
721 722 723 724

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
725
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
726 727
		if (!page)
			return -ENOMEM;
728
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
729 730 731 732 733 734 735
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
736
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
737 738
}

739
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
740
{
741 742
	int r;

743
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
744
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
745 746
	if (r)
		goto out;
747
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
748 749
	if (r)
		goto out;
750
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
751
				   mmu_page_header_cache, 4);
752 753
out:
	return r;
754 755 756 757
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
758 759
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
760
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
761 762
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
763 764
}

765
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
766 767 768 769 770 771 772 773
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

774
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
775
{
776
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
777 778
}

779
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
780
{
781
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
782 783
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
800
/*
801 802
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
803
 */
804 805 806
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
807 808 809
{
	unsigned long idx;

810
	idx = gfn_to_index(gfn, slot->base_gfn, level);
811
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
812 813 814 815
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
816
	struct kvm_memory_slot *slot;
817
	struct kvm_lpage_info *linfo;
818
	int i;
M
Marcelo Tosatti 已提交
819

A
Avi Kivity 已提交
820
	slot = gfn_to_memslot(kvm, gfn);
821 822
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
823 824
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
825
	}
826
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
827 828 829 830
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
831
	struct kvm_memory_slot *slot;
832
	struct kvm_lpage_info *linfo;
833
	int i;
M
Marcelo Tosatti 已提交
834

A
Avi Kivity 已提交
835
	slot = gfn_to_memslot(kvm, gfn);
836 837
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
838 839 840
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
841
	}
842
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
843 844
}

845 846 847
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
848
{
849
	struct kvm_memory_slot *slot;
850
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
851

A
Avi Kivity 已提交
852
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
853
	if (slot) {
854 855
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
856 857 858 859 860
	}

	return 1;
}

861
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
862
{
J
Joerg Roedel 已提交
863
	unsigned long page_size;
864
	int i, ret = 0;
M
Marcelo Tosatti 已提交
865

J
Joerg Roedel 已提交
866
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
867

868 869 870 871 872 873 874 875
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

876
	return ret;
M
Marcelo Tosatti 已提交
877 878
}

879 880 881
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
882 883
{
	struct kvm_memory_slot *slot;
884 885 886 887 888 889 890 891 892 893 894

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
895
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
896 897 898 899 900
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
901

902 903 904 905 906
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
907
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
908 909

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
910 911 912 913
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
914 915
}

916
/*
917
 * Pte mapping structures:
918
 *
919
 * If pte_list bit zero is zero, then pte_list point to the spte.
920
 *
921 922
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
923
 *
924
 * Returns the number of pte entries before the spte was added or zero if
925 926
 * the spte was not added.
 *
927
 */
928 929
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
930
{
931
	struct pte_list_desc *desc;
932
	int i, count = 0;
933

934 935 936 937 938 939 940
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
941
		desc->sptes[1] = spte;
942
		*pte_list = (unsigned long)desc | 1;
943
		++count;
944
	} else {
945 946 947
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
948
			desc = desc->more;
949
			count += PTE_LIST_EXT;
950
		}
951 952
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
953 954
			desc = desc->more;
		}
A
Avi Kivity 已提交
955
		for (i = 0; desc->sptes[i]; ++i)
956
			++count;
A
Avi Kivity 已提交
957
		desc->sptes[i] = spte;
958
	}
959
	return count;
960 961
}

962 963 964
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
965 966 967
{
	int j;

968
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
969
		;
A
Avi Kivity 已提交
970 971
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
972 973 974
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
975
		*pte_list = (unsigned long)desc->sptes[0];
976 977 978 979
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
980 981
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
982 983
}

984
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
985
{
986 987
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
988 989
	int i;

990 991
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
992
		BUG();
993 994 995 996
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
997 998
			BUG();
		}
999
		*pte_list = 0;
1000
	} else {
1001 1002
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1003 1004
		prev_desc = NULL;
		while (desc) {
1005
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1006
				if (desc->sptes[i] == spte) {
1007
					pte_list_desc_remove_entry(pte_list,
1008
							       desc, i,
1009 1010 1011 1012 1013 1014
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1015
		pr_err("pte_list_remove: %p many->many\n", spte);
1016 1017 1018 1019
		BUG();
	}
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1040
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1041
				    struct kvm_memory_slot *slot)
1042
{
1043
	unsigned long idx;
1044

1045
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1046
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1047 1048
}

1049 1050 1051 1052 1053 1054 1055 1056
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1057
	return __gfn_to_rmap(gfn, level, slot);
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1152
static void drop_spte(struct kvm *kvm, u64 *sptep)
1153
{
1154
	if (mmu_spte_clear_track_bits(sptep))
1155
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1156 1157
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1179
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1180
 * spte write-protection is caused by protecting shadow page table.
1181 1182 1183 1184 1185 1186 1187
 *
 * Note: write protection is difference between drity logging and spte
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1188
 *
1189
 * Return true if tlb need be flushed.
1190
 */
1191
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1192 1193 1194
{
	u64 spte = *sptep;

1195 1196
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1197 1198 1199 1200
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1201 1202
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1203
	spte = spte & ~PT_WRITABLE_MASK;
1204

1205
	return mmu_spte_update(sptep, spte);
1206 1207
}

1208
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1209
				 bool pt_protect)
1210
{
1211 1212
	u64 *sptep;
	struct rmap_iterator iter;
1213
	bool flush = false;
1214

1215 1216
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217

1218
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1219
		sptep = rmap_get_next(&iter);
1220
	}
1221

1222
	return flush;
1223 1224
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1238 1239 1240
{
	unsigned long *rmapp;

1241
	while (mask) {
1242 1243
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1244
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1245

1246 1247 1248
		/* clear the first set bit */
		mask &= mask - 1;
	}
1249 1250
}

1251
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1252 1253
{
	struct kvm_memory_slot *slot;
1254 1255
	unsigned long *rmapp;
	int i;
1256
	bool write_protected = false;
1257 1258

	slot = gfn_to_memslot(kvm, gfn);
1259 1260 1261 1262

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1263
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1264 1265 1266
	}

	return write_protected;
1267 1268
}

F
Frederik Deweerdt 已提交
1269
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1270
			   struct kvm_memory_slot *slot, unsigned long data)
1271
{
1272 1273
	u64 *sptep;
	struct rmap_iterator iter;
1274 1275
	int need_tlb_flush = 0;

1276 1277 1278 1279 1280
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);

		drop_spte(kvm, sptep);
1281 1282
		need_tlb_flush = 1;
	}
1283

1284 1285 1286
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1287
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1288
			     struct kvm_memory_slot *slot, unsigned long data)
1289
{
1290 1291
	u64 *sptep;
	struct rmap_iterator iter;
1292
	int need_flush = 0;
1293
	u64 new_spte;
1294 1295 1296 1297 1298
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1299 1300 1301 1302 1303

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);

1304
		need_flush = 1;
1305

1306
		if (pte_write(*ptep)) {
1307 1308
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1309
		} else {
1310
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1311 1312 1313 1314
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1315
			new_spte &= ~shadow_accessed_mask;
1316 1317 1318 1319

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1320 1321
		}
	}
1322

1323 1324 1325 1326 1327 1328
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1329 1330 1331 1332 1333 1334
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1335
					       struct kvm_memory_slot *slot,
1336
					       unsigned long data))
1337
{
1338
	int j;
1339
	int ret = 0;
1340
	struct kvm_memslots *slots;
1341
	struct kvm_memory_slot *memslot;
1342

1343
	slots = kvm_memslots(kvm);
1344

1345
	kvm_for_each_memslot(memslot, slots) {
1346
		unsigned long hva_start, hva_end;
1347
		gfn_t gfn_start, gfn_end;
1348

1349 1350 1351 1352 1353 1354 1355
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1356
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1357
		 */
1358
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1359
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1360

1361 1362 1363 1364
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1365

1366 1367 1368 1369 1370 1371
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1372

1373
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1374

1375 1376
			for (; idx <= idx_end; ++idx)
				ret |= handler(kvm, rmapp++, memslot, data);
1377 1378 1379
		}
	}

1380
	return ret;
1381 1382
}

1383 1384 1385
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1386
					 struct kvm_memory_slot *slot,
1387 1388 1389
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1390 1391 1392 1393
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1394 1395 1396
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1397 1398 1399 1400 1401
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1402 1403
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1404
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1405 1406
}

F
Frederik Deweerdt 已提交
1407
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1408
			 struct kvm_memory_slot *slot, unsigned long data)
1409
{
1410
	u64 *sptep;
1411
	struct rmap_iterator uninitialized_var(iter);
1412 1413
	int young = 0;

1414
	/*
1415 1416
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
1417 1418 1419 1420 1421
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1422 1423 1424 1425
	if (!shadow_accessed_mask) {
		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
		goto out;
	}
1426

1427 1428
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1429
		BUG_ON(!is_shadow_present_pte(*sptep));
1430

1431
		if (*sptep & shadow_accessed_mask) {
1432
			young = 1;
1433 1434
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1435 1436
		}
	}
1437 1438 1439
out:
	/* @data has hva passed to kvm_age_hva(). */
	trace_kvm_age_page(data, slot, young);
1440 1441 1442
	return young;
}

A
Andrea Arcangeli 已提交
1443
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1444
			      struct kvm_memory_slot *slot, unsigned long data)
A
Andrea Arcangeli 已提交
1445
{
1446 1447
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1458 1459
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1460
		BUG_ON(!is_shadow_present_pte(*sptep));
1461

1462
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1463 1464 1465 1466 1467 1468 1469 1470
			young = 1;
			break;
		}
	}
out:
	return young;
}

1471 1472
#define RMAP_RECYCLE_THRESHOLD 1000

1473
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1474 1475
{
	unsigned long *rmapp;
1476 1477 1478
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1479

1480
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1481

1482
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1483 1484 1485
	kvm_flush_remote_tlbs(vcpu->kvm);
}

1486 1487
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
1488
	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1489 1490
}

A
Andrea Arcangeli 已提交
1491 1492 1493 1494 1495
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1496
#ifdef MMU_DEBUG
1497
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1498
{
1499 1500 1501
	u64 *pos;
	u64 *end;

1502
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1503
		if (is_shadow_present_pte(*pos)) {
1504
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1505
			       pos, *pos);
A
Avi Kivity 已提交
1506
			return 0;
1507
		}
A
Avi Kivity 已提交
1508 1509
	return 1;
}
1510
#endif
A
Avi Kivity 已提交
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1524
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1525
{
1526
	ASSERT(is_empty_shadow_page(sp->spt));
1527
	hlist_del(&sp->hash_link);
1528 1529
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1530 1531
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1532
	kmem_cache_free(mmu_page_header_cache, sp);
1533 1534
}

1535 1536
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1537
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1538 1539
}

1540
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1541
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1542 1543 1544 1545
{
	if (!parent_pte)
		return;

1546
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1547 1548
}

1549
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1550 1551
				       u64 *parent_pte)
{
1552
	pte_list_remove(parent_pte, &sp->parent_ptes);
1553 1554
}

1555 1556 1557 1558
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1559
	mmu_spte_clear_no_track(parent_pte);
1560 1561
}

1562 1563
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1564
{
1565
	struct kvm_mmu_page *sp;
1566

1567 1568
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1569
	if (!direct)
1570
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1571
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1572 1573 1574 1575 1576 1577

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1578 1579 1580 1581 1582
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1583 1584
}

1585
static void mark_unsync(u64 *spte);
1586
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1587
{
1588
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1589 1590
}

1591
static void mark_unsync(u64 *spte)
1592
{
1593
	struct kvm_mmu_page *sp;
1594
	unsigned int index;
1595

1596
	sp = page_header(__pa(spte));
1597 1598
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1599
		return;
1600
	if (sp->unsync_children++)
1601
		return;
1602
	kvm_mmu_mark_parents_unsync(sp);
1603 1604
}

1605
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1606
			       struct kvm_mmu_page *sp)
1607 1608 1609 1610
{
	return 1;
}

M
Marcelo Tosatti 已提交
1611 1612 1613 1614
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1615 1616
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1617
				 const void *pte)
1618 1619 1620 1621
{
	WARN_ON(1);
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1632 1633
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1634
{
1635
	int i;
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1652

1653
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1654
		struct kvm_mmu_page *child;
1655 1656
		u64 ent = sp->spt[i];

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1686 1687 1688
	}


1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1700 1701 1702 1703 1704
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1705
	trace_kvm_mmu_sync_page(sp);
1706 1707 1708 1709
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1710 1711 1712 1713
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1725 1726 1727 1728 1729 1730 1731 1732
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1733

1734
/* @sp->gfn should be write-protected at the call site */
1735
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1736
			   struct list_head *invalid_list, bool clear_unsync)
1737
{
1738
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1739
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1740 1741 1742
		return 1;
	}

1743
	if (clear_unsync)
1744 1745
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1746
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1747
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1748 1749 1750 1751 1752 1753 1754
		return 1;
	}

	kvm_mmu_flush_tlb(vcpu);
	return 0;
}

1755 1756 1757
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1758
	LIST_HEAD(invalid_list);
1759 1760
	int ret;

1761
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1762
	if (ret)
1763 1764
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1765 1766 1767
	return ret;
}

1768 1769 1770 1771 1772 1773 1774
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1775 1776
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1777
{
1778
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1779 1780
}

1781 1782 1783 1784
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1785
	LIST_HEAD(invalid_list);
1786 1787
	bool flush = false;

1788
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1789
		if (!s->unsync)
1790 1791 1792
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1793
		kvm_unlink_unsync_page(vcpu->kvm, s);
1794
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1795
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1796
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1797 1798 1799 1800 1801
			continue;
		}
		flush = true;
	}

1802
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1803 1804 1805 1806
	if (flush)
		kvm_mmu_flush_tlb(vcpu);
}

1807 1808 1809
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1810 1811
};

1812 1813 1814 1815 1816 1817
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1818 1819 1820
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1839
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1840
{
1841 1842 1843 1844 1845
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1856 1857
}

1858 1859 1860
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1861
{
1862 1863 1864
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1865

1866 1867 1868 1869 1870 1871 1872
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1873
	LIST_HEAD(invalid_list);
1874 1875 1876

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1877
		bool protected = false;
1878 1879 1880 1881 1882 1883 1884

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1885
		for_each_sp(pages, sp, parents, i) {
1886
			kvm_sync_page(vcpu, sp, &invalid_list);
1887 1888
			mmu_pages_clear_parents(&parents);
		}
1889
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1890
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1891 1892
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1893 1894
}

1895 1896 1897 1898 1899 1900 1901 1902
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1915 1916 1917 1918 1919
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1920 1921 1922 1923
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1924
					     int direct,
1925
					     unsigned access,
1926
					     u64 *parent_pte)
1927 1928 1929
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1930 1931
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1932

1933
	role = vcpu->arch.mmu.base_role;
1934
	role.level = level;
1935
	role.direct = direct;
1936
	if (role.direct)
1937
		role.cr4_pae = 0;
1938
	role.access = access;
1939 1940
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1941 1942 1943 1944
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1945
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1946 1947 1948
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1949 1950
		if (!need_sync && sp->unsync)
			need_sync = true;
1951

1952 1953
		if (sp->role.word != role.word)
			continue;
1954

1955 1956
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1957

1958 1959
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1960
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1961 1962 1963
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1964

1965
		__clear_sp_write_flooding_count(sp);
1966 1967 1968
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1969
	++vcpu->kvm->stat.mmu_cache_miss;
1970
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1971 1972 1973 1974
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1975 1976
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1977
	if (!direct) {
1978 1979
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1980 1981 1982
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1983 1984
		account_shadowed(vcpu->kvm, gfn);
	}
1985
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1986
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1987
	trace_kvm_mmu_get_page(sp, true);
1988
	return sp;
1989 1990
}

1991 1992 1993 1994 1995 1996
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
1997 1998 1999 2000 2001 2002

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2017

2018 2019 2020 2021 2022
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2023 2024
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2025
{
2026
	if (is_last_spte(spte, iterator->level)) {
2027 2028 2029 2030
		iterator->level = 0;
		return;
	}

2031
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2032 2033 2034
	--iterator->level;
}

2035 2036 2037 2038 2039
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2040
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2041 2042 2043
{
	u64 spte;

2044 2045 2046
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2047
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2048 2049 2050 2051
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2052

2053
	mmu_spte_set(sptep, spte);
2054 2055
}

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2073
		drop_parent_pte(child, sptep);
2074 2075 2076 2077
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2078
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 2080 2081 2082 2083 2084 2085
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2086
		if (is_last_spte(pte, sp->role.level)) {
2087
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2088 2089 2090
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2091
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2092
			drop_parent_pte(child, spte);
2093
		}
X
Xiao Guangrong 已提交
2094 2095 2096 2097
		return true;
	}

	if (is_mmio_spte(pte))
2098
		mmu_spte_clear_no_track(spte);
2099

X
Xiao Guangrong 已提交
2100
	return false;
2101 2102
}

2103
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2104
					 struct kvm_mmu_page *sp)
2105
{
2106 2107
	unsigned i;

2108 2109
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2110 2111
}

2112
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2113
{
2114
	mmu_page_remove_parent_pte(sp, parent_pte);
2115 2116
}

2117
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2118
{
2119 2120
	u64 *sptep;
	struct rmap_iterator iter;
2121

2122 2123
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2124 2125
}

2126
static int mmu_zap_unsync_children(struct kvm *kvm,
2127 2128
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2129
{
2130 2131 2132
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2133

2134
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2135
		return 0;
2136 2137 2138 2139 2140 2141

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2142
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2143
			mmu_pages_clear_parents(&parents);
2144
			zapped++;
2145 2146 2147 2148 2149
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2150 2151
}

2152 2153
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2154
{
2155
	int ret;
A
Avi Kivity 已提交
2156

2157
	trace_kvm_mmu_prepare_zap_page(sp);
2158
	++kvm->stat.mmu_shadow_zapped;
2159
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2160
	kvm_mmu_page_unlink_children(kvm, sp);
2161
	kvm_mmu_unlink_parents(kvm, sp);
2162

2163
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2164
		unaccount_shadowed(kvm, sp->gfn);
2165

2166 2167
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2168
	if (!sp->root_count) {
2169 2170
		/* Count self */
		ret++;
2171
		list_move(&sp->link, invalid_list);
2172
		kvm_mod_used_mmu_pages(kvm, -1);
2173
	} else {
A
Avi Kivity 已提交
2174
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2175 2176 2177 2178 2179 2180 2181

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2182
	}
2183 2184

	sp->role.invalid = 1;
2185
	return ret;
2186 2187
}

2188 2189 2190
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2191
	struct kvm_mmu_page *sp, *nsp;
2192 2193 2194 2195

	if (list_empty(invalid_list))
		return;

2196 2197 2198 2199 2200
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2201

2202 2203 2204 2205 2206
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2207

2208
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2209
		WARN_ON(!sp->role.invalid || sp->root_count);
2210
		kvm_mmu_free_page(sp);
2211
	}
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2229 2230
/*
 * Changing the number of mmu pages allocated to the vm
2231
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2232
 */
2233
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2234
{
2235
	LIST_HEAD(invalid_list);
2236

2237 2238
	spin_lock(&kvm->mmu_lock);

2239
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2240 2241 2242 2243
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2244

2245
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2246
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2247 2248
	}

2249
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2250 2251

	spin_unlock(&kvm->mmu_lock);
2252 2253
}

2254
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2255
{
2256
	struct kvm_mmu_page *sp;
2257
	LIST_HEAD(invalid_list);
2258 2259
	int r;

2260
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2261
	r = 0;
2262
	spin_lock(&kvm->mmu_lock);
2263
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2264
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2265 2266
			 sp->role.word);
		r = 1;
2267
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2268
	}
2269
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2270 2271
	spin_unlock(&kvm->mmu_lock);

2272
	return r;
2273
}
2274
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2369
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2370 2371 2372 2373 2374 2375 2376 2377 2378
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2379
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2380

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2391 2392
{
	struct kvm_mmu_page *s;
2393

2394
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2395
		if (s->unsync)
2396
			continue;
2397 2398
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2399 2400 2401 2402 2403 2404
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2405 2406 2407
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2408
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2409 2410 2411
		if (!can_unsync)
			return 1;

2412
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2413
			return 1;
2414

G
Gleb Natapov 已提交
2415
		if (!s->unsync)
2416
			need_unsync = true;
2417
	}
2418 2419
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2420 2421 2422
	return 0;
}

A
Avi Kivity 已提交
2423
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2424
		    unsigned pte_access, int level,
2425
		    gfn_t gfn, pfn_t pfn, bool speculative,
2426
		    bool can_unsync, bool host_writable)
2427
{
2428
	u64 spte;
M
Marcelo Tosatti 已提交
2429
	int ret = 0;
S
Sheng Yang 已提交
2430

2431
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2432 2433
		return 0;

2434
	spte = PT_PRESENT_MASK;
2435
	if (!speculative)
2436
		spte |= shadow_accessed_mask;
2437

S
Sheng Yang 已提交
2438 2439 2440 2441
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2442

2443
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2444
		spte |= shadow_user_mask;
2445

2446
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2447
		spte |= PT_PAGE_SIZE_MASK;
2448
	if (tdp_enabled)
2449 2450
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
			kvm_is_mmio_pfn(pfn));
2451

2452
	if (host_writable)
2453
		spte |= SPTE_HOST_WRITEABLE;
2454 2455
	else
		pte_access &= ~ACC_WRITE_MASK;
2456

2457
	spte |= (u64)pfn << PAGE_SHIFT;
2458

2459
	if (pte_access & ACC_WRITE_MASK) {
2460

X
Xiao Guangrong 已提交
2461
		/*
2462 2463 2464 2465
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2466
		 */
2467
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2468
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2469
			goto done;
2470

2471
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2472

2473 2474 2475 2476 2477 2478
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2479
		if (!can_unsync && is_writable_pte(*sptep))
2480 2481
			goto set_pte;

2482
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2483
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2484
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2485
			ret = 1;
2486
			pte_access &= ~ACC_WRITE_MASK;
2487
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2488 2489 2490 2491 2492 2493
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2494
set_pte:
2495
	if (mmu_spte_update(sptep, spte))
2496
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2497
done:
M
Marcelo Tosatti 已提交
2498 2499 2500
	return ret;
}

A
Avi Kivity 已提交
2501
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2502 2503 2504
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2505 2506
{
	int was_rmapped = 0;
2507
	int rmap_count;
M
Marcelo Tosatti 已提交
2508

2509 2510
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2511

A
Avi Kivity 已提交
2512
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2513 2514 2515 2516
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2517 2518
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2519
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2520
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2521 2522

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2523
			drop_parent_pte(child, sptep);
2524
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2525
		} else if (pfn != spte_to_pfn(*sptep)) {
2526
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2527
				 spte_to_pfn(*sptep), pfn);
2528
			drop_spte(vcpu->kvm, sptep);
2529
			kvm_flush_remote_tlbs(vcpu->kvm);
2530 2531
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2532
	}
2533

2534 2535
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2536
		if (write_fault)
2537
			*emulate = 1;
2538
		kvm_mmu_flush_tlb(vcpu);
2539
	}
M
Marcelo Tosatti 已提交
2540

2541 2542 2543
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2544
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2545
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2546
		 is_large_pte(*sptep)? "2MB" : "4kB",
2547 2548
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2549
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2550 2551
		++vcpu->kvm->stat.lpages;

2552 2553 2554 2555 2556 2557
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2558
	}
2559

X
Xiao Guangrong 已提交
2560
	kvm_release_pfn_clean(pfn);
2561 2562
}

2563 2564 2565 2566 2567
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2568
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2569
	if (!slot)
2570
		return KVM_PFN_ERR_FAULT;
2571

2572
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2585
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2586 2587 2588 2589 2590 2591 2592
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2593
		mmu_set_spte(vcpu, start, access, 0, NULL,
2594 2595
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2612
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2643
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2644 2645
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2646
{
2647
	struct kvm_shadow_walk_iterator iterator;
2648
	struct kvm_mmu_page *sp;
2649
	int emulate = 0;
2650
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2651

2652 2653 2654
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2655
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2656
		if (iterator.level == level) {
2657
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2658 2659
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2660
			direct_pte_prefetch(vcpu, iterator.sptep);
2661 2662
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2663 2664
		}

2665
		drop_large_spte(vcpu, iterator.sptep);
2666
		if (!is_shadow_present_pte(*iterator.sptep)) {
2667 2668 2669 2670
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2671 2672 2673
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2674

2675
			link_shadow_page(iterator.sptep, sp, true);
2676 2677
		}
	}
2678
	return emulate;
A
Avi Kivity 已提交
2679 2680
}

H
Huang Ying 已提交
2681
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2682
{
H
Huang Ying 已提交
2683 2684 2685 2686 2687 2688 2689
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2690

H
Huang Ying 已提交
2691
	send_sig_info(SIGBUS, &info, tsk);
2692 2693
}

2694
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2695
{
X
Xiao Guangrong 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2705
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2706
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2707
		return 0;
2708
	}
2709

2710
	return -EFAULT;
2711 2712
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2726
	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2748
			kvm_get_pfn(pfn);
2749 2750 2751 2752 2753
			*pfnp = pfn;
		}
	}
}

2754 2755 2756 2757 2758 2759
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2760
	if (unlikely(is_error_pfn(pfn))) {
2761 2762 2763 2764
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2765
	if (unlikely(is_noslot_pfn(pfn)))
2766 2767 2768 2769 2770 2771 2772
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2773
static bool page_fault_can_be_fast(u32 error_code)
2774
{
2775 2776 2777 2778 2779 2780 2781
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2795 2796
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2823
	struct kvm_mmu_page *sp;
2824 2825 2826
	bool ret = false;
	u64 spte = 0ull;

2827 2828 2829
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2830
	if (!page_fault_can_be_fast(error_code))
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2847 2848
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2882 2883 2884 2885 2886
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2887
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2888
exit:
X
Xiao Guangrong 已提交
2889 2890
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2891 2892 2893 2894 2895
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2896
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2897
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2898
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2899

2900 2901
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2902 2903
{
	int r;
2904
	int level;
2905
	int force_pt_level;
2906
	pfn_t pfn;
2907
	unsigned long mmu_seq;
2908
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2909

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2920

2921 2922 2923
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2924

2925 2926 2927
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2928
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2929
	smp_rmb();
2930

2931
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2932
		return 0;
2933

2934 2935
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2936

2937
	spin_lock(&vcpu->kvm->mmu_lock);
2938
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2939
		goto out_unlock;
2940
	make_mmu_pages_available(vcpu);
2941 2942
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2943 2944
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2945 2946 2947
	spin_unlock(&vcpu->kvm->mmu_lock);


2948
	return r;
2949 2950 2951 2952 2953

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2954 2955 2956
}


2957 2958 2959
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2960
	struct kvm_mmu_page *sp;
2961
	LIST_HEAD(invalid_list);
2962

2963
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2964
		return;
2965

2966 2967 2968
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2969
		hpa_t root = vcpu->arch.mmu.root_hpa;
2970

2971
		spin_lock(&vcpu->kvm->mmu_lock);
2972 2973
		sp = page_header(root);
		--sp->root_count;
2974 2975 2976 2977
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2978
		spin_unlock(&vcpu->kvm->mmu_lock);
2979
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2980 2981
		return;
	}
2982 2983

	spin_lock(&vcpu->kvm->mmu_lock);
2984
	for (i = 0; i < 4; ++i) {
2985
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2986

A
Avi Kivity 已提交
2987 2988
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
2989 2990
			sp = page_header(root);
			--sp->root_count;
2991
			if (!sp->root_count && sp->role.invalid)
2992 2993
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
2994
		}
2995
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2996
	}
2997
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2998
	spin_unlock(&vcpu->kvm->mmu_lock);
2999
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3000 3001
}

3002 3003 3004 3005 3006
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3007
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3008 3009 3010 3011 3012 3013
		ret = 1;
	}

	return ret;
}

3014 3015 3016
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3017
	unsigned i;
3018 3019 3020

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3021
		make_mmu_pages_available(vcpu);
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3033
			make_mmu_pages_available(vcpu);
3034 3035
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3036 3037 3038 3039 3040 3041 3042
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3043
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3044 3045 3046 3047 3048 3049 3050
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3051
{
3052
	struct kvm_mmu_page *sp;
3053 3054 3055
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3056

3057
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3058

3059 3060 3061 3062 3063 3064 3065 3066
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3067
		hpa_t root = vcpu->arch.mmu.root_hpa;
3068 3069

		ASSERT(!VALID_PAGE(root));
3070

3071
		spin_lock(&vcpu->kvm->mmu_lock);
3072
		make_mmu_pages_available(vcpu);
3073 3074
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3075 3076
		root = __pa(sp->spt);
		++sp->root_count;
3077
		spin_unlock(&vcpu->kvm->mmu_lock);
3078
		vcpu->arch.mmu.root_hpa = root;
3079
		return 0;
3080
	}
3081

3082 3083
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3084 3085
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3086
	 */
3087 3088 3089 3090
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3091
	for (i = 0; i < 4; ++i) {
3092
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3093 3094

		ASSERT(!VALID_PAGE(root));
3095
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3096
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3097
			if (!is_present_gpte(pdptr)) {
3098
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3099 3100
				continue;
			}
A
Avi Kivity 已提交
3101
			root_gfn = pdptr >> PAGE_SHIFT;
3102 3103
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3104
		}
3105
		spin_lock(&vcpu->kvm->mmu_lock);
3106
		make_mmu_pages_available(vcpu);
3107
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3108
				      PT32_ROOT_LEVEL, 0,
3109
				      ACC_ALL, NULL);
3110 3111
		root = __pa(sp->spt);
		++sp->root_count;
3112 3113
		spin_unlock(&vcpu->kvm->mmu_lock);

3114
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3115
	}
3116
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3143
	return 0;
3144 3145
}

3146 3147 3148 3149 3150 3151 3152 3153
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3154 3155 3156 3157 3158
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3159 3160 3161
	if (vcpu->arch.mmu.direct_map)
		return;

3162 3163
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3164

3165
	vcpu_clear_mmio_info(vcpu, ~0ul);
3166
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3167
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3168 3169 3170
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3171
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3172 3173 3174 3175 3176
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3177
		if (root && VALID_PAGE(root)) {
3178 3179 3180 3181 3182
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3183
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3184 3185 3186 3187 3188 3189
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3190
	spin_unlock(&vcpu->kvm->mmu_lock);
3191
}
N
Nadav Har'El 已提交
3192
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3193

3194
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3195
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3196
{
3197 3198
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3199 3200 3201
	return vaddr;
}

3202
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3203 3204
					 u32 access,
					 struct x86_exception *exception)
3205
{
3206 3207
	if (exception)
		exception->error_code = 0;
3208 3209 3210
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
}

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3239 3240 3241
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3256
		return RET_MMIO_PF_EMULATE;
3257 3258 3259 3260 3261 3262 3263

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3264 3265 3266
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3267 3268
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3269 3270

		trace_handle_mmio_page_fault(addr, gfn, access);
3271
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3272
		return RET_MMIO_PF_EMULATE;
3273 3274 3275 3276 3277 3278 3279
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3280
		return RET_MMIO_PF_BUG;
3281 3282 3283 3284 3285

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3286
	return RET_MMIO_PF_RETRY;
3287 3288 3289 3290 3291 3292 3293 3294 3295
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3296
	WARN_ON(ret == RET_MMIO_PF_BUG);
3297 3298 3299
	return ret;
}

A
Avi Kivity 已提交
3300
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3301
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3302
{
3303
	gfn_t gfn;
3304
	int r;
A
Avi Kivity 已提交
3305

3306
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3307

3308 3309 3310 3311 3312 3313
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3314

3315 3316 3317
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3318

A
Avi Kivity 已提交
3319
	ASSERT(vcpu);
3320
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3321

3322
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3323

3324
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3325
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3326 3327
}

3328
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3329 3330
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3331

3332
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3333
	arch.gfn = gfn;
3334
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3335
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3336

3337
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3349
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3350
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3351 3352 3353
{
	bool async;

3354
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3355 3356 3357 3358

	if (!async)
		return false; /* *pfn has correct page already */

3359
	if (!prefault && can_do_async_pf(vcpu)) {
3360
		trace_kvm_try_async_get_page(gva, gfn);
3361 3362 3363 3364 3365 3366 3367 3368
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3369
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3370 3371 3372 3373

	return false;
}

G
Gleb Natapov 已提交
3374
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3375
			  bool prefault)
3376
{
3377
	pfn_t pfn;
3378
	int r;
3379
	int level;
3380
	int force_pt_level;
M
Marcelo Tosatti 已提交
3381
	gfn_t gfn = gpa >> PAGE_SHIFT;
3382
	unsigned long mmu_seq;
3383 3384
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3385 3386 3387 3388

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3389 3390 3391 3392 3393 3394
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3395

3396 3397 3398 3399
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3400 3401 3402 3403 3404 3405
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3406

3407 3408 3409
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3410
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3411
	smp_rmb();
3412

3413
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3414 3415
		return 0;

3416 3417 3418
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3419
	spin_lock(&vcpu->kvm->mmu_lock);
3420
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3421
		goto out_unlock;
3422
	make_mmu_pages_available(vcpu);
3423 3424
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3425
	r = __direct_map(vcpu, gpa, write, map_writable,
3426
			 level, gfn, pfn, prefault);
3427 3428 3429
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3430 3431 3432 3433 3434

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3435 3436
}

3437 3438
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3439 3440 3441
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3442
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3443
	context->invlpg = nonpaging_invlpg;
3444
	context->update_pte = nonpaging_update_pte;
3445
	context->root_level = 0;
A
Avi Kivity 已提交
3446
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3447
	context->root_hpa = INVALID_PAGE;
3448
	context->direct_map = true;
3449
	context->nx = false;
A
Avi Kivity 已提交
3450 3451
}

3452
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3453
{
A
Avi Kivity 已提交
3454
	++vcpu->stat.tlb_flush;
3455
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
A
Avi Kivity 已提交
3456
}
N
Nadav Har'El 已提交
3457
EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
A
Avi Kivity 已提交
3458

3459
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3460
{
3461
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3462 3463
}

3464 3465
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3466
	return kvm_read_cr3(vcpu);
3467 3468
}

3469 3470
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3471
{
3472
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3473 3474
}

3475 3476
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3477 3478 3479 3480 3481 3482 3483 3484
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3485
		mark_mmio_spte(kvm, sptep, gfn, access);
3486 3487 3488 3489 3490 3491
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3501 3502 3503 3504 3505
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3506 3507 3508 3509 3510 3511 3512 3513
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3514
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3515
				  struct kvm_mmu *context)
3516 3517 3518 3519
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;

3520 3521
	context->bad_mt_xwr = 0;

3522
	if (!context->nx)
3523
		exb_bit_rsvd = rsvd_bits(63, 63);
3524
	switch (context->root_level) {
3525 3526 3527 3528
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3529 3530 3531 3532 3533 3534 3535
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3536 3537 3538 3539 3540 3541 3542 3543
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3544 3545
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3546
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3547
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3548
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3549 3550 3551 3552 3553
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3554
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3555 3556 3557
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3558
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
3559
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3560
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
3561
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3562
			rsvd_bits(maxphyaddr, 51);
3563 3564 3565
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3566 3567 3568
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 29);
3569
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3570 3571
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3572
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3573 3574 3575 3576
		break;
	}
}

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3609
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3610
		struct kvm_mmu *mmu, bool ept)
3611 3612 3613
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3614
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3615

F
Feng Wu 已提交
3616
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3617
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3618 3619 3620 3621 3622 3623
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3624 3625 3626 3627 3628 3629
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3630 3631 3632 3633 3634
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3635 3636 3637 3638 3639 3640
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3641
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3662 3663 3664
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3665

F
Feng Wu 已提交
3666 3667
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3668 3669 3670 3671 3672 3673
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3692 3693 3694
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3695
{
3696
	context->nx = is_nx(vcpu);
3697
	context->root_level = level;
3698

3699
	reset_rsvds_bits_mask(vcpu, context);
3700
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3701
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3702 3703 3704 3705

	ASSERT(is_pae(vcpu));
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3706
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3707
	context->invlpg = paging64_invlpg;
3708
	context->update_pte = paging64_update_pte;
3709
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3710
	context->root_hpa = INVALID_PAGE;
3711
	context->direct_map = false;
A
Avi Kivity 已提交
3712 3713
}

3714 3715
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3716
{
3717
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3718 3719
}

3720 3721
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3722
{
3723
	context->nx = false;
3724
	context->root_level = PT32_ROOT_LEVEL;
3725

3726
	reset_rsvds_bits_mask(vcpu, context);
3727
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3728
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3729 3730 3731

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3732
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3733
	context->invlpg = paging32_invlpg;
3734
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3735
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3736
	context->root_hpa = INVALID_PAGE;
3737
	context->direct_map = false;
A
Avi Kivity 已提交
3738 3739
}

3740 3741
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3742
{
3743
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3744 3745
}

3746
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3747
{
3748
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3749

3750
	context->base_role.word = 0;
3751
	context->page_fault = tdp_page_fault;
3752
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3753
	context->invlpg = nonpaging_invlpg;
3754
	context->update_pte = nonpaging_update_pte;
3755
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3756
	context->root_hpa = INVALID_PAGE;
3757
	context->direct_map = true;
3758
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3759
	context->get_cr3 = get_cr3;
3760
	context->get_pdptr = kvm_pdptr_read;
3761
	context->inject_page_fault = kvm_inject_page_fault;
3762 3763

	if (!is_paging(vcpu)) {
3764
		context->nx = false;
3765 3766 3767
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3768
		context->nx = is_nx(vcpu);
3769
		context->root_level = PT64_ROOT_LEVEL;
3770 3771
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3772
	} else if (is_pae(vcpu)) {
3773
		context->nx = is_nx(vcpu);
3774
		context->root_level = PT32E_ROOT_LEVEL;
3775 3776
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3777
	} else {
3778
		context->nx = false;
3779
		context->root_level = PT32_ROOT_LEVEL;
3780 3781
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3782 3783
	}

3784
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3785
	update_last_pte_bitmap(vcpu, context);
3786 3787
}

3788
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3789
{
3790
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3791
	ASSERT(vcpu);
3792
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3793 3794

	if (!is_paging(vcpu))
3795
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3796
	else if (is_long_mode(vcpu))
3797
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3798
	else if (is_pae(vcpu))
3799
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3800
	else
3801
		paging32_init_context(vcpu, context);
3802

3803
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3804
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3805
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3806 3807
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3808 3809 3810
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3811
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
N
Nadav Har'El 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
		bool execonly)
{
	ASSERT(vcpu);
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3834
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3835
{
3836
	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3837 3838
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3839
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3840
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3841 3842
}

3843
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3844 3845 3846 3847
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3848
	g_context->get_pdptr         = kvm_pdptr_read;
3849 3850 3851 3852 3853 3854 3855 3856 3857
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3858
		g_context->nx = false;
3859 3860 3861
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3862
		g_context->nx = is_nx(vcpu);
3863
		g_context->root_level = PT64_ROOT_LEVEL;
3864
		reset_rsvds_bits_mask(vcpu, g_context);
3865 3866
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3867
		g_context->nx = is_nx(vcpu);
3868
		g_context->root_level = PT32E_ROOT_LEVEL;
3869
		reset_rsvds_bits_mask(vcpu, g_context);
3870 3871
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3872
		g_context->nx = false;
3873
		g_context->root_level = PT32_ROOT_LEVEL;
3874
		reset_rsvds_bits_mask(vcpu, g_context);
3875 3876 3877
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3878
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3879
	update_last_pte_bitmap(vcpu, g_context);
3880 3881
}

3882
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3883
{
3884 3885 3886
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3887 3888 3889 3890 3891
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

3892
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3893 3894 3895
{
	ASSERT(vcpu);

3896
	kvm_mmu_unload(vcpu);
3897
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3898
}
3899
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3900 3901

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3902
{
3903 3904
	int r;

3905
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3906 3907
	if (r)
		goto out;
3908
	r = mmu_alloc_roots(vcpu);
3909
	kvm_mmu_sync_roots(vcpu);
3910 3911
	if (r)
		goto out;
3912
	/* set_cr3() should ensure TLB has been flushed */
3913
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3914 3915
out:
	return r;
A
Avi Kivity 已提交
3916
}
A
Avi Kivity 已提交
3917 3918 3919 3920 3921
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
3922
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3923
}
3924
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3925

3926
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3927 3928
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3929
{
3930
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3931 3932
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3933
        }
3934

A
Avi Kivity 已提交
3935
	++vcpu->kvm->stat.mmu_pte_updated;
3936
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3937 3938
}

3939 3940 3941 3942 3943 3944 3945 3946
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3947 3948
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3949 3950 3951
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3952 3953
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3954
{
3955 3956 3957 3958
	if (zap_page)
		return;

	if (remote_flush)
3959
		kvm_flush_remote_tlbs(vcpu->kvm);
3960
	else if (local_flush)
3961 3962 3963
		kvm_mmu_flush_tlb(vcpu);
}

3964 3965
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3966
{
3967 3968
	u64 gentry;
	int r;
3969 3970 3971

	/*
	 * Assume that the pte write on a page table of the same type
3972 3973
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3974
	 */
3975
	if (is_pae(vcpu) && *bytes == 4) {
3976
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3977 3978
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3979
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3980 3981
		if (r)
			gentry = 0;
3982 3983 3984
		new = (const u8 *)&gentry;
	}

3985
	switch (*bytes) {
3986 3987 3988 3989 3990 3991 3992 3993 3994
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3995 3996
	}

3997 3998 3999 4000 4001 4002 4003
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4004
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4005
{
4006 4007 4008 4009
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4010
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4011
		return false;
4012

4013
	return ++sp->write_flooding_count >= 3;
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4030 4031 4032 4033 4034 4035 4036 4037

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4084
	bool remote_flush, local_flush, zap_page;
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4108
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4109

4110
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4111
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4112
		if (detect_write_misaligned(sp, gpa, bytes) ||
4113
		      detect_write_flooding(sp)) {
4114
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4115
						     &invalid_list);
A
Avi Kivity 已提交
4116
			++vcpu->kvm->stat.mmu_flooded;
4117 4118
			continue;
		}
4119 4120 4121 4122 4123

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4124
		local_flush = true;
4125
		while (npte--) {
4126
			entry = *spte;
4127
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4128 4129
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4130
			      & mask.word) && rmap_can_add(vcpu))
4131
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4132
			if (need_remote_flush(entry, *spte))
4133
				remote_flush = true;
4134
			++spte;
4135 4136
		}
	}
4137
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4138
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4139
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4140
	spin_unlock(&vcpu->kvm->mmu_lock);
4141 4142
}

4143 4144
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4145 4146
	gpa_t gpa;
	int r;
4147

4148
	if (vcpu->arch.mmu.direct_map)
4149 4150
		return 0;

4151
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4152 4153

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4154

4155
	return r;
4156
}
4157
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4158

4159
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4160
{
4161
	LIST_HEAD(invalid_list);
4162

4163 4164 4165
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4166 4167 4168
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4169

A
Avi Kivity 已提交
4170
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4171
	}
4172
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4173 4174
}

4175 4176 4177 4178 4179 4180 4181 4182
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4183 4184
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4185
{
4186
	int r, emulation_type = EMULTYPE_RETRY;
4187 4188
	enum emulation_result er;

G
Gleb Natapov 已提交
4189
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4190 4191 4192 4193 4194 4195 4196 4197
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4198 4199 4200 4201
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4202 4203 4204 4205

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4206
	case EMULATE_USER_EXIT:
4207
		++vcpu->stat.mmio_exits;
4208
		/* fall through */
4209
	case EMULATE_FAIL:
4210
		return 0;
4211 4212 4213 4214 4215 4216 4217 4218
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4219 4220 4221 4222 4223 4224 4225 4226
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
	kvm_mmu_flush_tlb(vcpu);
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4227 4228 4229 4230 4231 4232
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4233 4234 4235 4236 4237 4238
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4239 4240
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4241
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4242 4243
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4244 4245 4246 4247
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4248
	struct page *page;
A
Avi Kivity 已提交
4249 4250 4251 4252
	int i;

	ASSERT(vcpu);

4253 4254 4255 4256 4257 4258 4259
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4260 4261
		return -ENOMEM;

4262
	vcpu->arch.mmu.pae_root = page_address(page);
4263
	for (i = 0; i < 4; ++i)
4264
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4265

A
Avi Kivity 已提交
4266 4267 4268
	return 0;
}

4269
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4270 4271
{
	ASSERT(vcpu);
4272 4273 4274 4275 4276

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4277

4278 4279
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4280

4281
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4282 4283
{
	ASSERT(vcpu);
4284
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4285

4286
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4287 4288
}

4289
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4290
{
4291 4292 4293
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4294

4295 4296
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4297

4298 4299
	spin_lock(&kvm->mmu_lock);

4300 4301 4302 4303
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4304

4305 4306
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4307

4308 4309 4310
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4311 4312 4313 4314 4315

			if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
				kvm_flush_remote_tlbs(kvm);
				cond_resched_lock(&kvm->mmu_lock);
			}
4316
		}
A
Avi Kivity 已提交
4317
	}
4318

4319
	kvm_flush_remote_tlbs(kvm);
4320
	spin_unlock(&kvm->mmu_lock);
A
Avi Kivity 已提交
4321
}
4322

X
Xiao Guangrong 已提交
4323
#define BATCH_ZAP_PAGES	10
4324 4325 4326
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4327
	int batch = 0;
4328 4329 4330 4331

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4332 4333
		int ret;

4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4349 4350 4351 4352
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4353
		if (batch >= BATCH_ZAP_PAGES &&
4354
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4355
			batch = 0;
4356 4357 4358
			goto restart;
		}

4359 4360
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4361 4362 4363
		batch += ret;

		if (ret)
4364 4365 4366
			goto restart;
	}

4367 4368 4369 4370
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4371
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4386
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4387 4388
	kvm->arch.mmu_valid_gen++;

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4400 4401 4402 4403
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4404 4405 4406 4407 4408
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4409 4410 4411 4412 4413 4414
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4415
	if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4416
		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4417
		kvm_mmu_invalidate_zap_all_pages(kvm);
4418
	}
4419 4420
}

4421 4422
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4423 4424
{
	struct kvm *kvm;
4425
	int nr_to_scan = sc->nr_to_scan;
4426
	unsigned long freed = 0;
4427

4428
	spin_lock(&kvm_lock);
4429 4430

	list_for_each_entry(kvm, &vm_list, vm_list) {
4431
		int idx;
4432
		LIST_HEAD(invalid_list);
4433

4434 4435 4436 4437 4438 4439 4440 4441
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4442 4443 4444 4445 4446 4447
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4448 4449
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4450 4451
			continue;

4452
		idx = srcu_read_lock(&kvm->srcu);
4453 4454
		spin_lock(&kvm->mmu_lock);

4455 4456 4457 4458 4459 4460
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4461 4462
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4463
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4464

4465
unlock:
4466
		spin_unlock(&kvm->mmu_lock);
4467
		srcu_read_unlock(&kvm->srcu, idx);
4468

4469 4470 4471 4472 4473
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4474 4475
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4476 4477
	}

4478
	spin_unlock(&kvm_lock);
4479 4480 4481 4482 4483 4484
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4485
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4486 4487 4488
}

static struct shrinker mmu_shrinker = {
4489 4490
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4491 4492 4493
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4494
static void mmu_destroy_caches(void)
4495
{
4496 4497
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4498 4499
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4500 4501 4502 4503
}

int kvm_mmu_module_init(void)
{
4504 4505
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4506
					    0, 0, NULL);
4507
	if (!pte_list_desc_cache)
4508 4509
		goto nomem;

4510 4511
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4512
						  0, 0, NULL);
4513 4514 4515
	if (!mmu_page_header_cache)
		goto nomem;

4516 4517 4518
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
		goto nomem;

4519 4520
	register_shrinker(&mmu_shrinker);

4521 4522 4523
	return 0;

nomem:
4524
	mmu_destroy_caches();
4525 4526 4527
	return -ENOMEM;
}

4528 4529 4530 4531 4532 4533 4534
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4535
	struct kvm_memslots *slots;
4536
	struct kvm_memory_slot *memslot;
4537

4538 4539
	slots = kvm_memslots(kvm);

4540 4541
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4542 4543 4544 4545 4546 4547 4548 4549

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4550 4551 4552
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4553
	u64 spte;
4554 4555
	int nr_sptes = 0;

4556 4557 4558
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4559 4560 4561
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4562
		nr_sptes++;
4563
		if (!is_shadow_present_pte(spte))
4564 4565
			break;
	}
4566
	walk_shadow_page_lockless_end(vcpu);
4567 4568 4569 4570 4571

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4572 4573 4574 4575
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

4576
	kvm_mmu_unload(vcpu);
4577 4578
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4579 4580 4581 4582 4583 4584 4585
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4586 4587
	mmu_audit_disable();
}