mmu.c 114.4 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65

#ifdef MMU_DEBUG
66 67
static bool dbg = 0;
module_param(dbg, bool, 0644);
68 69 70

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71
#define MMU_WARN_ON(x) WARN_ON(x)
72 73 74
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
75
#define MMU_WARN_ON(x) do { } while (0)
76
#endif
A
Avi Kivity 已提交
77

78 79
#define PTE_PREFETCH_NUM		8

80
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
81 82 83 84 85
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
86
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
87 88 89 90 91 92 93 94

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
95
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
96

97 98 99
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
100 101 102 103 104

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


105
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
106 107
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 109 110 111 112 113
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 119 120
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121

122 123
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
124

125 126 127 128 129
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

130 131
#include <trace/events/kvm.h>

132 133 134
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

135 136
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137

138 139
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

140 141 142
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

143 144 145
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
146 147
};

148 149 150 151
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
152
	int level;
153 154 155 156 157 158 159 160
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

161 162 163 164 165 166
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

167
static struct kmem_cache *pte_list_desc_cache;
168
static struct kmem_cache *mmu_page_header_cache;
169
static struct percpu_counter kvm_total_used_mmu_pages;
170

S
Sheng Yang 已提交
171 172 173 174 175
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
176 177 178
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
179
static void mmu_free_roots(struct kvm_vcpu *vcpu);
180 181 182 183 184 185 186

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

187
/*
188 189 190 191 192 193 194
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
195
 */
196
#define MMIO_SPTE_GEN_LOW_SHIFT		2
197 198
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

199 200 201
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203 204 205 206 207

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
208
	WARN_ON(gen & ~MMIO_GEN_MASK);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

226 227
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
228
	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 230
}

231 232
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
233
{
234 235
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
236

237
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 239
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

240
	trace_mark_mmio_spte(sptep, gfn, access, gen);
241
	mmu_spte_set(sptep, mask);
242 243 244 245 246 247 248 249 250
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
251
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252
	return (spte & ~mask) >> PAGE_SHIFT;
253 254 255 256
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
257
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258
	return (spte & ~mask) & ~PAGE_MASK;
259 260
}

261 262
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
263 264
{
	if (unlikely(is_noslot_pfn(pfn))) {
265
		mark_mmio_spte(kvm, sptep, gfn, access);
266 267 268 269 270
		return true;
	}

	return false;
}
271

272 273
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
274 275 276 277 278 279 280
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
281 282
}

S
Sheng Yang 已提交
283
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
285 286 287 288 289 290 291 292 293
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
294 295 296 297 298
static int is_cpuid_PSE36(void)
{
	return 1;
}

299 300
static int is_nx(struct kvm_vcpu *vcpu)
{
301
	return vcpu->arch.efer & EFER_NX;
302 303
}

304 305
static int is_shadow_present_pte(u64 pte)
{
306
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 308
}

M
Marcelo Tosatti 已提交
309 310 311 312 313
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

314
static int is_rmap_spte(u64 pte)
315
{
316
	return is_shadow_present_pte(pte);
317 318
}

319 320 321 322
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
323
	if (is_large_pte(pte))
324 325 326 327
		return 1;
	return 0;
}

328
static pfn_t spte_to_pfn(u64 pte)
329
{
330
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 332
}

333 334 335 336 337 338 339
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

340
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
341
static void __set_spte(u64 *sptep, u64 spte)
342
{
343
	*sptep = spte;
344 345
}

346
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347
{
348 349 350 351 352 353 354
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
355 356 357 358 359

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
360 361 362 363 364 365

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
366
#else
367 368 369 370 371 372 373
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
374

375 376 377 378 379 380 381 382 383 384 385 386
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

387 388 389
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
390

391 392 393 394 395 396 397 398 399 400 401 402 403
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
404 405
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
422
	count_spte_clear(sptep, spte);
423 424 425 426 427 428 429 430 431 432 433
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434 435
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
436
	count_spte_clear(sptep, spte);
437 438 439

	return orig.spte;
}
440 441 442 443

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
498 499
#endif

500 501
static bool spte_is_locklessly_modifiable(u64 spte)
{
502 503
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 505
}

506 507
static bool spte_has_volatile_bits(u64 spte)
{
508 509 510 511 512 513 514 515 516
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

517 518 519 520 521 522
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

523 524
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525 526 527 528 529
		return false;

	return true;
}

530 531 532 533 534
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

535 536 537 538 539
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
554 555 556 557 558 559
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
560
 */
561
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562
{
563
	u64 old_spte = *sptep;
564
	bool ret = false;
565 566

	WARN_ON(!is_rmap_spte(new_spte));
567

568 569 570 571
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
572

573
	if (!spte_has_volatile_bits(old_spte))
574
		__update_clear_spte_fast(sptep, new_spte);
575
	else
576
		old_spte = __update_clear_spte_slow(sptep, new_spte);
577

578 579 580 581 582
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
583 584
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
585 586
		ret = true;

587
	if (!shadow_accessed_mask)
588
		return ret;
589

590 591 592 593 594 595 596 597
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

598 599 600 601
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602 603

	return ret;
604 605
}

606 607 608 609 610 611 612 613 614 615 616
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
617
		__update_clear_spte_fast(sptep, 0ull);
618
	else
619
		old_spte = __update_clear_spte_slow(sptep, 0ull);
620 621 622 623 624

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
625 626 627 628 629 630

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
631
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
647
	__update_clear_spte_fast(sptep, 0ull);
648 649
}

650 651 652 653 654 655 656
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
657 658 659 660 661 662 663 664 665 666 667
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
668 669 670 671
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
672 673 674 675 676 677 678 679
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
680 681
}

682
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683
				  struct kmem_cache *base_cache, int min)
684 685 686 687
{
	void *obj;

	if (cache->nobjs >= min)
688
		return 0;
689
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691
		if (!obj)
692
			return -ENOMEM;
693 694
		cache->objects[cache->nobjs++] = obj;
	}
695
	return 0;
696 697
}

698 699 700 701 702
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

703 704
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
705 706
{
	while (mc->nobjs)
707
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 709
}

A
Avi Kivity 已提交
710
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711
				       int min)
A
Avi Kivity 已提交
712
{
713
	void *page;
A
Avi Kivity 已提交
714 715 716 717

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
719 720
		if (!page)
			return -ENOMEM;
721
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
722 723 724 725 726 727 728
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
729
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
730 731
}

732
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733
{
734 735
	int r;

736
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738 739
	if (r)
		goto out;
740
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741 742
	if (r)
		goto out;
743
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744
				   mmu_page_header_cache, 4);
745 746
out:
	return r;
747 748 749 750
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
751 752
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
753
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754 755
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
756 757
}

758
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 760 761 762 763 764 765 766
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

767
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768
{
769
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 771
}

772
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773
{
774
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 776
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
793
/*
794 795
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
796
 */
797 798 799
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
800 801 802
{
	unsigned long idx;

803
	idx = gfn_to_index(gfn, slot->base_gfn, level);
804
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
805 806 807 808
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
809
	struct kvm_memory_slot *slot;
810
	struct kvm_lpage_info *linfo;
811
	int i;
M
Marcelo Tosatti 已提交
812

A
Avi Kivity 已提交
813
	slot = gfn_to_memslot(kvm, gfn);
814 815
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
816 817
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
818
	}
819
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
820 821 822 823
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
824
	struct kvm_memory_slot *slot;
825
	struct kvm_lpage_info *linfo;
826
	int i;
M
Marcelo Tosatti 已提交
827

A
Avi Kivity 已提交
828
	slot = gfn_to_memslot(kvm, gfn);
829 830
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
831 832 833
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
834
	}
835
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
836 837
}

838 839 840
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
841
{
842
	struct kvm_memory_slot *slot;
843
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
844

A
Avi Kivity 已提交
845
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
846
	if (slot) {
847 848
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
849 850 851 852 853
	}

	return 1;
}

854
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
855
{
J
Joerg Roedel 已提交
856
	unsigned long page_size;
857
	int i, ret = 0;
M
Marcelo Tosatti 已提交
858

J
Joerg Roedel 已提交
859
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
860

861 862 863 864 865 866 867 868
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

869
	return ret;
M
Marcelo Tosatti 已提交
870 871
}

872 873 874
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
875 876
{
	struct kvm_memory_slot *slot;
877 878 879 880 881 882 883 884 885 886 887

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
888
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
889 890 891 892 893
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
894

895 896 897 898 899
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
900
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
901 902

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
903 904 905 906
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
907 908
}

909
/*
910
 * Pte mapping structures:
911
 *
912
 * If pte_list bit zero is zero, then pte_list point to the spte.
913
 *
914 915
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
916
 *
917
 * Returns the number of pte entries before the spte was added or zero if
918 919
 * the spte was not added.
 *
920
 */
921 922
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
923
{
924
	struct pte_list_desc *desc;
925
	int i, count = 0;
926

927 928 929 930 931 932 933
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
934
		desc->sptes[1] = spte;
935
		*pte_list = (unsigned long)desc | 1;
936
		++count;
937
	} else {
938 939 940
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
941
			desc = desc->more;
942
			count += PTE_LIST_EXT;
943
		}
944 945
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
946 947
			desc = desc->more;
		}
A
Avi Kivity 已提交
948
		for (i = 0; desc->sptes[i]; ++i)
949
			++count;
A
Avi Kivity 已提交
950
		desc->sptes[i] = spte;
951
	}
952
	return count;
953 954
}

955 956 957
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
958 959 960
{
	int j;

961
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
962
		;
A
Avi Kivity 已提交
963 964
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
965 966 967
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
968
		*pte_list = (unsigned long)desc->sptes[0];
969 970 971 972
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
973 974
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
975 976
}

977
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
978
{
979 980
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
981 982
	int i;

983 984
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
985
		BUG();
986 987 988 989
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
990 991
			BUG();
		}
992
		*pte_list = 0;
993
	} else {
994 995
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
996 997
		prev_desc = NULL;
		while (desc) {
998
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
999
				if (desc->sptes[i] == spte) {
1000
					pte_list_desc_remove_entry(pte_list,
1001
							       desc, i,
1002 1003 1004 1005 1006 1007
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1008
		pr_err("pte_list_remove: %p many->many\n", spte);
1009 1010 1011 1012
		BUG();
	}
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1033
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1034
				    struct kvm_memory_slot *slot)
1035
{
1036
	unsigned long idx;
1037

1038
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1039
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1040 1041
}

1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1050
	return __gfn_to_rmap(gfn, level, slot);
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1145
static void drop_spte(struct kvm *kvm, u64 *sptep)
1146
{
1147
	if (mmu_spte_clear_track_bits(sptep))
1148
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1172
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1173
 * spte write-protection is caused by protecting shadow page table.
1174
 *
T
Tiejun Chen 已提交
1175
 * Note: write protection is difference between dirty logging and spte
1176 1177 1178 1179 1180
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1181
 *
1182
 * Return true if tlb need be flushed.
1183
 */
1184
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1185 1186 1187
{
	u64 spte = *sptep;

1188 1189
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1190 1191 1192 1193
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1194 1195
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1196
	spte = spte & ~PT_WRITABLE_MASK;
1197

1198
	return mmu_spte_update(sptep, spte);
1199 1200
}

1201
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1202
				 bool pt_protect)
1203
{
1204 1205
	u64 *sptep;
	struct rmap_iterator iter;
1206
	bool flush = false;
1207

1208 1209
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1210

1211
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1212
		sptep = rmap_get_next(&iter);
1213
	}
1214

1215
	return flush;
1216 1217
}

1218
/**
1219
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1220 1221 1222 1223 1224 1225 1226 1227
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1228
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1229 1230
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1231 1232 1233
{
	unsigned long *rmapp;

1234
	while (mask) {
1235 1236
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1237
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1238

1239 1240 1241
		/* clear the first set bit */
		mask &= mask - 1;
	}
1242 1243
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1261
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1262 1263
{
	struct kvm_memory_slot *slot;
1264 1265
	unsigned long *rmapp;
	int i;
1266
	bool write_protected = false;
1267 1268

	slot = gfn_to_memslot(kvm, gfn);
1269 1270 1271 1272

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1273
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1274 1275 1276
	}

	return write_protected;
1277 1278
}

F
Frederik Deweerdt 已提交
1279
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1280 1281
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
1282
{
1283 1284
	u64 *sptep;
	struct rmap_iterator iter;
1285 1286
	int need_tlb_flush = 0;

1287 1288
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1289 1290
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1291 1292

		drop_spte(kvm, sptep);
1293 1294
		need_tlb_flush = 1;
	}
1295

1296 1297 1298
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1299
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1300 1301
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1302
{
1303 1304
	u64 *sptep;
	struct rmap_iterator iter;
1305
	int need_flush = 0;
1306
	u64 new_spte;
1307 1308 1309 1310 1311
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1312 1313 1314

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
1315 1316
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1317

1318
		need_flush = 1;
1319

1320
		if (pte_write(*ptep)) {
1321 1322
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1323
		} else {
1324
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1325 1326 1327 1328
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1329
			new_spte &= ~shadow_accessed_mask;
1330 1331 1332 1333

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1334 1335
		}
	}
1336

1337 1338 1339 1340 1341 1342
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1343 1344 1345 1346 1347 1348
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1349
					       struct kvm_memory_slot *slot,
1350 1351
					       gfn_t gfn,
					       int level,
1352
					       unsigned long data))
1353
{
1354
	int j;
1355
	int ret = 0;
1356
	struct kvm_memslots *slots;
1357
	struct kvm_memory_slot *memslot;
1358

1359
	slots = kvm_memslots(kvm);
1360

1361
	kvm_for_each_memslot(memslot, slots) {
1362
		unsigned long hva_start, hva_end;
1363
		gfn_t gfn_start, gfn_end;
1364

1365 1366 1367 1368 1369 1370 1371
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1372
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1373
		 */
1374
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1375
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1376

1377 1378 1379 1380
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1381
			gfn_t gfn = gfn_start;
1382

1383 1384 1385 1386 1387 1388
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1389

1390
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1391

1392 1393 1394 1395
			for (; idx <= idx_end;
			       ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
				ret |= handler(kvm, rmapp++, memslot,
					       gfn, j, data);
1396 1397 1398
		}
	}

1399
	return ret;
1400 1401
}

1402 1403 1404
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1405
					 struct kvm_memory_slot *slot,
1406
					 gfn_t gfn, int level,
1407 1408 1409
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1410 1411 1412 1413
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1414 1415 1416
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1417 1418 1419 1420 1421
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1422 1423
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1424
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1425 1426
}

F
Frederik Deweerdt 已提交
1427
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1428 1429
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1430
{
1431
	u64 *sptep;
1432
	struct rmap_iterator uninitialized_var(iter);
1433 1434
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1435
	BUG_ON(!shadow_accessed_mask);
1436

1437 1438
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1439
		BUG_ON(!is_shadow_present_pte(*sptep));
1440

1441
		if (*sptep & shadow_accessed_mask) {
1442
			young = 1;
1443 1444
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1445 1446
		}
	}
1447
	trace_kvm_age_page(gfn, level, slot, young);
1448 1449 1450
	return young;
}

A
Andrea Arcangeli 已提交
1451
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1452 1453
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1454
{
1455 1456
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1467 1468
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1469
		BUG_ON(!is_shadow_present_pte(*sptep));
1470

1471
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1472 1473 1474 1475 1476 1477 1478 1479
			young = 1;
			break;
		}
	}
out:
	return young;
}

1480 1481
#define RMAP_RECYCLE_THRESHOLD 1000

1482
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1483 1484
{
	unsigned long *rmapp;
1485 1486 1487
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1488

1489
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1490

1491
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1492 1493 1494
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1495
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1496
{
A
Andres Lagar-Cavilla 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1518 1519
}

A
Andrea Arcangeli 已提交
1520 1521 1522 1523 1524
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1525
#ifdef MMU_DEBUG
1526
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1527
{
1528 1529 1530
	u64 *pos;
	u64 *end;

1531
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1532
		if (is_shadow_present_pte(*pos)) {
1533
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1534
			       pos, *pos);
A
Avi Kivity 已提交
1535
			return 0;
1536
		}
A
Avi Kivity 已提交
1537 1538
	return 1;
}
1539
#endif
A
Avi Kivity 已提交
1540

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1553
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1554
{
1555
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1556
	hlist_del(&sp->hash_link);
1557 1558
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1559 1560
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1561
	kmem_cache_free(mmu_page_header_cache, sp);
1562 1563
}

1564 1565
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1566
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1567 1568
}

1569
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1570
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1571 1572 1573 1574
{
	if (!parent_pte)
		return;

1575
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1576 1577
}

1578
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1579 1580
				       u64 *parent_pte)
{
1581
	pte_list_remove(parent_pte, &sp->parent_ptes);
1582 1583
}

1584 1585 1586 1587
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1588
	mmu_spte_clear_no_track(parent_pte);
1589 1590
}

1591 1592
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1593
{
1594
	struct kvm_mmu_page *sp;
1595

1596 1597
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1598
	if (!direct)
1599
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1600
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1601 1602 1603 1604 1605 1606

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1607 1608 1609 1610 1611
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1612 1613
}

1614
static void mark_unsync(u64 *spte);
1615
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1616
{
1617
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1618 1619
}

1620
static void mark_unsync(u64 *spte)
1621
{
1622
	struct kvm_mmu_page *sp;
1623
	unsigned int index;
1624

1625
	sp = page_header(__pa(spte));
1626 1627
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1628
		return;
1629
	if (sp->unsync_children++)
1630
		return;
1631
	kvm_mmu_mark_parents_unsync(sp);
1632 1633
}

1634
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1635
			       struct kvm_mmu_page *sp)
1636 1637 1638 1639
{
	return 1;
}

M
Marcelo Tosatti 已提交
1640 1641 1642 1643
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1644 1645
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1646
				 const void *pte)
1647 1648 1649 1650
{
	WARN_ON(1);
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1661 1662
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1663
{
1664
	int i;
1665

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1681

1682
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1683
		struct kvm_mmu_page *child;
1684 1685
		u64 ent = sp->spt[i];

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1715 1716 1717
	}


1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1729 1730 1731 1732 1733
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1734
	trace_kvm_mmu_sync_page(sp);
1735 1736 1737 1738
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1739 1740 1741 1742
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1754 1755 1756 1757 1758 1759 1760 1761
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1762

1763
/* @sp->gfn should be write-protected at the call site */
1764
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1765
			   struct list_head *invalid_list, bool clear_unsync)
1766
{
1767
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1768
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1769 1770 1771
		return 1;
	}

1772
	if (clear_unsync)
1773 1774
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1775
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1776
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1777 1778 1779
		return 1;
	}

1780
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1781 1782 1783
	return 0;
}

1784 1785 1786
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1787
	LIST_HEAD(invalid_list);
1788 1789
	int ret;

1790
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1791
	if (ret)
1792 1793
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1794 1795 1796
	return ret;
}

1797 1798 1799 1800 1801 1802 1803
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1804 1805
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1806
{
1807
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1808 1809
}

1810 1811 1812 1813
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1814
	LIST_HEAD(invalid_list);
1815 1816
	bool flush = false;

1817
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1818
		if (!s->unsync)
1819 1820 1821
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1822
		kvm_unlink_unsync_page(vcpu->kvm, s);
1823
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1824
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1825
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1826 1827 1828 1829 1830
			continue;
		}
		flush = true;
	}

1831
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1832
	if (flush)
1833
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1834 1835
}

1836 1837 1838
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1839 1840
};

1841 1842 1843 1844 1845 1846
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1847 1848 1849
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1868
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1869
{
1870 1871 1872 1873 1874
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1885 1886
}

1887 1888 1889
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1890
{
1891 1892 1893
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1894

1895 1896 1897 1898 1899 1900 1901
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1902
	LIST_HEAD(invalid_list);
1903 1904 1905

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1906
		bool protected = false;
1907 1908 1909 1910 1911 1912 1913

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1914
		for_each_sp(pages, sp, parents, i) {
1915
			kvm_sync_page(vcpu, sp, &invalid_list);
1916 1917
			mmu_pages_clear_parents(&parents);
		}
1918
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1919
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1920 1921
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1922 1923
}

1924 1925 1926 1927 1928 1929 1930 1931
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1944 1945 1946 1947 1948
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1949 1950 1951 1952
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1953
					     int direct,
1954
					     unsigned access,
1955
					     u64 *parent_pte)
1956 1957 1958
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1959 1960
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1961

1962
	role = vcpu->arch.mmu.base_role;
1963
	role.level = level;
1964
	role.direct = direct;
1965
	if (role.direct)
1966
		role.cr4_pae = 0;
1967
	role.access = access;
1968 1969
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1970 1971 1972 1973
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1974
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1975 1976 1977
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1978 1979
		if (!need_sync && sp->unsync)
			need_sync = true;
1980

1981 1982
		if (sp->role.word != role.word)
			continue;
1983

1984 1985
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1986

1987 1988
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1989
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1990 1991 1992
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1993

1994
		__clear_sp_write_flooding_count(sp);
1995 1996 1997
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1998
	++vcpu->kvm->stat.mmu_cache_miss;
1999
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2000 2001 2002 2003
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
2004 2005
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2006
	if (!direct) {
2007 2008
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
2009 2010 2011
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

2012 2013
		account_shadowed(vcpu->kvm, gfn);
	}
2014
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2015
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
2016
	trace_kvm_mmu_get_page(sp, true);
2017
	return sp;
2018 2019
}

2020 2021 2022 2023 2024 2025
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2026 2027 2028 2029 2030 2031

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2046

2047 2048 2049 2050 2051
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2052 2053
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2054
{
2055
	if (is_last_spte(spte, iterator->level)) {
2056 2057 2058 2059
		iterator->level = 0;
		return;
	}

2060
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2061 2062 2063
	--iterator->level;
}

2064 2065 2066 2067 2068
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2069
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2070 2071 2072
{
	u64 spte;

2073 2074 2075
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2076
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2077 2078 2079 2080
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2081

2082
	mmu_spte_set(sptep, spte);
2083 2084
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2102
		drop_parent_pte(child, sptep);
2103 2104 2105 2106
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2107
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2108 2109 2110 2111 2112 2113 2114
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2115
		if (is_last_spte(pte, sp->role.level)) {
2116
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2117 2118 2119
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2120
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2121
			drop_parent_pte(child, spte);
2122
		}
X
Xiao Guangrong 已提交
2123 2124 2125 2126
		return true;
	}

	if (is_mmio_spte(pte))
2127
		mmu_spte_clear_no_track(spte);
2128

X
Xiao Guangrong 已提交
2129
	return false;
2130 2131
}

2132
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2133
					 struct kvm_mmu_page *sp)
2134
{
2135 2136
	unsigned i;

2137 2138
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2139 2140
}

2141
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2142
{
2143
	mmu_page_remove_parent_pte(sp, parent_pte);
2144 2145
}

2146
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2147
{
2148 2149
	u64 *sptep;
	struct rmap_iterator iter;
2150

2151 2152
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2153 2154
}

2155
static int mmu_zap_unsync_children(struct kvm *kvm,
2156 2157
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2158
{
2159 2160 2161
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2162

2163
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2164
		return 0;
2165 2166 2167 2168 2169 2170

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2171
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2172
			mmu_pages_clear_parents(&parents);
2173
			zapped++;
2174 2175 2176 2177 2178
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2179 2180
}

2181 2182
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2183
{
2184
	int ret;
A
Avi Kivity 已提交
2185

2186
	trace_kvm_mmu_prepare_zap_page(sp);
2187
	++kvm->stat.mmu_shadow_zapped;
2188
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2189
	kvm_mmu_page_unlink_children(kvm, sp);
2190
	kvm_mmu_unlink_parents(kvm, sp);
2191

2192
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2193
		unaccount_shadowed(kvm, sp->gfn);
2194

2195 2196
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2197
	if (!sp->root_count) {
2198 2199
		/* Count self */
		ret++;
2200
		list_move(&sp->link, invalid_list);
2201
		kvm_mod_used_mmu_pages(kvm, -1);
2202
	} else {
A
Avi Kivity 已提交
2203
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2204 2205 2206 2207 2208 2209 2210

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2211
	}
2212 2213

	sp->role.invalid = 1;
2214
	return ret;
2215 2216
}

2217 2218 2219
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2220
	struct kvm_mmu_page *sp, *nsp;
2221 2222 2223 2224

	if (list_empty(invalid_list))
		return;

2225 2226 2227 2228 2229
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2230

2231 2232 2233 2234 2235
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2236

2237
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2238
		WARN_ON(!sp->role.invalid || sp->root_count);
2239
		kvm_mmu_free_page(sp);
2240
	}
2241 2242
}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2258 2259
/*
 * Changing the number of mmu pages allocated to the vm
2260
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2261
 */
2262
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2263
{
2264
	LIST_HEAD(invalid_list);
2265

2266 2267
	spin_lock(&kvm->mmu_lock);

2268
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2269 2270 2271 2272
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2273

2274
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2275
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2276 2277
	}

2278
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2279 2280

	spin_unlock(&kvm->mmu_lock);
2281 2282
}

2283
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2284
{
2285
	struct kvm_mmu_page *sp;
2286
	LIST_HEAD(invalid_list);
2287 2288
	int r;

2289
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2290
	r = 0;
2291
	spin_lock(&kvm->mmu_lock);
2292
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2293
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2294 2295
			 sp->role.word);
		r = 1;
2296
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2297
	}
2298
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2299 2300
	spin_unlock(&kvm->mmu_lock);

2301
	return r;
2302
}
2303
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2304

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2398
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2399 2400 2401 2402 2403 2404 2405 2406 2407
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2408
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2409

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2420 2421
{
	struct kvm_mmu_page *s;
2422

2423
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2424
		if (s->unsync)
2425
			continue;
2426 2427
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2428 2429 2430 2431 2432 2433
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2434 2435 2436
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2437
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2438 2439 2440
		if (!can_unsync)
			return 1;

2441
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2442
			return 1;
2443

G
Gleb Natapov 已提交
2444
		if (!s->unsync)
2445
			need_unsync = true;
2446
	}
2447 2448
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2449 2450 2451
	return 0;
}

A
Avi Kivity 已提交
2452
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2453
		    unsigned pte_access, int level,
2454
		    gfn_t gfn, pfn_t pfn, bool speculative,
2455
		    bool can_unsync, bool host_writable)
2456
{
2457
	u64 spte;
M
Marcelo Tosatti 已提交
2458
	int ret = 0;
S
Sheng Yang 已提交
2459

2460
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2461 2462
		return 0;

2463
	spte = PT_PRESENT_MASK;
2464
	if (!speculative)
2465
		spte |= shadow_accessed_mask;
2466

S
Sheng Yang 已提交
2467 2468 2469 2470
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2471

2472
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2473
		spte |= shadow_user_mask;
2474

2475
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2476
		spte |= PT_PAGE_SIZE_MASK;
2477
	if (tdp_enabled)
2478
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2479
			kvm_is_reserved_pfn(pfn));
2480

2481
	if (host_writable)
2482
		spte |= SPTE_HOST_WRITEABLE;
2483 2484
	else
		pte_access &= ~ACC_WRITE_MASK;
2485

2486
	spte |= (u64)pfn << PAGE_SHIFT;
2487

2488
	if (pte_access & ACC_WRITE_MASK) {
2489

X
Xiao Guangrong 已提交
2490
		/*
2491 2492 2493 2494
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2495
		 */
2496
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2497
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2498
			goto done;
2499

2500
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2501

2502 2503 2504 2505 2506 2507
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2508
		if (!can_unsync && is_writable_pte(*sptep))
2509 2510
			goto set_pte;

2511
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2512
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2513
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2514
			ret = 1;
2515
			pte_access &= ~ACC_WRITE_MASK;
2516
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2517 2518 2519 2520 2521 2522
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2523
set_pte:
2524
	if (mmu_spte_update(sptep, spte))
2525
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2526
done:
M
Marcelo Tosatti 已提交
2527 2528 2529
	return ret;
}

A
Avi Kivity 已提交
2530
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2531 2532 2533
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2534 2535
{
	int was_rmapped = 0;
2536
	int rmap_count;
M
Marcelo Tosatti 已提交
2537

2538 2539
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2540

A
Avi Kivity 已提交
2541
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2542 2543 2544 2545
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2546 2547
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2548
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2549
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2550 2551

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2552
			drop_parent_pte(child, sptep);
2553
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2554
		} else if (pfn != spte_to_pfn(*sptep)) {
2555
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2556
				 spte_to_pfn(*sptep), pfn);
2557
			drop_spte(vcpu->kvm, sptep);
2558
			kvm_flush_remote_tlbs(vcpu->kvm);
2559 2560
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2561
	}
2562

2563 2564
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2565
		if (write_fault)
2566
			*emulate = 1;
2567
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2568
	}
M
Marcelo Tosatti 已提交
2569

2570 2571 2572
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2573
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2574
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2575
		 is_large_pte(*sptep)? "2MB" : "4kB",
2576 2577
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2578
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2579 2580
		++vcpu->kvm->stat.lpages;

2581 2582 2583 2584 2585 2586
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2587
	}
2588

X
Xiao Guangrong 已提交
2589
	kvm_release_pfn_clean(pfn);
2590 2591
}

2592 2593 2594 2595 2596
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2597
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2598
	if (!slot)
2599
		return KVM_PFN_ERR_FAULT;
2600

2601
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2614
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2615 2616 2617 2618 2619 2620 2621
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2622
		mmu_set_spte(vcpu, start, access, 0, NULL,
2623 2624
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2641
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2672
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2673 2674
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2675
{
2676
	struct kvm_shadow_walk_iterator iterator;
2677
	struct kvm_mmu_page *sp;
2678
	int emulate = 0;
2679
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2680

2681 2682 2683
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2684
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2685
		if (iterator.level == level) {
2686
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2687 2688
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2689
			direct_pte_prefetch(vcpu, iterator.sptep);
2690 2691
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2692 2693
		}

2694
		drop_large_spte(vcpu, iterator.sptep);
2695
		if (!is_shadow_present_pte(*iterator.sptep)) {
2696 2697 2698 2699
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2700 2701 2702
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2703

2704
			link_shadow_page(iterator.sptep, sp, true);
2705 2706
		}
	}
2707
	return emulate;
A
Avi Kivity 已提交
2708 2709
}

H
Huang Ying 已提交
2710
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2711
{
H
Huang Ying 已提交
2712 2713 2714 2715 2716 2717 2718
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2719

H
Huang Ying 已提交
2720
	send_sig_info(SIGBUS, &info, tsk);
2721 2722
}

2723
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2724
{
X
Xiao Guangrong 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2734
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2735
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2736
		return 0;
2737
	}
2738

2739
	return -EFAULT;
2740 2741
}

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2755
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2777
			kvm_get_pfn(pfn);
2778 2779 2780 2781 2782
			*pfnp = pfn;
		}
	}
}

2783 2784 2785 2786 2787 2788
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2789
	if (unlikely(is_error_pfn(pfn))) {
2790 2791 2792 2793
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2794
	if (unlikely(is_noslot_pfn(pfn)))
2795 2796 2797 2798 2799 2800 2801
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2802
static bool page_fault_can_be_fast(u32 error_code)
2803
{
2804 2805 2806 2807 2808 2809 2810
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2824 2825
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2852
	struct kvm_mmu_page *sp;
2853 2854 2855
	bool ret = false;
	u64 spte = 0ull;

2856 2857 2858
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2859
	if (!page_fault_can_be_fast(error_code))
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2876 2877
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2911 2912 2913 2914 2915
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2916
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2917
exit:
X
Xiao Guangrong 已提交
2918 2919
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2920 2921 2922 2923 2924
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2925
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2926
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2927
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2928

2929 2930
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2931 2932
{
	int r;
2933
	int level;
2934
	int force_pt_level;
2935
	pfn_t pfn;
2936
	unsigned long mmu_seq;
2937
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2949

2950 2951 2952
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2953

2954 2955 2956
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2957
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2958
	smp_rmb();
2959

2960
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2961
		return 0;
2962

2963 2964
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2965

2966
	spin_lock(&vcpu->kvm->mmu_lock);
2967
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2968
		goto out_unlock;
2969
	make_mmu_pages_available(vcpu);
2970 2971
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2972 2973
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2974 2975 2976
	spin_unlock(&vcpu->kvm->mmu_lock);


2977
	return r;
2978 2979 2980 2981 2982

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2983 2984 2985
}


2986 2987 2988
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2989
	struct kvm_mmu_page *sp;
2990
	LIST_HEAD(invalid_list);
2991

2992
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2993
		return;
2994

2995 2996 2997
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2998
		hpa_t root = vcpu->arch.mmu.root_hpa;
2999

3000
		spin_lock(&vcpu->kvm->mmu_lock);
3001 3002
		sp = page_header(root);
		--sp->root_count;
3003 3004 3005 3006
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3007
		spin_unlock(&vcpu->kvm->mmu_lock);
3008
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3009 3010
		return;
	}
3011 3012

	spin_lock(&vcpu->kvm->mmu_lock);
3013
	for (i = 0; i < 4; ++i) {
3014
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3015

A
Avi Kivity 已提交
3016 3017
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3018 3019
			sp = page_header(root);
			--sp->root_count;
3020
			if (!sp->root_count && sp->role.invalid)
3021 3022
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3023
		}
3024
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3025
	}
3026
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3027
	spin_unlock(&vcpu->kvm->mmu_lock);
3028
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3029 3030
}

3031 3032 3033 3034 3035
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3036
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3037 3038 3039 3040 3041 3042
		ret = 1;
	}

	return ret;
}

3043 3044 3045
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3046
	unsigned i;
3047 3048 3049

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3050
		make_mmu_pages_available(vcpu);
3051 3052 3053 3054 3055 3056 3057 3058 3059
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3060
			MMU_WARN_ON(VALID_PAGE(root));
3061
			spin_lock(&vcpu->kvm->mmu_lock);
3062
			make_mmu_pages_available(vcpu);
3063 3064
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3065 3066 3067 3068 3069 3070 3071
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3072
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3073 3074 3075 3076 3077 3078 3079
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3080
{
3081
	struct kvm_mmu_page *sp;
3082 3083 3084
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3085

3086
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3087

3088 3089 3090 3091 3092 3093 3094 3095
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3096
		hpa_t root = vcpu->arch.mmu.root_hpa;
3097

3098
		MMU_WARN_ON(VALID_PAGE(root));
3099

3100
		spin_lock(&vcpu->kvm->mmu_lock);
3101
		make_mmu_pages_available(vcpu);
3102 3103
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3104 3105
		root = __pa(sp->spt);
		++sp->root_count;
3106
		spin_unlock(&vcpu->kvm->mmu_lock);
3107
		vcpu->arch.mmu.root_hpa = root;
3108
		return 0;
3109
	}
3110

3111 3112
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3113 3114
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3115
	 */
3116 3117 3118 3119
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3120
	for (i = 0; i < 4; ++i) {
3121
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3122

3123
		MMU_WARN_ON(VALID_PAGE(root));
3124
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3125
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3126
			if (!is_present_gpte(pdptr)) {
3127
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3128 3129
				continue;
			}
A
Avi Kivity 已提交
3130
			root_gfn = pdptr >> PAGE_SHIFT;
3131 3132
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3133
		}
3134
		spin_lock(&vcpu->kvm->mmu_lock);
3135
		make_mmu_pages_available(vcpu);
3136
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3137
				      PT32_ROOT_LEVEL, 0,
3138
				      ACC_ALL, NULL);
3139 3140
		root = __pa(sp->spt);
		++sp->root_count;
3141 3142
		spin_unlock(&vcpu->kvm->mmu_lock);

3143
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3144
	}
3145
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3172
	return 0;
3173 3174
}

3175 3176 3177 3178 3179 3180 3181 3182
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3183 3184 3185 3186 3187
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3188 3189 3190
	if (vcpu->arch.mmu.direct_map)
		return;

3191 3192
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3193

3194
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3195
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3196
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3197 3198 3199
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3200
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3201 3202 3203 3204 3205
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3206
		if (root && VALID_PAGE(root)) {
3207 3208 3209 3210 3211
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3212
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3213 3214 3215 3216 3217 3218
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3219
	spin_unlock(&vcpu->kvm->mmu_lock);
3220
}
N
Nadav Har'El 已提交
3221
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3222

3223
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3224
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3225
{
3226 3227
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3228 3229 3230
	return vaddr;
}

3231
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3232 3233
					 u32 access,
					 struct x86_exception *exception)
3234
{
3235 3236
	if (exception)
		exception->error_code = 0;
3237
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3238 3239
}

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3268 3269 3270
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3285
		return RET_MMIO_PF_EMULATE;
3286 3287 3288 3289 3290 3291 3292

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3293 3294 3295
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3296 3297
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3298 3299

		trace_handle_mmio_page_fault(addr, gfn, access);
3300
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3301
		return RET_MMIO_PF_EMULATE;
3302 3303 3304 3305 3306 3307 3308
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3309
		return RET_MMIO_PF_BUG;
3310 3311 3312 3313 3314

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3315
	return RET_MMIO_PF_RETRY;
3316 3317 3318 3319 3320 3321 3322 3323 3324
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3325
	WARN_ON(ret == RET_MMIO_PF_BUG);
3326 3327 3328
	return ret;
}

A
Avi Kivity 已提交
3329
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3330
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3331
{
3332
	gfn_t gfn;
3333
	int r;
A
Avi Kivity 已提交
3334

3335
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3336

3337 3338 3339 3340 3341 3342
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3343

3344 3345 3346
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3347

3348
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3349

3350
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3351

3352
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3353
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3354 3355
}

3356
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3357 3358
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3359

3360
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3361
	arch.gfn = gfn;
3362
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3363
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3364

3365
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3377
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3378
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3379 3380 3381
{
	bool async;

3382
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3383 3384 3385 3386

	if (!async)
		return false; /* *pfn has correct page already */

3387
	if (!prefault && can_do_async_pf(vcpu)) {
3388
		trace_kvm_try_async_get_page(gva, gfn);
3389 3390 3391 3392 3393 3394 3395 3396
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3397
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3398 3399 3400 3401

	return false;
}

G
Gleb Natapov 已提交
3402
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3403
			  bool prefault)
3404
{
3405
	pfn_t pfn;
3406
	int r;
3407
	int level;
3408
	int force_pt_level;
M
Marcelo Tosatti 已提交
3409
	gfn_t gfn = gpa >> PAGE_SHIFT;
3410
	unsigned long mmu_seq;
3411 3412
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3413

3414
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3415

3416 3417 3418 3419 3420 3421
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3422

3423 3424 3425 3426
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3427 3428 3429 3430 3431 3432
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3433

3434 3435 3436
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3437
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3438
	smp_rmb();
3439

3440
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3441 3442
		return 0;

3443 3444 3445
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3446
	spin_lock(&vcpu->kvm->mmu_lock);
3447
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3448
		goto out_unlock;
3449
	make_mmu_pages_available(vcpu);
3450 3451
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3452
	r = __direct_map(vcpu, gpa, write, map_writable,
3453
			 level, gfn, pfn, prefault);
3454 3455 3456
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3457 3458 3459 3460 3461

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3462 3463
}

3464 3465
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3466 3467 3468
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3469
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3470
	context->invlpg = nonpaging_invlpg;
3471
	context->update_pte = nonpaging_update_pte;
3472
	context->root_level = 0;
A
Avi Kivity 已提交
3473
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3474
	context->root_hpa = INVALID_PAGE;
3475
	context->direct_map = true;
3476
	context->nx = false;
A
Avi Kivity 已提交
3477 3478
}

3479
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3480
{
3481
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3482 3483
}

3484 3485
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3486
	return kvm_read_cr3(vcpu);
3487 3488
}

3489 3490
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3491
{
3492
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3493 3494
}

3495 3496
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3497 3498 3499 3500 3501 3502 3503 3504
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3505
		mark_mmio_spte(kvm, sptep, gfn, access);
3506 3507 3508 3509 3510 3511
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3521 3522 3523 3524 3525
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3526 3527 3528 3529 3530 3531 3532 3533
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3534
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3535
				  struct kvm_mmu *context)
3536 3537 3538
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3539
	u64 gbpages_bit_rsvd = 0;
3540
	u64 nonleaf_bit8_rsvd = 0;
3541

3542 3543
	context->bad_mt_xwr = 0;

3544
	if (!context->nx)
3545
		exb_bit_rsvd = rsvd_bits(63, 63);
3546 3547
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3548 3549 3550 3551 3552 3553 3554 3555

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
	if (guest_cpuid_is_amd(vcpu))
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3556
	switch (context->root_level) {
3557 3558 3559 3560
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3561 3562 3563 3564 3565 3566 3567
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3568 3569 3570 3571 3572 3573 3574 3575
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3576 3577
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3578
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3579
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3580
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3581 3582 3583 3584 3585
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3586
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3587 3588 3589
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3590
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3591
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3592
			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3593
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3594
			rsvd_bits(maxphyaddr, 51);
3595 3596 3597
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3598
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3599
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3600
			rsvd_bits(13, 29);
3601
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3602 3603
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3604
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3605 3606 3607 3608
		break;
	}
}

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3641
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3642
		struct kvm_mmu *mmu, bool ept)
3643 3644 3645
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3646
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3647

F
Feng Wu 已提交
3648
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3649
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3650 3651 3652 3653 3654 3655
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3656 3657 3658 3659 3660 3661
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3662 3663 3664 3665 3666
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3667 3668 3669 3670 3671 3672
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3673
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3694 3695 3696
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3697

F
Feng Wu 已提交
3698 3699
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3700 3701 3702 3703 3704 3705
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3724 3725 3726
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3727
{
3728
	context->nx = is_nx(vcpu);
3729
	context->root_level = level;
3730

3731
	reset_rsvds_bits_mask(vcpu, context);
3732
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3733
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3734

3735
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
3736 3737
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3738
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3739
	context->invlpg = paging64_invlpg;
3740
	context->update_pte = paging64_update_pte;
3741
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3742
	context->root_hpa = INVALID_PAGE;
3743
	context->direct_map = false;
A
Avi Kivity 已提交
3744 3745
}

3746 3747
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3748
{
3749
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3750 3751
}

3752 3753
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3754
{
3755
	context->nx = false;
3756
	context->root_level = PT32_ROOT_LEVEL;
3757

3758
	reset_rsvds_bits_mask(vcpu, context);
3759
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3760
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3761 3762 3763

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3764
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3765
	context->invlpg = paging32_invlpg;
3766
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3767
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3768
	context->root_hpa = INVALID_PAGE;
3769
	context->direct_map = false;
A
Avi Kivity 已提交
3770 3771
}

3772 3773
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3774
{
3775
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3776 3777
}

3778
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3779
{
3780
	struct kvm_mmu *context = &vcpu->arch.mmu;
3781

3782
	context->base_role.word = 0;
3783
	context->page_fault = tdp_page_fault;
3784
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3785
	context->invlpg = nonpaging_invlpg;
3786
	context->update_pte = nonpaging_update_pte;
3787
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3788
	context->root_hpa = INVALID_PAGE;
3789
	context->direct_map = true;
3790
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3791
	context->get_cr3 = get_cr3;
3792
	context->get_pdptr = kvm_pdptr_read;
3793
	context->inject_page_fault = kvm_inject_page_fault;
3794 3795

	if (!is_paging(vcpu)) {
3796
		context->nx = false;
3797 3798 3799
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3800
		context->nx = is_nx(vcpu);
3801
		context->root_level = PT64_ROOT_LEVEL;
3802 3803
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3804
	} else if (is_pae(vcpu)) {
3805
		context->nx = is_nx(vcpu);
3806
		context->root_level = PT32E_ROOT_LEVEL;
3807 3808
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3809
	} else {
3810
		context->nx = false;
3811
		context->root_level = PT32_ROOT_LEVEL;
3812 3813
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3814 3815
	}

3816
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3817
	update_last_pte_bitmap(vcpu, context);
3818 3819
}

3820
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3821
{
3822
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3823 3824
	struct kvm_mmu *context = &vcpu->arch.mmu;

3825
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
3826 3827

	if (!is_paging(vcpu))
3828
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3829
	else if (is_long_mode(vcpu))
3830
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3831
	else if (is_pae(vcpu))
3832
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3833
	else
3834
		paging32_init_context(vcpu, context);
3835

3836 3837 3838 3839
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
3840
		= smep && !is_write_protection(vcpu);
3841 3842 3843
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3844
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
3845
{
3846 3847
	struct kvm_mmu *context = &vcpu->arch.mmu;

3848
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3867
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3868
{
3869 3870 3871 3872 3873 3874 3875
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3876 3877
}

3878
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3879 3880 3881 3882
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3883
	g_context->get_pdptr         = kvm_pdptr_read;
3884 3885 3886 3887 3888 3889 3890 3891 3892
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3893
		g_context->nx = false;
3894 3895 3896
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3897
		g_context->nx = is_nx(vcpu);
3898
		g_context->root_level = PT64_ROOT_LEVEL;
3899
		reset_rsvds_bits_mask(vcpu, g_context);
3900 3901
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3902
		g_context->nx = is_nx(vcpu);
3903
		g_context->root_level = PT32E_ROOT_LEVEL;
3904
		reset_rsvds_bits_mask(vcpu, g_context);
3905 3906
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3907
		g_context->nx = false;
3908
		g_context->root_level = PT32_ROOT_LEVEL;
3909
		reset_rsvds_bits_mask(vcpu, g_context);
3910 3911 3912
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3913
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3914
	update_last_pte_bitmap(vcpu, g_context);
3915 3916
}

3917
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3918
{
3919
	if (mmu_is_nested(vcpu))
3920
		init_kvm_nested_mmu(vcpu);
3921
	else if (tdp_enabled)
3922
		init_kvm_tdp_mmu(vcpu);
3923
	else
3924
		init_kvm_softmmu(vcpu);
3925 3926
}

3927
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3928
{
3929
	kvm_mmu_unload(vcpu);
3930
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3931
}
3932
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3933 3934

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3935
{
3936 3937
	int r;

3938
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3939 3940
	if (r)
		goto out;
3941
	r = mmu_alloc_roots(vcpu);
3942
	kvm_mmu_sync_roots(vcpu);
3943 3944
	if (r)
		goto out;
3945
	/* set_cr3() should ensure TLB has been flushed */
3946
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3947 3948
out:
	return r;
A
Avi Kivity 已提交
3949
}
A
Avi Kivity 已提交
3950 3951 3952 3953 3954
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
3955
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3956
}
3957
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3958

3959
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3960 3961
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3962
{
3963
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3964 3965
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3966
        }
3967

A
Avi Kivity 已提交
3968
	++vcpu->kvm->stat.mmu_pte_updated;
3969
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3970 3971
}

3972 3973 3974 3975 3976 3977 3978 3979
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3980 3981
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3982 3983 3984
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3985 3986
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3987
{
3988 3989 3990 3991
	if (zap_page)
		return;

	if (remote_flush)
3992
		kvm_flush_remote_tlbs(vcpu->kvm);
3993
	else if (local_flush)
3994
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3995 3996
}

3997 3998
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3999
{
4000 4001
	u64 gentry;
	int r;
4002 4003 4004

	/*
	 * Assume that the pte write on a page table of the same type
4005 4006
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4007
	 */
4008
	if (is_pae(vcpu) && *bytes == 4) {
4009
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4010 4011
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4012
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
4013 4014
		if (r)
			gentry = 0;
4015 4016 4017
		new = (const u8 *)&gentry;
	}

4018
	switch (*bytes) {
4019 4020 4021 4022 4023 4024 4025 4026 4027
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4028 4029
	}

4030 4031 4032 4033 4034 4035 4036
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4037
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4038
{
4039 4040 4041 4042
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4043
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4044
		return false;
4045

4046
	return ++sp->write_flooding_count >= 3;
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4063 4064 4065 4066 4067 4068 4069 4070

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4117
	bool remote_flush, local_flush, zap_page;
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4141
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4142

4143
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4144
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4145
		if (detect_write_misaligned(sp, gpa, bytes) ||
4146
		      detect_write_flooding(sp)) {
4147
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4148
						     &invalid_list);
A
Avi Kivity 已提交
4149
			++vcpu->kvm->stat.mmu_flooded;
4150 4151
			continue;
		}
4152 4153 4154 4155 4156

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4157
		local_flush = true;
4158
		while (npte--) {
4159
			entry = *spte;
4160
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4161 4162
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4163
			      & mask.word) && rmap_can_add(vcpu))
4164
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4165
			if (need_remote_flush(entry, *spte))
4166
				remote_flush = true;
4167
			++spte;
4168 4169
		}
	}
4170
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4171
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4172
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4173
	spin_unlock(&vcpu->kvm->mmu_lock);
4174 4175
}

4176 4177
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4178 4179
	gpa_t gpa;
	int r;
4180

4181
	if (vcpu->arch.mmu.direct_map)
4182 4183
		return 0;

4184
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4185 4186

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4187

4188
	return r;
4189
}
4190
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4191

4192
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4193
{
4194
	LIST_HEAD(invalid_list);
4195

4196 4197 4198
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4199 4200 4201
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4202

A
Avi Kivity 已提交
4203
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4204
	}
4205
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4206 4207
}

4208 4209 4210 4211 4212 4213 4214 4215
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4216 4217
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4218
{
4219
	int r, emulation_type = EMULTYPE_RETRY;
4220 4221
	enum emulation_result er;

G
Gleb Natapov 已提交
4222
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4223 4224 4225 4226 4227 4228 4229 4230
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4231 4232 4233 4234
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4235 4236 4237 4238

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4239
	case EMULATE_USER_EXIT:
4240
		++vcpu->stat.mmio_exits;
4241
		/* fall through */
4242
	case EMULATE_FAIL:
4243
		return 0;
4244 4245 4246 4247 4248 4249 4250 4251
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4252 4253 4254
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4255
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4256 4257 4258 4259
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4260 4261 4262 4263 4264 4265
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4266 4267 4268 4269 4270 4271
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4272 4273
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4274
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4275 4276
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4277 4278 4279 4280
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4281
	struct page *page;
A
Avi Kivity 已提交
4282 4283
	int i;

4284 4285 4286 4287 4288 4289 4290
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4291 4292
		return -ENOMEM;

4293
	vcpu->arch.mmu.pae_root = page_address(page);
4294
	for (i = 0; i < 4; ++i)
4295
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4296

A
Avi Kivity 已提交
4297 4298 4299
	return 0;
}

4300
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4301
{
4302 4303 4304 4305
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4306

4307 4308
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4309

4310
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4311
{
4312
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4313

4314
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4315 4316
}

4317
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4318
{
4319 4320 4321
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
4322
	bool flush = false;
A
Avi Kivity 已提交
4323

4324 4325
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4326

4327 4328
	spin_lock(&kvm->mmu_lock);

4329 4330 4331 4332
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4333

4334 4335
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4336

4337 4338
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
4339 4340
				flush |= __rmap_write_protect(kvm, rmapp,
						false);
4341

4342
			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4343
				cond_resched_lock(&kvm->mmu_lock);
4344
		}
A
Avi Kivity 已提交
4345
	}
4346

4347
	spin_unlock(&kvm->mmu_lock);
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4367 4368
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4369
}
4370

X
Xiao Guangrong 已提交
4371
#define BATCH_ZAP_PAGES	10
4372 4373 4374
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4375
	int batch = 0;
4376 4377 4378 4379

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4380 4381
		int ret;

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4397 4398 4399 4400
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4401
		if (batch >= BATCH_ZAP_PAGES &&
4402
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4403
			batch = 0;
4404 4405 4406
			goto restart;
		}

4407 4408
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4409 4410 4411
		batch += ret;

		if (ret)
4412 4413 4414
			goto restart;
	}

4415 4416 4417 4418
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4419
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4434
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4435 4436
	kvm->arch.mmu_valid_gen++;

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4448 4449 4450 4451
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4452 4453 4454 4455 4456
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4457 4458 4459 4460 4461 4462
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4463
	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4464
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4465
		kvm_mmu_invalidate_zap_all_pages(kvm);
4466
	}
4467 4468
}

4469 4470
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4471 4472
{
	struct kvm *kvm;
4473
	int nr_to_scan = sc->nr_to_scan;
4474
	unsigned long freed = 0;
4475

4476
	spin_lock(&kvm_lock);
4477 4478

	list_for_each_entry(kvm, &vm_list, vm_list) {
4479
		int idx;
4480
		LIST_HEAD(invalid_list);
4481

4482 4483 4484 4485 4486 4487 4488 4489
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4490 4491 4492 4493 4494 4495
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4496 4497
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4498 4499
			continue;

4500
		idx = srcu_read_lock(&kvm->srcu);
4501 4502
		spin_lock(&kvm->mmu_lock);

4503 4504 4505 4506 4507 4508
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4509 4510
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4511
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4512

4513
unlock:
4514
		spin_unlock(&kvm->mmu_lock);
4515
		srcu_read_unlock(&kvm->srcu, idx);
4516

4517 4518 4519 4520 4521
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4522 4523
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4524 4525
	}

4526
	spin_unlock(&kvm_lock);
4527 4528 4529 4530 4531 4532
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4533
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4534 4535 4536
}

static struct shrinker mmu_shrinker = {
4537 4538
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4539 4540 4541
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4542
static void mmu_destroy_caches(void)
4543
{
4544 4545
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4546 4547
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4548 4549 4550 4551
}

int kvm_mmu_module_init(void)
{
4552 4553
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4554
					    0, 0, NULL);
4555
	if (!pte_list_desc_cache)
4556 4557
		goto nomem;

4558 4559
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4560
						  0, 0, NULL);
4561 4562 4563
	if (!mmu_page_header_cache)
		goto nomem;

4564
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4565 4566
		goto nomem;

4567 4568
	register_shrinker(&mmu_shrinker);

4569 4570 4571
	return 0;

nomem:
4572
	mmu_destroy_caches();
4573 4574 4575
	return -ENOMEM;
}

4576 4577 4578 4579 4580 4581 4582
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4583
	struct kvm_memslots *slots;
4584
	struct kvm_memory_slot *memslot;
4585

4586 4587
	slots = kvm_memslots(kvm);

4588 4589
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4590 4591 4592 4593 4594 4595 4596 4597

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4598 4599 4600
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4601
	u64 spte;
4602 4603
	int nr_sptes = 0;

4604 4605 4606
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4607 4608 4609
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4610
		nr_sptes++;
4611
		if (!is_shadow_present_pte(spte))
4612 4613
			break;
	}
4614
	walk_shadow_page_lockless_end(vcpu);
4615 4616 4617 4618 4619

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4620 4621
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
4622
	kvm_mmu_unload(vcpu);
4623 4624
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4625 4626 4627 4628 4629 4630 4631
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4632 4633
	mmu_audit_disable();
}