mmu.c 113.8 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65

#ifdef MMU_DEBUG
66 67
static bool dbg = 0;
module_param(dbg, bool, 0644);
68 69 70

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71
#define MMU_WARN_ON(x) WARN_ON(x)
72 73 74
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
75
#define MMU_WARN_ON(x) do { } while (0)
76
#endif
A
Avi Kivity 已提交
77

78 79
#define PTE_PREFETCH_NUM		8

80
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
81 82 83 84 85
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
86
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
87 88 89 90 91 92 93 94

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
95
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
96

97 98 99
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
100 101 102 103 104

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


105
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
106 107
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 109 110 111 112 113
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 119 120
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121

122 123
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
124

125 126 127 128 129
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

130 131
#include <trace/events/kvm.h>

132 133 134
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

135 136
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137

138 139
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

140 141 142
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

143 144 145
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
146 147
};

148 149 150 151
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
152
	int level;
153 154 155 156 157 158 159 160
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

161 162 163 164 165 166
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

167
static struct kmem_cache *pte_list_desc_cache;
168
static struct kmem_cache *mmu_page_header_cache;
169
static struct percpu_counter kvm_total_used_mmu_pages;
170

S
Sheng Yang 已提交
171 172 173 174 175
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
176 177 178
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
179
static void mmu_free_roots(struct kvm_vcpu *vcpu);
180 181 182 183 184 185 186

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

187
/*
188 189 190 191 192 193 194
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
195
 */
196
#define MMIO_SPTE_GEN_LOW_SHIFT		2
197 198
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

199 200 201
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203 204 205 206 207

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
208
	WARN_ON(gen & ~MMIO_GEN_MASK);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

226 227
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
228
	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 230
}

231 232
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
233
{
234 235
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
236

237
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 239
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

240
	trace_mark_mmio_spte(sptep, gfn, access, gen);
241
	mmu_spte_set(sptep, mask);
242 243 244 245 246 247 248 249 250
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
251
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252
	return (spte & ~mask) >> PAGE_SHIFT;
253 254 255 256
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
257
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258
	return (spte & ~mask) & ~PAGE_MASK;
259 260
}

261 262
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
263 264
{
	if (unlikely(is_noslot_pfn(pfn))) {
265
		mark_mmio_spte(kvm, sptep, gfn, access);
266 267 268 269 270
		return true;
	}

	return false;
}
271

272 273
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
274 275 276 277 278 279 280
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
281 282
}

S
Sheng Yang 已提交
283
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
285 286 287 288 289 290 291 292 293
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
294 295 296 297 298
static int is_cpuid_PSE36(void)
{
	return 1;
}

299 300
static int is_nx(struct kvm_vcpu *vcpu)
{
301
	return vcpu->arch.efer & EFER_NX;
302 303
}

304 305
static int is_shadow_present_pte(u64 pte)
{
306
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 308
}

M
Marcelo Tosatti 已提交
309 310 311 312 313
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

314
static int is_rmap_spte(u64 pte)
315
{
316
	return is_shadow_present_pte(pte);
317 318
}

319 320 321 322
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
323
	if (is_large_pte(pte))
324 325 326 327
		return 1;
	return 0;
}

328
static pfn_t spte_to_pfn(u64 pte)
329
{
330
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 332
}

333 334 335 336 337 338 339
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

340
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
341
static void __set_spte(u64 *sptep, u64 spte)
342
{
343
	*sptep = spte;
344 345
}

346
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347
{
348 349 350 351 352 353 354
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
355 356 357 358 359

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
360 361 362 363 364 365

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
366
#else
367 368 369 370 371 372 373
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
374

375 376 377 378 379 380 381 382 383 384 385 386
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

387 388 389
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
390

391 392 393 394 395 396 397 398 399 400 401 402 403
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
404 405
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
422
	count_spte_clear(sptep, spte);
423 424 425 426 427 428 429 430 431 432 433
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434 435
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
436
	count_spte_clear(sptep, spte);
437 438 439

	return orig.spte;
}
440 441 442 443

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
498 499
#endif

500 501
static bool spte_is_locklessly_modifiable(u64 spte)
{
502 503
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 505
}

506 507
static bool spte_has_volatile_bits(u64 spte)
{
508 509 510 511 512 513 514 515 516
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

517 518 519 520 521 522
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

523 524
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525 526 527 528 529
		return false;

	return true;
}

530 531 532 533 534
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

535 536 537 538 539
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
554 555 556 557 558 559
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
560
 */
561
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562
{
563
	u64 old_spte = *sptep;
564
	bool ret = false;
565 566

	WARN_ON(!is_rmap_spte(new_spte));
567

568 569 570 571
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
572

573
	if (!spte_has_volatile_bits(old_spte))
574
		__update_clear_spte_fast(sptep, new_spte);
575
	else
576
		old_spte = __update_clear_spte_slow(sptep, new_spte);
577

578 579 580 581 582
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
583 584
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
585 586
		ret = true;

587
	if (!shadow_accessed_mask)
588
		return ret;
589

590 591 592 593 594 595 596 597
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

598 599 600 601
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602 603

	return ret;
604 605
}

606 607 608 609 610 611 612 613 614 615 616
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
617
		__update_clear_spte_fast(sptep, 0ull);
618
	else
619
		old_spte = __update_clear_spte_slow(sptep, 0ull);
620 621 622 623 624

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
625 626 627 628 629 630

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
631
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
647
	__update_clear_spte_fast(sptep, 0ull);
648 649
}

650 651 652 653 654 655 656
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
657 658 659 660 661 662 663 664 665 666 667
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
668 669 670 671
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
672 673 674 675 676 677 678 679
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
680 681
}

682
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683
				  struct kmem_cache *base_cache, int min)
684 685 686 687
{
	void *obj;

	if (cache->nobjs >= min)
688
		return 0;
689
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691
		if (!obj)
692
			return -ENOMEM;
693 694
		cache->objects[cache->nobjs++] = obj;
	}
695
	return 0;
696 697
}

698 699 700 701 702
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

703 704
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
705 706
{
	while (mc->nobjs)
707
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 709
}

A
Avi Kivity 已提交
710
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711
				       int min)
A
Avi Kivity 已提交
712
{
713
	void *page;
A
Avi Kivity 已提交
714 715 716 717

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
719 720
		if (!page)
			return -ENOMEM;
721
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
722 723 724 725 726 727 728
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
729
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
730 731
}

732
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733
{
734 735
	int r;

736
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738 739
	if (r)
		goto out;
740
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741 742
	if (r)
		goto out;
743
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744
				   mmu_page_header_cache, 4);
745 746
out:
	return r;
747 748 749 750
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
751 752
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
753
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754 755
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
756 757
}

758
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 760 761 762 763 764 765 766
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

767
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768
{
769
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 771
}

772
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773
{
774
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 776
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
793
/*
794 795
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
796
 */
797 798 799
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
800 801 802
{
	unsigned long idx;

803
	idx = gfn_to_index(gfn, slot->base_gfn, level);
804
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
805 806 807 808
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
809
	struct kvm_memory_slot *slot;
810
	struct kvm_lpage_info *linfo;
811
	int i;
M
Marcelo Tosatti 已提交
812

A
Avi Kivity 已提交
813
	slot = gfn_to_memslot(kvm, gfn);
814 815
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
816 817
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
818
	}
819
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
820 821 822 823
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
824
	struct kvm_memory_slot *slot;
825
	struct kvm_lpage_info *linfo;
826
	int i;
M
Marcelo Tosatti 已提交
827

A
Avi Kivity 已提交
828
	slot = gfn_to_memslot(kvm, gfn);
829 830
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
831 832 833
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
834
	}
835
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
836 837
}

838 839 840
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
841
{
842
	struct kvm_memory_slot *slot;
843
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
844

A
Avi Kivity 已提交
845
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
846
	if (slot) {
847 848
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
849 850 851 852 853
	}

	return 1;
}

854
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
855
{
J
Joerg Roedel 已提交
856
	unsigned long page_size;
857
	int i, ret = 0;
M
Marcelo Tosatti 已提交
858

J
Joerg Roedel 已提交
859
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
860

861 862 863 864 865 866 867 868
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

869
	return ret;
M
Marcelo Tosatti 已提交
870 871
}

872 873 874
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
875 876
{
	struct kvm_memory_slot *slot;
877 878 879 880 881 882 883 884 885 886 887

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
888
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
889 890 891 892 893
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
894

895 896 897 898 899
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
900
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
901 902

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
903 904 905 906
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
907 908
}

909
/*
910
 * Pte mapping structures:
911
 *
912
 * If pte_list bit zero is zero, then pte_list point to the spte.
913
 *
914 915
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
916
 *
917
 * Returns the number of pte entries before the spte was added or zero if
918 919
 * the spte was not added.
 *
920
 */
921 922
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
923
{
924
	struct pte_list_desc *desc;
925
	int i, count = 0;
926

927 928 929 930 931 932 933
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
934
		desc->sptes[1] = spte;
935
		*pte_list = (unsigned long)desc | 1;
936
		++count;
937
	} else {
938 939 940
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
941
			desc = desc->more;
942
			count += PTE_LIST_EXT;
943
		}
944 945
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
946 947
			desc = desc->more;
		}
A
Avi Kivity 已提交
948
		for (i = 0; desc->sptes[i]; ++i)
949
			++count;
A
Avi Kivity 已提交
950
		desc->sptes[i] = spte;
951
	}
952
	return count;
953 954
}

955 956 957
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
958 959 960
{
	int j;

961
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
962
		;
A
Avi Kivity 已提交
963 964
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
965 966 967
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
968
		*pte_list = (unsigned long)desc->sptes[0];
969 970 971 972
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
973 974
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
975 976
}

977
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
978
{
979 980
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
981 982
	int i;

983 984
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
985
		BUG();
986 987 988 989
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
990 991
			BUG();
		}
992
		*pte_list = 0;
993
	} else {
994 995
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
996 997
		prev_desc = NULL;
		while (desc) {
998
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
999
				if (desc->sptes[i] == spte) {
1000
					pte_list_desc_remove_entry(pte_list,
1001
							       desc, i,
1002 1003 1004 1005 1006 1007
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1008
		pr_err("pte_list_remove: %p many->many\n", spte);
1009 1010 1011 1012
		BUG();
	}
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1033
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1034
				    struct kvm_memory_slot *slot)
1035
{
1036
	unsigned long idx;
1037

1038
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1039
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1040 1041
}

1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1050
	return __gfn_to_rmap(gfn, level, slot);
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1145
static void drop_spte(struct kvm *kvm, u64 *sptep)
1146
{
1147
	if (mmu_spte_clear_track_bits(sptep))
1148
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1172
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1173
 * spte write-protection is caused by protecting shadow page table.
1174
 *
T
Tiejun Chen 已提交
1175
 * Note: write protection is difference between dirty logging and spte
1176 1177 1178 1179 1180
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1181
 *
1182
 * Return true if tlb need be flushed.
1183
 */
1184
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1185 1186 1187
{
	u64 spte = *sptep;

1188 1189
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1190 1191 1192 1193
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1194 1195
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1196
	spte = spte & ~PT_WRITABLE_MASK;
1197

1198
	return mmu_spte_update(sptep, spte);
1199 1200
}

1201
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1202
				 bool pt_protect)
1203
{
1204 1205
	u64 *sptep;
	struct rmap_iterator iter;
1206
	bool flush = false;
1207

1208 1209
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1210

1211
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1212
		sptep = rmap_get_next(&iter);
1213
	}
1214

1215
	return flush;
1216 1217
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1231 1232 1233
{
	unsigned long *rmapp;

1234
	while (mask) {
1235 1236
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1237
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1238

1239 1240 1241
		/* clear the first set bit */
		mask &= mask - 1;
	}
1242 1243
}

1244
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1245 1246
{
	struct kvm_memory_slot *slot;
1247 1248
	unsigned long *rmapp;
	int i;
1249
	bool write_protected = false;
1250 1251

	slot = gfn_to_memslot(kvm, gfn);
1252 1253 1254 1255

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1256
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1257 1258 1259
	}

	return write_protected;
1260 1261
}

F
Frederik Deweerdt 已提交
1262
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1263 1264
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
1265
{
1266 1267
	u64 *sptep;
	struct rmap_iterator iter;
1268 1269
	int need_tlb_flush = 0;

1270 1271
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1272 1273
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1274 1275

		drop_spte(kvm, sptep);
1276 1277
		need_tlb_flush = 1;
	}
1278

1279 1280 1281
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1282
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1283 1284
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1285
{
1286 1287
	u64 *sptep;
	struct rmap_iterator iter;
1288
	int need_flush = 0;
1289
	u64 new_spte;
1290 1291 1292 1293 1294
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1295 1296 1297

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
1298 1299
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1300

1301
		need_flush = 1;
1302

1303
		if (pte_write(*ptep)) {
1304 1305
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1306
		} else {
1307
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1308 1309 1310 1311
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1312
			new_spte &= ~shadow_accessed_mask;
1313 1314 1315 1316

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1317 1318
		}
	}
1319

1320 1321 1322 1323 1324 1325
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1326 1327 1328 1329 1330 1331
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1332
					       struct kvm_memory_slot *slot,
1333 1334
					       gfn_t gfn,
					       int level,
1335
					       unsigned long data))
1336
{
1337
	int j;
1338
	int ret = 0;
1339
	struct kvm_memslots *slots;
1340
	struct kvm_memory_slot *memslot;
1341

1342
	slots = kvm_memslots(kvm);
1343

1344
	kvm_for_each_memslot(memslot, slots) {
1345
		unsigned long hva_start, hva_end;
1346
		gfn_t gfn_start, gfn_end;
1347

1348 1349 1350 1351 1352 1353 1354
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1355
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1356
		 */
1357
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1358
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1359

1360 1361 1362 1363
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1364
			gfn_t gfn = gfn_start;
1365

1366 1367 1368 1369 1370 1371
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1372

1373
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1374

1375 1376 1377 1378
			for (; idx <= idx_end;
			       ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
				ret |= handler(kvm, rmapp++, memslot,
					       gfn, j, data);
1379 1380 1381
		}
	}

1382
	return ret;
1383 1384
}

1385 1386 1387
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1388
					 struct kvm_memory_slot *slot,
1389
					 gfn_t gfn, int level,
1390 1391 1392
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1393 1394 1395 1396
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1397 1398 1399
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1400 1401 1402 1403 1404
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1405 1406
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1407
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1408 1409
}

F
Frederik Deweerdt 已提交
1410
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1411 1412
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1413
{
1414
	u64 *sptep;
1415
	struct rmap_iterator uninitialized_var(iter);
1416 1417
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1418
	BUG_ON(!shadow_accessed_mask);
1419

1420 1421
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1422
		BUG_ON(!is_shadow_present_pte(*sptep));
1423

1424
		if (*sptep & shadow_accessed_mask) {
1425
			young = 1;
1426 1427
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1428 1429
		}
	}
1430
	trace_kvm_age_page(gfn, level, slot, young);
1431 1432 1433
	return young;
}

A
Andrea Arcangeli 已提交
1434
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1435 1436
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1437
{
1438 1439
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1450 1451
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1452
		BUG_ON(!is_shadow_present_pte(*sptep));
1453

1454
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1455 1456 1457 1458 1459 1460 1461 1462
			young = 1;
			break;
		}
	}
out:
	return young;
}

1463 1464
#define RMAP_RECYCLE_THRESHOLD 1000

1465
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1466 1467
{
	unsigned long *rmapp;
1468 1469 1470
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1471

1472
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1473

1474
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1475 1476 1477
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1478
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1479
{
A
Andres Lagar-Cavilla 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1501 1502
}

A
Andrea Arcangeli 已提交
1503 1504 1505 1506 1507
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1508
#ifdef MMU_DEBUG
1509
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1510
{
1511 1512 1513
	u64 *pos;
	u64 *end;

1514
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1515
		if (is_shadow_present_pte(*pos)) {
1516
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1517
			       pos, *pos);
A
Avi Kivity 已提交
1518
			return 0;
1519
		}
A
Avi Kivity 已提交
1520 1521
	return 1;
}
1522
#endif
A
Avi Kivity 已提交
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1536
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1537
{
1538
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1539
	hlist_del(&sp->hash_link);
1540 1541
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1542 1543
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1544
	kmem_cache_free(mmu_page_header_cache, sp);
1545 1546
}

1547 1548
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1549
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1550 1551
}

1552
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1553
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1554 1555 1556 1557
{
	if (!parent_pte)
		return;

1558
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1559 1560
}

1561
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1562 1563
				       u64 *parent_pte)
{
1564
	pte_list_remove(parent_pte, &sp->parent_ptes);
1565 1566
}

1567 1568 1569 1570
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1571
	mmu_spte_clear_no_track(parent_pte);
1572 1573
}

1574 1575
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1576
{
1577
	struct kvm_mmu_page *sp;
1578

1579 1580
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1581
	if (!direct)
1582
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1583
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1584 1585 1586 1587 1588 1589

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1590 1591 1592 1593 1594
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1595 1596
}

1597
static void mark_unsync(u64 *spte);
1598
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1599
{
1600
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1601 1602
}

1603
static void mark_unsync(u64 *spte)
1604
{
1605
	struct kvm_mmu_page *sp;
1606
	unsigned int index;
1607

1608
	sp = page_header(__pa(spte));
1609 1610
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1611
		return;
1612
	if (sp->unsync_children++)
1613
		return;
1614
	kvm_mmu_mark_parents_unsync(sp);
1615 1616
}

1617
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1618
			       struct kvm_mmu_page *sp)
1619 1620 1621 1622
{
	return 1;
}

M
Marcelo Tosatti 已提交
1623 1624 1625 1626
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1627 1628
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1629
				 const void *pte)
1630 1631 1632 1633
{
	WARN_ON(1);
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1644 1645
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1646
{
1647
	int i;
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1664

1665
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1666
		struct kvm_mmu_page *child;
1667 1668
		u64 ent = sp->spt[i];

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1698 1699 1700
	}


1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1712 1713 1714 1715 1716
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1717
	trace_kvm_mmu_sync_page(sp);
1718 1719 1720 1721
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1722 1723 1724 1725
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1737 1738 1739 1740 1741 1742 1743 1744
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1745

1746
/* @sp->gfn should be write-protected at the call site */
1747
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1748
			   struct list_head *invalid_list, bool clear_unsync)
1749
{
1750
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1751
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1752 1753 1754
		return 1;
	}

1755
	if (clear_unsync)
1756 1757
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1758
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1759
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1760 1761 1762
		return 1;
	}

1763
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1764 1765 1766
	return 0;
}

1767 1768 1769
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1770
	LIST_HEAD(invalid_list);
1771 1772
	int ret;

1773
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1774
	if (ret)
1775 1776
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1777 1778 1779
	return ret;
}

1780 1781 1782 1783 1784 1785 1786
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1787 1788
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1789
{
1790
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1791 1792
}

1793 1794 1795 1796
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1797
	LIST_HEAD(invalid_list);
1798 1799
	bool flush = false;

1800
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1801
		if (!s->unsync)
1802 1803 1804
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1805
		kvm_unlink_unsync_page(vcpu->kvm, s);
1806
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1807
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1808
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1809 1810 1811 1812 1813
			continue;
		}
		flush = true;
	}

1814
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1815
	if (flush)
1816
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1817 1818
}

1819 1820 1821
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1822 1823
};

1824 1825 1826 1827 1828 1829
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1830 1831 1832
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1851
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1852
{
1853 1854 1855 1856 1857
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1858

1859 1860 1861 1862 1863 1864 1865 1866 1867
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1868 1869
}

1870 1871 1872
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1873
{
1874 1875 1876
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1877

1878 1879 1880 1881 1882 1883 1884
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1885
	LIST_HEAD(invalid_list);
1886 1887 1888

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1889
		bool protected = false;
1890 1891 1892 1893 1894 1895 1896

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1897
		for_each_sp(pages, sp, parents, i) {
1898
			kvm_sync_page(vcpu, sp, &invalid_list);
1899 1900
			mmu_pages_clear_parents(&parents);
		}
1901
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1902
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1903 1904
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1905 1906
}

1907 1908 1909 1910 1911 1912 1913 1914
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1927 1928 1929 1930 1931
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1932 1933 1934 1935
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1936
					     int direct,
1937
					     unsigned access,
1938
					     u64 *parent_pte)
1939 1940 1941
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1942 1943
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1944

1945
	role = vcpu->arch.mmu.base_role;
1946
	role.level = level;
1947
	role.direct = direct;
1948
	if (role.direct)
1949
		role.cr4_pae = 0;
1950
	role.access = access;
1951 1952
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1953 1954 1955 1956
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1957
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1958 1959 1960
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1961 1962
		if (!need_sync && sp->unsync)
			need_sync = true;
1963

1964 1965
		if (sp->role.word != role.word)
			continue;
1966

1967 1968
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1969

1970 1971
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1972
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1973 1974 1975
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1976

1977
		__clear_sp_write_flooding_count(sp);
1978 1979 1980
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1981
	++vcpu->kvm->stat.mmu_cache_miss;
1982
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1983 1984 1985 1986
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1987 1988
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1989
	if (!direct) {
1990 1991
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1992 1993 1994
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1995 1996
		account_shadowed(vcpu->kvm, gfn);
	}
1997
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1998
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1999
	trace_kvm_mmu_get_page(sp, true);
2000
	return sp;
2001 2002
}

2003 2004 2005 2006 2007 2008
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2009 2010 2011 2012 2013 2014

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2029

2030 2031 2032 2033 2034
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2035 2036
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2037
{
2038
	if (is_last_spte(spte, iterator->level)) {
2039 2040 2041 2042
		iterator->level = 0;
		return;
	}

2043
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2044 2045 2046
	--iterator->level;
}

2047 2048 2049 2050 2051
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2052
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2053 2054 2055
{
	u64 spte;

2056 2057 2058
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2059
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2060 2061 2062 2063
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2064

2065
	mmu_spte_set(sptep, spte);
2066 2067
}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2085
		drop_parent_pte(child, sptep);
2086 2087 2088 2089
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2090
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2091 2092 2093 2094 2095 2096 2097
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2098
		if (is_last_spte(pte, sp->role.level)) {
2099
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2100 2101 2102
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2103
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2104
			drop_parent_pte(child, spte);
2105
		}
X
Xiao Guangrong 已提交
2106 2107 2108 2109
		return true;
	}

	if (is_mmio_spte(pte))
2110
		mmu_spte_clear_no_track(spte);
2111

X
Xiao Guangrong 已提交
2112
	return false;
2113 2114
}

2115
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2116
					 struct kvm_mmu_page *sp)
2117
{
2118 2119
	unsigned i;

2120 2121
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2122 2123
}

2124
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2125
{
2126
	mmu_page_remove_parent_pte(sp, parent_pte);
2127 2128
}

2129
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2130
{
2131 2132
	u64 *sptep;
	struct rmap_iterator iter;
2133

2134 2135
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2136 2137
}

2138
static int mmu_zap_unsync_children(struct kvm *kvm,
2139 2140
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2141
{
2142 2143 2144
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2145

2146
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2147
		return 0;
2148 2149 2150 2151 2152 2153

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2154
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2155
			mmu_pages_clear_parents(&parents);
2156
			zapped++;
2157 2158 2159 2160 2161
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2162 2163
}

2164 2165
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2166
{
2167
	int ret;
A
Avi Kivity 已提交
2168

2169
	trace_kvm_mmu_prepare_zap_page(sp);
2170
	++kvm->stat.mmu_shadow_zapped;
2171
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2172
	kvm_mmu_page_unlink_children(kvm, sp);
2173
	kvm_mmu_unlink_parents(kvm, sp);
2174

2175
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2176
		unaccount_shadowed(kvm, sp->gfn);
2177

2178 2179
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2180
	if (!sp->root_count) {
2181 2182
		/* Count self */
		ret++;
2183
		list_move(&sp->link, invalid_list);
2184
		kvm_mod_used_mmu_pages(kvm, -1);
2185
	} else {
A
Avi Kivity 已提交
2186
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2187 2188 2189 2190 2191 2192 2193

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2194
	}
2195 2196

	sp->role.invalid = 1;
2197
	return ret;
2198 2199
}

2200 2201 2202
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2203
	struct kvm_mmu_page *sp, *nsp;
2204 2205 2206 2207

	if (list_empty(invalid_list))
		return;

2208 2209 2210 2211 2212
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2213

2214 2215 2216 2217 2218
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2219

2220
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2221
		WARN_ON(!sp->role.invalid || sp->root_count);
2222
		kvm_mmu_free_page(sp);
2223
	}
2224 2225
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2241 2242
/*
 * Changing the number of mmu pages allocated to the vm
2243
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2244
 */
2245
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2246
{
2247
	LIST_HEAD(invalid_list);
2248

2249 2250
	spin_lock(&kvm->mmu_lock);

2251
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2252 2253 2254 2255
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2256

2257
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2258
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2259 2260
	}

2261
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2262 2263

	spin_unlock(&kvm->mmu_lock);
2264 2265
}

2266
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2267
{
2268
	struct kvm_mmu_page *sp;
2269
	LIST_HEAD(invalid_list);
2270 2271
	int r;

2272
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2273
	r = 0;
2274
	spin_lock(&kvm->mmu_lock);
2275
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2276
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2277 2278
			 sp->role.word);
		r = 1;
2279
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2280
	}
2281
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2282 2283
	spin_unlock(&kvm->mmu_lock);

2284
	return r;
2285
}
2286
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2287

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2381
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2382 2383 2384 2385 2386 2387 2388 2389 2390
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2391
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2403 2404
{
	struct kvm_mmu_page *s;
2405

2406
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2407
		if (s->unsync)
2408
			continue;
2409 2410
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2411 2412 2413 2414 2415 2416
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2417 2418 2419
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2420
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2421 2422 2423
		if (!can_unsync)
			return 1;

2424
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2425
			return 1;
2426

G
Gleb Natapov 已提交
2427
		if (!s->unsync)
2428
			need_unsync = true;
2429
	}
2430 2431
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2432 2433 2434
	return 0;
}

A
Avi Kivity 已提交
2435
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2436
		    unsigned pte_access, int level,
2437
		    gfn_t gfn, pfn_t pfn, bool speculative,
2438
		    bool can_unsync, bool host_writable)
2439
{
2440
	u64 spte;
M
Marcelo Tosatti 已提交
2441
	int ret = 0;
S
Sheng Yang 已提交
2442

2443
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2444 2445
		return 0;

2446
	spte = PT_PRESENT_MASK;
2447
	if (!speculative)
2448
		spte |= shadow_accessed_mask;
2449

S
Sheng Yang 已提交
2450 2451 2452 2453
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2454

2455
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2456
		spte |= shadow_user_mask;
2457

2458
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2459
		spte |= PT_PAGE_SIZE_MASK;
2460
	if (tdp_enabled)
2461
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2462
			kvm_is_reserved_pfn(pfn));
2463

2464
	if (host_writable)
2465
		spte |= SPTE_HOST_WRITEABLE;
2466 2467
	else
		pte_access &= ~ACC_WRITE_MASK;
2468

2469
	spte |= (u64)pfn << PAGE_SHIFT;
2470

2471
	if (pte_access & ACC_WRITE_MASK) {
2472

X
Xiao Guangrong 已提交
2473
		/*
2474 2475 2476 2477
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2478
		 */
2479
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2480
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2481
			goto done;
2482

2483
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2484

2485 2486 2487 2488 2489 2490
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2491
		if (!can_unsync && is_writable_pte(*sptep))
2492 2493
			goto set_pte;

2494
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2495
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2496
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2497
			ret = 1;
2498
			pte_access &= ~ACC_WRITE_MASK;
2499
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2500 2501 2502 2503 2504 2505
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2506
set_pte:
2507
	if (mmu_spte_update(sptep, spte))
2508
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2509
done:
M
Marcelo Tosatti 已提交
2510 2511 2512
	return ret;
}

A
Avi Kivity 已提交
2513
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2514 2515 2516
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2517 2518
{
	int was_rmapped = 0;
2519
	int rmap_count;
M
Marcelo Tosatti 已提交
2520

2521 2522
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2523

A
Avi Kivity 已提交
2524
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2525 2526 2527 2528
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2529 2530
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2531
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2532
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2533 2534

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2535
			drop_parent_pte(child, sptep);
2536
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2537
		} else if (pfn != spte_to_pfn(*sptep)) {
2538
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2539
				 spte_to_pfn(*sptep), pfn);
2540
			drop_spte(vcpu->kvm, sptep);
2541
			kvm_flush_remote_tlbs(vcpu->kvm);
2542 2543
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2544
	}
2545

2546 2547
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2548
		if (write_fault)
2549
			*emulate = 1;
2550
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2551
	}
M
Marcelo Tosatti 已提交
2552

2553 2554 2555
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2556
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2557
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2558
		 is_large_pte(*sptep)? "2MB" : "4kB",
2559 2560
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2561
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2562 2563
		++vcpu->kvm->stat.lpages;

2564 2565 2566 2567 2568 2569
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2570
	}
2571

X
Xiao Guangrong 已提交
2572
	kvm_release_pfn_clean(pfn);
2573 2574
}

2575 2576 2577 2578 2579
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2580
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2581
	if (!slot)
2582
		return KVM_PFN_ERR_FAULT;
2583

2584
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2597
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2598 2599 2600 2601 2602 2603 2604
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2605
		mmu_set_spte(vcpu, start, access, 0, NULL,
2606 2607
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2624
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2655
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2656 2657
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2658
{
2659
	struct kvm_shadow_walk_iterator iterator;
2660
	struct kvm_mmu_page *sp;
2661
	int emulate = 0;
2662
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2663

2664 2665 2666
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2667
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2668
		if (iterator.level == level) {
2669
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2670 2671
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2672
			direct_pte_prefetch(vcpu, iterator.sptep);
2673 2674
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2675 2676
		}

2677
		drop_large_spte(vcpu, iterator.sptep);
2678
		if (!is_shadow_present_pte(*iterator.sptep)) {
2679 2680 2681 2682
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2683 2684 2685
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2686

2687
			link_shadow_page(iterator.sptep, sp, true);
2688 2689
		}
	}
2690
	return emulate;
A
Avi Kivity 已提交
2691 2692
}

H
Huang Ying 已提交
2693
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2694
{
H
Huang Ying 已提交
2695 2696 2697 2698 2699 2700 2701
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2702

H
Huang Ying 已提交
2703
	send_sig_info(SIGBUS, &info, tsk);
2704 2705
}

2706
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2707
{
X
Xiao Guangrong 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2717
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2718
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2719
		return 0;
2720
	}
2721

2722
	return -EFAULT;
2723 2724
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2738
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2760
			kvm_get_pfn(pfn);
2761 2762 2763 2764 2765
			*pfnp = pfn;
		}
	}
}

2766 2767 2768 2769 2770 2771
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2772
	if (unlikely(is_error_pfn(pfn))) {
2773 2774 2775 2776
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2777
	if (unlikely(is_noslot_pfn(pfn)))
2778 2779 2780 2781 2782 2783 2784
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2785
static bool page_fault_can_be_fast(u32 error_code)
2786
{
2787 2788 2789 2790 2791 2792 2793
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2807 2808
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2835
	struct kvm_mmu_page *sp;
2836 2837 2838
	bool ret = false;
	u64 spte = 0ull;

2839 2840 2841
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2842
	if (!page_fault_can_be_fast(error_code))
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2859 2860
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2894 2895 2896 2897 2898
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2899
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2900
exit:
X
Xiao Guangrong 已提交
2901 2902
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2903 2904 2905 2906 2907
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2908
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2909
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2910
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2911

2912 2913
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2914 2915
{
	int r;
2916
	int level;
2917
	int force_pt_level;
2918
	pfn_t pfn;
2919
	unsigned long mmu_seq;
2920
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2932

2933 2934 2935
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2936

2937 2938 2939
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2940
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2941
	smp_rmb();
2942

2943
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2944
		return 0;
2945

2946 2947
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2948

2949
	spin_lock(&vcpu->kvm->mmu_lock);
2950
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2951
		goto out_unlock;
2952
	make_mmu_pages_available(vcpu);
2953 2954
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2955 2956
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2957 2958 2959
	spin_unlock(&vcpu->kvm->mmu_lock);


2960
	return r;
2961 2962 2963 2964 2965

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2966 2967 2968
}


2969 2970 2971
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2972
	struct kvm_mmu_page *sp;
2973
	LIST_HEAD(invalid_list);
2974

2975
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2976
		return;
2977

2978 2979 2980
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2981
		hpa_t root = vcpu->arch.mmu.root_hpa;
2982

2983
		spin_lock(&vcpu->kvm->mmu_lock);
2984 2985
		sp = page_header(root);
		--sp->root_count;
2986 2987 2988 2989
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2990
		spin_unlock(&vcpu->kvm->mmu_lock);
2991
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2992 2993
		return;
	}
2994 2995

	spin_lock(&vcpu->kvm->mmu_lock);
2996
	for (i = 0; i < 4; ++i) {
2997
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2998

A
Avi Kivity 已提交
2999 3000
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3001 3002
			sp = page_header(root);
			--sp->root_count;
3003
			if (!sp->root_count && sp->role.invalid)
3004 3005
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3006
		}
3007
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3008
	}
3009
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3010
	spin_unlock(&vcpu->kvm->mmu_lock);
3011
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3012 3013
}

3014 3015 3016 3017 3018
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3019
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3020 3021 3022 3023 3024 3025
		ret = 1;
	}

	return ret;
}

3026 3027 3028
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3029
	unsigned i;
3030 3031 3032

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3033
		make_mmu_pages_available(vcpu);
3034 3035 3036 3037 3038 3039 3040 3041 3042
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3043
			MMU_WARN_ON(VALID_PAGE(root));
3044
			spin_lock(&vcpu->kvm->mmu_lock);
3045
			make_mmu_pages_available(vcpu);
3046 3047
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3048 3049 3050 3051 3052 3053 3054
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3055
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3056 3057 3058 3059 3060 3061 3062
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3063
{
3064
	struct kvm_mmu_page *sp;
3065 3066 3067
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3068

3069
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3070

3071 3072 3073 3074 3075 3076 3077 3078
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3079
		hpa_t root = vcpu->arch.mmu.root_hpa;
3080

3081
		MMU_WARN_ON(VALID_PAGE(root));
3082

3083
		spin_lock(&vcpu->kvm->mmu_lock);
3084
		make_mmu_pages_available(vcpu);
3085 3086
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3087 3088
		root = __pa(sp->spt);
		++sp->root_count;
3089
		spin_unlock(&vcpu->kvm->mmu_lock);
3090
		vcpu->arch.mmu.root_hpa = root;
3091
		return 0;
3092
	}
3093

3094 3095
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3096 3097
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3098
	 */
3099 3100 3101 3102
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3103
	for (i = 0; i < 4; ++i) {
3104
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3105

3106
		MMU_WARN_ON(VALID_PAGE(root));
3107
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3108
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3109
			if (!is_present_gpte(pdptr)) {
3110
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3111 3112
				continue;
			}
A
Avi Kivity 已提交
3113
			root_gfn = pdptr >> PAGE_SHIFT;
3114 3115
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3116
		}
3117
		spin_lock(&vcpu->kvm->mmu_lock);
3118
		make_mmu_pages_available(vcpu);
3119
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3120
				      PT32_ROOT_LEVEL, 0,
3121
				      ACC_ALL, NULL);
3122 3123
		root = __pa(sp->spt);
		++sp->root_count;
3124 3125
		spin_unlock(&vcpu->kvm->mmu_lock);

3126
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3127
	}
3128
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3155
	return 0;
3156 3157
}

3158 3159 3160 3161 3162 3163 3164 3165
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3166 3167 3168 3169 3170
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3171 3172 3173
	if (vcpu->arch.mmu.direct_map)
		return;

3174 3175
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3176

3177
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3178
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3179
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3180 3181 3182
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3183
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3184 3185 3186 3187 3188
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3189
		if (root && VALID_PAGE(root)) {
3190 3191 3192 3193 3194
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3195
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3196 3197 3198 3199 3200 3201
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3202
	spin_unlock(&vcpu->kvm->mmu_lock);
3203
}
N
Nadav Har'El 已提交
3204
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3205

3206
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3207
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3208
{
3209 3210
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3211 3212 3213
	return vaddr;
}

3214
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3215 3216
					 u32 access,
					 struct x86_exception *exception)
3217
{
3218 3219
	if (exception)
		exception->error_code = 0;
3220
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3221 3222
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3251 3252 3253
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3268
		return RET_MMIO_PF_EMULATE;
3269 3270 3271 3272 3273 3274 3275

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3276 3277 3278
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3279 3280
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3281 3282

		trace_handle_mmio_page_fault(addr, gfn, access);
3283
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3284
		return RET_MMIO_PF_EMULATE;
3285 3286 3287 3288 3289 3290 3291
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3292
		return RET_MMIO_PF_BUG;
3293 3294 3295 3296 3297

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3298
	return RET_MMIO_PF_RETRY;
3299 3300 3301 3302 3303 3304 3305 3306 3307
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3308
	WARN_ON(ret == RET_MMIO_PF_BUG);
3309 3310 3311
	return ret;
}

A
Avi Kivity 已提交
3312
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3313
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3314
{
3315
	gfn_t gfn;
3316
	int r;
A
Avi Kivity 已提交
3317

3318
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3319

3320 3321 3322 3323 3324 3325
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3326

3327 3328 3329
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3330

3331
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3332

3333
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3334

3335
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3336
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3337 3338
}

3339
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3340 3341
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3342

3343
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3344
	arch.gfn = gfn;
3345
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3346
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3347

3348
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3360
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3361
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3362 3363 3364
{
	bool async;

3365
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3366 3367 3368 3369

	if (!async)
		return false; /* *pfn has correct page already */

3370
	if (!prefault && can_do_async_pf(vcpu)) {
3371
		trace_kvm_try_async_get_page(gva, gfn);
3372 3373 3374 3375 3376 3377 3378 3379
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3380
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3381 3382 3383 3384

	return false;
}

G
Gleb Natapov 已提交
3385
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3386
			  bool prefault)
3387
{
3388
	pfn_t pfn;
3389
	int r;
3390
	int level;
3391
	int force_pt_level;
M
Marcelo Tosatti 已提交
3392
	gfn_t gfn = gpa >> PAGE_SHIFT;
3393
	unsigned long mmu_seq;
3394 3395
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3396

3397
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3398

3399 3400 3401 3402 3403 3404
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3405

3406 3407 3408 3409
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3410 3411 3412 3413 3414 3415
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3416

3417 3418 3419
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3420
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3421
	smp_rmb();
3422

3423
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3424 3425
		return 0;

3426 3427 3428
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3429
	spin_lock(&vcpu->kvm->mmu_lock);
3430
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3431
		goto out_unlock;
3432
	make_mmu_pages_available(vcpu);
3433 3434
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3435
	r = __direct_map(vcpu, gpa, write, map_writable,
3436
			 level, gfn, pfn, prefault);
3437 3438 3439
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3440 3441 3442 3443 3444

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3445 3446
}

3447 3448
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3449 3450 3451
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3452
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3453
	context->invlpg = nonpaging_invlpg;
3454
	context->update_pte = nonpaging_update_pte;
3455
	context->root_level = 0;
A
Avi Kivity 已提交
3456
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3457
	context->root_hpa = INVALID_PAGE;
3458
	context->direct_map = true;
3459
	context->nx = false;
A
Avi Kivity 已提交
3460 3461
}

3462
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3463
{
3464
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3465 3466
}

3467 3468
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3469
	return kvm_read_cr3(vcpu);
3470 3471
}

3472 3473
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3474
{
3475
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3476 3477
}

3478 3479
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3480 3481 3482 3483 3484 3485 3486 3487
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3488
		mark_mmio_spte(kvm, sptep, gfn, access);
3489 3490 3491 3492 3493 3494
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3504 3505 3506 3507 3508
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3509 3510 3511 3512 3513 3514 3515 3516
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3517
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3518
				  struct kvm_mmu *context)
3519 3520 3521
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3522
	u64 gbpages_bit_rsvd = 0;
3523
	u64 nonleaf_bit8_rsvd = 0;
3524

3525 3526
	context->bad_mt_xwr = 0;

3527
	if (!context->nx)
3528
		exb_bit_rsvd = rsvd_bits(63, 63);
3529 3530
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3531 3532 3533 3534 3535 3536 3537 3538

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
	if (guest_cpuid_is_amd(vcpu))
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3539
	switch (context->root_level) {
3540 3541 3542 3543
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3544 3545 3546 3547 3548 3549 3550
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3551 3552 3553 3554 3555 3556 3557 3558
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3559 3560
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3561
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3562
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3563
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3564 3565 3566 3567 3568
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3569
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3570 3571 3572
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3573
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3574
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3575
			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3576
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3577
			rsvd_bits(maxphyaddr, 51);
3578 3579 3580
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3581
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3582
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3583
			rsvd_bits(13, 29);
3584
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3585 3586
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3587
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3588 3589 3590 3591
		break;
	}
}

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3624
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3625
		struct kvm_mmu *mmu, bool ept)
3626 3627 3628
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3629
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3630

F
Feng Wu 已提交
3631
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3632
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3633 3634 3635 3636 3637 3638
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3639 3640 3641 3642 3643 3644
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3645 3646 3647 3648 3649
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3650 3651 3652 3653 3654 3655
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3656
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3677 3678 3679
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3680

F
Feng Wu 已提交
3681 3682
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3683 3684 3685 3686 3687 3688
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3707 3708 3709
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3710
{
3711
	context->nx = is_nx(vcpu);
3712
	context->root_level = level;
3713

3714
	reset_rsvds_bits_mask(vcpu, context);
3715
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3716
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3717

3718
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
3719 3720
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3721
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3722
	context->invlpg = paging64_invlpg;
3723
	context->update_pte = paging64_update_pte;
3724
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3725
	context->root_hpa = INVALID_PAGE;
3726
	context->direct_map = false;
A
Avi Kivity 已提交
3727 3728
}

3729 3730
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3731
{
3732
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3733 3734
}

3735 3736
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3737
{
3738
	context->nx = false;
3739
	context->root_level = PT32_ROOT_LEVEL;
3740

3741
	reset_rsvds_bits_mask(vcpu, context);
3742
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3743
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3744 3745 3746

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3747
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3748
	context->invlpg = paging32_invlpg;
3749
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3750
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3751
	context->root_hpa = INVALID_PAGE;
3752
	context->direct_map = false;
A
Avi Kivity 已提交
3753 3754
}

3755 3756
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3757
{
3758
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3759 3760
}

3761
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3762
{
3763
	struct kvm_mmu *context = &vcpu->arch.mmu;
3764

3765
	context->base_role.word = 0;
3766
	context->page_fault = tdp_page_fault;
3767
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3768
	context->invlpg = nonpaging_invlpg;
3769
	context->update_pte = nonpaging_update_pte;
3770
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3771
	context->root_hpa = INVALID_PAGE;
3772
	context->direct_map = true;
3773
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3774
	context->get_cr3 = get_cr3;
3775
	context->get_pdptr = kvm_pdptr_read;
3776
	context->inject_page_fault = kvm_inject_page_fault;
3777 3778

	if (!is_paging(vcpu)) {
3779
		context->nx = false;
3780 3781 3782
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3783
		context->nx = is_nx(vcpu);
3784
		context->root_level = PT64_ROOT_LEVEL;
3785 3786
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3787
	} else if (is_pae(vcpu)) {
3788
		context->nx = is_nx(vcpu);
3789
		context->root_level = PT32E_ROOT_LEVEL;
3790 3791
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3792
	} else {
3793
		context->nx = false;
3794
		context->root_level = PT32_ROOT_LEVEL;
3795 3796
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3797 3798
	}

3799
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3800
	update_last_pte_bitmap(vcpu, context);
3801 3802
}

3803
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3804
{
3805
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3806 3807
	struct kvm_mmu *context = &vcpu->arch.mmu;

3808
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
3809 3810

	if (!is_paging(vcpu))
3811
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3812
	else if (is_long_mode(vcpu))
3813
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3814
	else if (is_pae(vcpu))
3815
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3816
	else
3817
		paging32_init_context(vcpu, context);
3818

3819 3820 3821 3822
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
3823
		= smep && !is_write_protection(vcpu);
3824 3825 3826
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3827
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
3828
{
3829 3830
	struct kvm_mmu *context = &vcpu->arch.mmu;

3831
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3850
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3851
{
3852 3853 3854 3855 3856 3857 3858
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3859 3860
}

3861
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3862 3863 3864 3865
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3866
	g_context->get_pdptr         = kvm_pdptr_read;
3867 3868 3869 3870 3871 3872 3873 3874 3875
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3876
		g_context->nx = false;
3877 3878 3879
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3880
		g_context->nx = is_nx(vcpu);
3881
		g_context->root_level = PT64_ROOT_LEVEL;
3882
		reset_rsvds_bits_mask(vcpu, g_context);
3883 3884
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3885
		g_context->nx = is_nx(vcpu);
3886
		g_context->root_level = PT32E_ROOT_LEVEL;
3887
		reset_rsvds_bits_mask(vcpu, g_context);
3888 3889
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3890
		g_context->nx = false;
3891
		g_context->root_level = PT32_ROOT_LEVEL;
3892
		reset_rsvds_bits_mask(vcpu, g_context);
3893 3894 3895
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3896
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3897
	update_last_pte_bitmap(vcpu, g_context);
3898 3899
}

3900
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3901
{
3902
	if (mmu_is_nested(vcpu))
3903
		init_kvm_nested_mmu(vcpu);
3904
	else if (tdp_enabled)
3905
		init_kvm_tdp_mmu(vcpu);
3906
	else
3907
		init_kvm_softmmu(vcpu);
3908 3909
}

3910
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3911
{
3912
	kvm_mmu_unload(vcpu);
3913
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3914
}
3915
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3916 3917

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3918
{
3919 3920
	int r;

3921
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3922 3923
	if (r)
		goto out;
3924
	r = mmu_alloc_roots(vcpu);
3925
	kvm_mmu_sync_roots(vcpu);
3926 3927
	if (r)
		goto out;
3928
	/* set_cr3() should ensure TLB has been flushed */
3929
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3930 3931
out:
	return r;
A
Avi Kivity 已提交
3932
}
A
Avi Kivity 已提交
3933 3934 3935 3936 3937
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
3938
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3939
}
3940
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3941

3942
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3943 3944
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3945
{
3946
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3947 3948
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3949
        }
3950

A
Avi Kivity 已提交
3951
	++vcpu->kvm->stat.mmu_pte_updated;
3952
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3953 3954
}

3955 3956 3957 3958 3959 3960 3961 3962
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3963 3964
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3965 3966 3967
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3968 3969
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3970
{
3971 3972 3973 3974
	if (zap_page)
		return;

	if (remote_flush)
3975
		kvm_flush_remote_tlbs(vcpu->kvm);
3976
	else if (local_flush)
3977
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3978 3979
}

3980 3981
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3982
{
3983 3984
	u64 gentry;
	int r;
3985 3986 3987

	/*
	 * Assume that the pte write on a page table of the same type
3988 3989
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3990
	 */
3991
	if (is_pae(vcpu) && *bytes == 4) {
3992
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3993 3994
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3995
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3996 3997
		if (r)
			gentry = 0;
3998 3999 4000
		new = (const u8 *)&gentry;
	}

4001
	switch (*bytes) {
4002 4003 4004 4005 4006 4007 4008 4009 4010
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4011 4012
	}

4013 4014 4015 4016 4017 4018 4019
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4020
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4021
{
4022 4023 4024 4025
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4026
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4027
		return false;
4028

4029
	return ++sp->write_flooding_count >= 3;
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4046 4047 4048 4049 4050 4051 4052 4053

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4100
	bool remote_flush, local_flush, zap_page;
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4124
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4125

4126
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4127
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4128
		if (detect_write_misaligned(sp, gpa, bytes) ||
4129
		      detect_write_flooding(sp)) {
4130
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4131
						     &invalid_list);
A
Avi Kivity 已提交
4132
			++vcpu->kvm->stat.mmu_flooded;
4133 4134
			continue;
		}
4135 4136 4137 4138 4139

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4140
		local_flush = true;
4141
		while (npte--) {
4142
			entry = *spte;
4143
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4144 4145
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4146
			      & mask.word) && rmap_can_add(vcpu))
4147
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4148
			if (need_remote_flush(entry, *spte))
4149
				remote_flush = true;
4150
			++spte;
4151 4152
		}
	}
4153
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4154
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4155
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4156
	spin_unlock(&vcpu->kvm->mmu_lock);
4157 4158
}

4159 4160
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4161 4162
	gpa_t gpa;
	int r;
4163

4164
	if (vcpu->arch.mmu.direct_map)
4165 4166
		return 0;

4167
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4168 4169

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4170

4171
	return r;
4172
}
4173
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4174

4175
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4176
{
4177
	LIST_HEAD(invalid_list);
4178

4179 4180 4181
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4182 4183 4184
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4185

A
Avi Kivity 已提交
4186
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4187
	}
4188
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4189 4190
}

4191 4192 4193 4194 4195 4196 4197 4198
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4199 4200
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4201
{
4202
	int r, emulation_type = EMULTYPE_RETRY;
4203 4204
	enum emulation_result er;

G
Gleb Natapov 已提交
4205
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4206 4207 4208 4209 4210 4211 4212 4213
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4214 4215 4216 4217
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4218 4219 4220 4221

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4222
	case EMULATE_USER_EXIT:
4223
		++vcpu->stat.mmio_exits;
4224
		/* fall through */
4225
	case EMULATE_FAIL:
4226
		return 0;
4227 4228 4229 4230 4231 4232 4233 4234
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4235 4236 4237
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4238
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4239 4240 4241 4242
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4243 4244 4245 4246 4247 4248
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4249 4250 4251 4252 4253 4254
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4255 4256
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4257
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4258 4259
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4260 4261 4262 4263
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4264
	struct page *page;
A
Avi Kivity 已提交
4265 4266
	int i;

4267 4268 4269 4270 4271 4272 4273
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4274 4275
		return -ENOMEM;

4276
	vcpu->arch.mmu.pae_root = page_address(page);
4277
	for (i = 0; i < 4; ++i)
4278
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4279

A
Avi Kivity 已提交
4280 4281 4282
	return 0;
}

4283
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4284
{
4285 4286 4287 4288
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4289

4290 4291
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4292

4293
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4294
{
4295
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4296

4297
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4298 4299
}

4300
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4301
{
4302 4303 4304
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4305

4306 4307
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4308

4309 4310
	spin_lock(&kvm->mmu_lock);

4311 4312 4313 4314
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4315

4316 4317
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4318

4319 4320 4321
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4322

4323
			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4324
				cond_resched_lock(&kvm->mmu_lock);
4325
		}
A
Avi Kivity 已提交
4326
	}
4327

4328
	spin_unlock(&kvm->mmu_lock);
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
	kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4349
}
4350

X
Xiao Guangrong 已提交
4351
#define BATCH_ZAP_PAGES	10
4352 4353 4354
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4355
	int batch = 0;
4356 4357 4358 4359

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4360 4361
		int ret;

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4377 4378 4379 4380
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4381
		if (batch >= BATCH_ZAP_PAGES &&
4382
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4383
			batch = 0;
4384 4385 4386
			goto restart;
		}

4387 4388
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4389 4390 4391
		batch += ret;

		if (ret)
4392 4393 4394
			goto restart;
	}

4395 4396 4397 4398
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4399
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4414
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4415 4416
	kvm->arch.mmu_valid_gen++;

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4428 4429 4430 4431
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4432 4433 4434 4435 4436
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4437 4438 4439 4440 4441 4442
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4443
	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4444
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4445
		kvm_mmu_invalidate_zap_all_pages(kvm);
4446
	}
4447 4448
}

4449 4450
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4451 4452
{
	struct kvm *kvm;
4453
	int nr_to_scan = sc->nr_to_scan;
4454
	unsigned long freed = 0;
4455

4456
	spin_lock(&kvm_lock);
4457 4458

	list_for_each_entry(kvm, &vm_list, vm_list) {
4459
		int idx;
4460
		LIST_HEAD(invalid_list);
4461

4462 4463 4464 4465 4466 4467 4468 4469
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4470 4471 4472 4473 4474 4475
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4476 4477
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4478 4479
			continue;

4480
		idx = srcu_read_lock(&kvm->srcu);
4481 4482
		spin_lock(&kvm->mmu_lock);

4483 4484 4485 4486 4487 4488
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4489 4490
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4491
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4492

4493
unlock:
4494
		spin_unlock(&kvm->mmu_lock);
4495
		srcu_read_unlock(&kvm->srcu, idx);
4496

4497 4498 4499 4500 4501
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4502 4503
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4504 4505
	}

4506
	spin_unlock(&kvm_lock);
4507 4508 4509 4510 4511 4512
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4513
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4514 4515 4516
}

static struct shrinker mmu_shrinker = {
4517 4518
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4519 4520 4521
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4522
static void mmu_destroy_caches(void)
4523
{
4524 4525
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4526 4527
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4528 4529 4530 4531
}

int kvm_mmu_module_init(void)
{
4532 4533
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4534
					    0, 0, NULL);
4535
	if (!pte_list_desc_cache)
4536 4537
		goto nomem;

4538 4539
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4540
						  0, 0, NULL);
4541 4542 4543
	if (!mmu_page_header_cache)
		goto nomem;

4544
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4545 4546
		goto nomem;

4547 4548
	register_shrinker(&mmu_shrinker);

4549 4550 4551
	return 0;

nomem:
4552
	mmu_destroy_caches();
4553 4554 4555
	return -ENOMEM;
}

4556 4557 4558 4559 4560 4561 4562
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4563
	struct kvm_memslots *slots;
4564
	struct kvm_memory_slot *memslot;
4565

4566 4567
	slots = kvm_memslots(kvm);

4568 4569
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4570 4571 4572 4573 4574 4575 4576 4577

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4578 4579 4580
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4581
	u64 spte;
4582 4583
	int nr_sptes = 0;

4584 4585 4586
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4587 4588 4589
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4590
		nr_sptes++;
4591
		if (!is_shadow_present_pte(spte))
4592 4593
			break;
	}
4594
	walk_shadow_page_lockless_end(vcpu);
4595 4596 4597 4598 4599

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4600 4601
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
4602
	kvm_mmu_unload(vcpu);
4603 4604
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4605 4606 4607 4608 4609 4610 4611
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4612 4613
	mmu_audit_disable();
}