intel_lrc.c 66.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138

139
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 141 142
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

186 187 188 189 190
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
191 192

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
194 195 196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211
enum {
	ADVANCED_CONTEXT = 0,
	LEGACY_CONTEXT,
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
#define GEN8_CTX_MODE_SHIFT 3
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
212
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
213

214 215 216
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx);

217 218 219 220 221 222
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
223
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
224 225 226
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
227 228
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
229 230
	WARN_ON(i915.enable_ppgtt == -1);

231 232 233
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

234 235 236
	if (enable_execlists == 0)
		return 0;

237 238
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
239 240 241 242
		return 1;

	return 0;
}
243

244 245 246 247 248 249 250 251 252 253 254 255
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
256 257 258 259 260 261 262 263 264
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

265 266
static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
					 struct drm_i915_gem_object *ctx_obj)
267
{
268
	struct drm_device *dev = ring->dev;
269 270
	uint64_t desc;
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
271 272

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
273 274 275

	desc = GEN8_CTX_VALID;
	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
276 277
	if (IS_GEN8(ctx_obj->base.dev))
		desc |= GEN8_CTX_L3LLC_COHERENT;
278 279 280 281 282 283 284 285
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

286 287 288 289 290 291 292
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	if (IS_GEN9(dev) &&
	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
	    (ring->id == BCS || ring->id == VCS ||
	    ring->id == VECS || ring->id == VCS2))
		desc |= GEN8_CTX_FORCE_RESTORE;

293 294 295 296 297 298 299
	return desc;
}

static void execlists_elsp_write(struct intel_engine_cs *ring,
				 struct drm_i915_gem_object *ctx_obj0,
				 struct drm_i915_gem_object *ctx_obj1)
{
300 301
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
302 303 304 305 306
	uint64_t temp = 0;
	uint32_t desc[4];

	/* XXX: You must always write both descriptors in the order below. */
	if (ctx_obj1)
307
		temp = execlists_ctx_descriptor(ring, ctx_obj1);
308 309 310 311 312
	else
		temp = 0;
	desc[1] = (u32)(temp >> 32);
	desc[0] = (u32)temp;

313
	temp = execlists_ctx_descriptor(ring, ctx_obj0);
314 315 316
	desc[3] = (u32)(temp >> 32);
	desc[2] = (u32)temp;

317 318 319 320 321
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
	I915_WRITE_FW(RING_ELSP(ring), desc[1]);
	I915_WRITE_FW(RING_ELSP(ring), desc[0]);
	I915_WRITE_FW(RING_ELSP(ring), desc[3]);
322

323
	/* The context is automatically loaded after the following */
324
	I915_WRITE_FW(RING_ELSP(ring), desc[2]);
325 326

	/* ELSP is a wo register, so use another nearby reg for posting instead */
327 328 329
	POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
330 331
}

332 333
static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
				    struct drm_i915_gem_object *ring_obj,
334
				    struct i915_hw_ppgtt *ppgtt,
335
				    u32 tail)
336 337 338 339 340 341 342 343
{
	struct page *page;
	uint32_t *reg_state;

	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	reg_state[CTX_RING_TAIL+1] = tail;
344
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
345

346 347 348 349 350 351 352 353 354 355
	/* True PPGTT with dynamic page allocation: update PDP registers and
	 * point the unallocated PDPs to the scratch page
	 */
	if (ppgtt) {
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

356 357 358 359 360
	kunmap_atomic(reg_state);

	return 0;
}

361 362 363
static void execlists_submit_contexts(struct intel_engine_cs *ring,
				      struct intel_context *to0, u32 tail0,
				      struct intel_context *to1, u32 tail1)
364
{
365 366
	struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
367
	struct drm_i915_gem_object *ctx_obj1 = NULL;
368
	struct intel_ringbuffer *ringbuf1 = NULL;
369 370

	BUG_ON(!ctx_obj0);
371
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
372
	WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
373

374
	execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
375

376
	if (to1) {
377
		ringbuf1 = to1->engine[ring->id].ringbuf;
378 379
		ctx_obj1 = to1->engine[ring->id].state;
		BUG_ON(!ctx_obj1);
380
		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
381
		WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
382

383
		execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
384 385 386 387 388
	}

	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
}

389 390
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
391 392
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
393 394

	assert_spin_locked(&ring->execlist_lock);
395

396 397 398 399 400 401
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

402 403 404 405 406 407 408 409
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
410
		} else if (req0->ctx == cursor->ctx) {
411 412
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
413
			cursor->elsp_submitted = req0->elsp_submitted;
414
			list_del(&req0->execlist_link);
415 416
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
417 418 419 420 421 422 423
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

424 425 426 427 428
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
429
		if (req0->elsp_submitted) {
430 431 432 433 434 435 436 437 438 439 440 441 442 443
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

444 445
	WARN_ON(req1 && req1->elsp_submitted);

446 447 448
	execlists_submit_contexts(ring, req0->ctx, req0->tail,
				  req1 ? req1->ctx : NULL,
				  req1 ? req1->tail : 0);
449 450 451 452

	req0->elsp_submitted++;
	if (req1)
		req1->elsp_submitted++;
453 454
}

455 456 457
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
458
	struct drm_i915_gem_request *head_req;
459 460 461 462

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
463
					    struct drm_i915_gem_request,
464 465 466 467
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
468
				head_req->ctx->engine[ring->id].state;
469
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
470 471 472 473 474
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
475 476
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
477 478
				return true;
			}
479 480 481 482 483 484
		}
	}

	return false;
}

485
/**
486
 * intel_lrc_irq_handler() - handle Context Switch interrupts
487 488 489 490 491
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
492
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
	u32 status;
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
	write_pointer = status_pointer & 0x07;
	if (read_pointer > write_pointer)
		write_pointer += 6;

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8);
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8 + 4);

518 519 520 521 522 523 524 525 526 527
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

	if (submit_contexts != 0)
		execlists_context_unqueue(ring);

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
	ring->next_context_status_buffer = write_pointer % 6;

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
}

545
static int execlists_context_queue(struct drm_i915_gem_request *request)
546
{
547
	struct intel_engine_cs *ring = request->ring;
548
	struct drm_i915_gem_request *cursor;
549
	int num_elements = 0;
550

551 552
	if (request->ctx != ring->default_context)
		intel_lr_context_pin(ring, request->ctx);
553 554 555

	i915_gem_request_reference(request);

556
	request->tail = request->ringbuf->tail;
557

558
	spin_lock_irq(&ring->execlist_lock);
559

560 561 562 563 564
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
565
		struct drm_i915_gem_request *tail_req;
566 567

		tail_req = list_last_entry(&ring->execlist_queue,
568
					   struct drm_i915_gem_request,
569 570
					   execlist_link);

571
		if (request->ctx == tail_req->ctx) {
572
			WARN(tail_req->elsp_submitted != 0,
573
				"More than 2 already-submitted reqs queued\n");
574
			list_del(&tail_req->execlist_link);
575 576
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
577 578 579
		}
	}

580
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
581
	if (num_elements == 0)
582 583
		execlists_context_unqueue(ring);

584
	spin_unlock_irq(&ring->execlist_lock);
585 586 587 588

	return 0;
}

589
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
590
{
591
	struct intel_engine_cs *ring = req->ring;
592 593 594 595 596 597 598
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

599
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
600 601 602 603 604 605 606
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

607
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
608 609
				 struct list_head *vmas)
{
610
	const unsigned other_rings = ~intel_ring_flag(req->ring);
611 612 613 614 615 616 617 618
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

619
		if (obj->active & other_rings) {
620
			ret = i915_gem_object_sync(obj, req->ring, &req);
621 622 623
			if (ret)
				return ret;
		}
624 625 626 627 628 629 630 631 632 633 634 635 636

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
637
	return logical_ring_invalidate_all_caches(req);
638 639
}

640
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
641 642 643
{
	int ret;

644 645
	if (request->ctx != request->ring->default_context) {
		ret = intel_lr_context_pin(request->ring, request->ctx);
646
		if (ret)
647 648 649
			return ret;
	}

650
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
651 652 653 654

	return 0;
}

655
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
656
				       int bytes)
657
{
658 659 660
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *ring = req->ring;
	struct drm_i915_gem_request *target;
661 662
	unsigned space;
	int ret;
663

664 665 666
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

667 668 669
	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

670
	list_for_each_entry(target, &ring->request_list, list) {
671 672 673 674 675
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
676
		if (target->ringbuf != ringbuf)
677 678 679
			continue;

		/* Would completion of this request free enough space? */
680
		space = __intel_ring_space(target->postfix, ringbuf->tail,
681 682
					   ringbuf->size);
		if (space >= bytes)
683 684 685
			break;
	}

686
	if (WARN_ON(&target->list == &ring->request_list))
687 688
		return -ENOSPC;

689
	ret = i915_wait_request(target);
690 691 692
	if (ret)
		return ret;

693 694
	ringbuf->space = space;
	return 0;
695 696 697 698
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
699
 * @request: Request to advance the logical ringbuffer of.
700 701 702 703 704 705 706
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
static void
707
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
708
{
709
	struct intel_engine_cs *ring = request->ring;
710

711
	intel_logical_ring_advance(request->ringbuf);
712 713 714 715

	if (intel_ring_stopped(ring))
		return;

716
	execlists_context_queue(request);
717 718
}

719
static int logical_ring_wrap_buffer(struct drm_i915_gem_request *req)
720
{
721
	struct intel_ringbuffer *ringbuf = req->ringbuf;
722 723 724
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

725 726 727
	/* Can't wrap if space has already been reserved! */
	WARN_ON(ringbuf->reserved_in_use);

728
	if (ringbuf->space < rem) {
729
		int ret = logical_ring_wait_for_space(req, rem);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

		if (ret)
			return ret;
	}

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);

	return 0;
}

746
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
747
{
748
	struct intel_ringbuffer *ringbuf = req->ringbuf;
749 750
	int ret;

751 752 753 754 755 756 757 758
	/*
	 * Add on the reserved size to the request to make sure that after
	 * the intended commands have been emitted, there is guaranteed to
	 * still be enough free space to send them to the hardware.
	 */
	if (!ringbuf->reserved_in_use)
		bytes += ringbuf->reserved_size;

759
	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
760
		ret = logical_ring_wrap_buffer(req);
761 762
		if (unlikely(ret))
			return ret;
763 764 765 766 767 768 769

		if(ringbuf->reserved_size) {
			uint32_t size = ringbuf->reserved_size;

			intel_ring_reserved_space_cancel(ringbuf);
			intel_ring_reserved_space_reserve(ringbuf, size);
		}
770 771 772
	}

	if (unlikely(ringbuf->space < bytes)) {
773
		ret = logical_ring_wait_for_space(req, bytes);
774 775 776 777 778 779 780 781 782 783
		if (unlikely(ret))
			return ret;
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
784
 * @request: The request to start some new work for
785
 * @ctx: Logical ring context whose ringbuffer is being prepared.
786 787 788 789 790 791 792 793 794
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
795 796
static int intel_logical_ring_begin(struct drm_i915_gem_request *req,
				    int num_dwords)
797
{
798
	struct drm_i915_private *dev_priv;
799 800
	int ret;

801 802 803
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

804 805 806 807 808
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

809
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
810 811 812
	if (ret)
		return ret;

813
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
814 815 816
	return 0;
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

832 833 834 835 836 837 838 839 840 841
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
842
 * @dispatch_flags: translated execbuffer call flags.
843 844 845 846 847 848
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
849
int intel_execlists_submission(struct i915_execbuffer_params *params,
850
			       struct drm_i915_gem_execbuffer2 *args,
851
			       struct list_head *vmas)
852
{
853 854
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
855
	struct drm_i915_private *dev_priv = dev->dev_private;
856 857
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
		return -EINVAL;
	} else {
		if (args->DR4 == 0xffffffff) {
			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
			args->DR4 = 0;
		}

		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
			return -EINVAL;
		}
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

908
	ret = execlists_move_to_gpu(params->request, vmas);
909 910 911 912 913
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
914
		ret = intel_logical_ring_begin(params->request, 4);
915 916 917 918 919 920 921 922 923 924 925 926
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
		intel_logical_ring_emit(ringbuf, INSTPM);
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

927 928 929
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

930
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
931 932 933
	if (ret)
		return ret;

934
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
935

936
	i915_gem_execbuffer_move_to_active(vmas, params->request);
937
	i915_gem_execbuffer_retire_commands(params);
938

939 940 941
	return 0;
}

942 943
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
944
	struct drm_i915_gem_request *req, *tmp;
945 946 947 948 949 950 951
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
952
	spin_lock_irq(&ring->execlist_lock);
953
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
954
	spin_unlock_irq(&ring->execlist_lock);
955 956

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
957
		struct intel_context *ctx = req->ctx;
958 959 960 961 962
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
			intel_lr_context_unpin(ring, ctx);
963
		list_del(&req->execlist_link);
964
		i915_gem_request_unreference(req);
965 966 967
	}
}

968 969
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
988 989
}

990
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
991
{
992
	struct intel_engine_cs *ring = req->ring;
993 994 995 996 997
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

998
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
999 1000 1001 1002 1003 1004 1005
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

1006 1007 1008 1009
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1010
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1011 1012 1013
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1014
	if (ctx->engine[ring->id].pin_count++ == 0) {
1015 1016 1017
		ret = i915_gem_obj_ggtt_pin(ctx_obj,
				GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret)
1018
			goto reset_pin_count;
1019 1020 1021 1022

		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
		if (ret)
			goto unpin_ctx_obj;
1023 1024
	}

1025 1026 1027 1028
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1029 1030
reset_pin_count:
	ctx->engine[ring->id].pin_count = 0;
1031

1032 1033 1034 1035 1036 1037 1038
	return ret;
}

void intel_lr_context_unpin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1039
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1040 1041 1042

	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1043
		if (--ctx->engine[ring->id].pin_count == 0) {
1044
			intel_unpin_ringbuffer_obj(ringbuf);
1045
			i915_gem_object_ggtt_unpin(ctx_obj);
1046
		}
1047 1048 1049
	}
}

1050
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1051 1052
{
	int ret, i;
1053 1054
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1055 1056 1057 1058
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1059
	if (WARN_ON_ONCE(w->count == 0))
1060 1061 1062
		return 0;

	ring->gpu_caches_dirty = true;
1063
	ret = logical_ring_flush_all_caches(req);
1064 1065 1066
	if (ret)
		return ret;

1067
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1081
	ret = logical_ring_flush_all_caches(req);
1082 1083 1084 1085 1086 1087
	if (ret)
		return ret;

	return 0;
}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
#define wa_ctx_emit(batch, cmd)						\
	do {								\
		if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) {	\
			return -ENOSPC;					\
		}							\
		batch[index++] = (cmd);					\
	} while (0)

static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1134
 *
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1148
	uint32_t scratch_addr;
1149 1150
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1151 1152
	/* WaDisableCtxRestoreArbitration:bdw,chv */
	wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
		struct drm_i915_private *dev_priv = to_i915(ring->dev);
		uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
					 GEN8_LQSC_FLUSH_COHERENT_LINES);

		wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
		wa_ctx_emit(batch, GEN8_L3SQCREG4);
		wa_ctx_emit(batch, l3sqc4_flush);

		wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
				    PIPE_CONTROL_DC_FLUSH_ENABLE));
		wa_ctx_emit(batch, 0);
		wa_ctx_emit(batch, 0);
		wa_ctx_emit(batch, 0);
		wa_ctx_emit(batch, 0);

		wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
		wa_ctx_emit(batch, GEN8_L3SQCREG4);
		wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
	}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;

	wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, (PIPE_CONTROL_FLUSH_L3 |
			    PIPE_CONTROL_GLOBAL_GTT_IVB |
			    PIPE_CONTROL_CS_STALL |
			    PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, scratch_addr);
	wa_ctx_emit(batch, 0);
	wa_ctx_emit(batch, 0);
	wa_ctx_emit(batch, 0);

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, MI_NOOP);

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1211
 * @batch: page in which WA are loaded
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1228 1229 1230
	/* WaDisableCtxRestoreArbitration:bdw,chv */
	wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	wa_ctx_emit(batch, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1276 1277 1278 1279 1280 1281
	/* update this when WA for higher Gen are added */
	if (WARN(INTEL_INFO(ring->dev)->gen > 8,
		 "WA batch buffer is not initialized for Gen%d\n",
		 INTEL_INFO(ring->dev)->gen))
		return 0;

1282 1283 1284 1285 1286 1287
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

	page = i915_gem_object_get_page(wa_ctx->obj, 0);
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1322 1323 1324 1325 1326
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1327 1328 1329
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1330 1331 1332 1333
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1334
	ring->next_context_status_buffer = 0;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1362
	return init_workarounds_ring(ring);
1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1376
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1377
			      u64 offset, unsigned dispatch_flags)
1378
{
1379
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1380
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1381 1382
	int ret;

1383
	ret = intel_logical_ring_begin(req, 4);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1397 1398 1399 1400 1401 1402
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1403
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1430
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1431 1432 1433
			   u32 invalidate_domains,
			   u32 unused)
{
1434
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1435 1436 1437 1438 1439 1440
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1441
	ret = intel_logical_ring_begin(request, 4);
1442 1443 1444 1445 1446
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1471
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1472 1473 1474
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1475
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1476 1477
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1478
	bool vf_flush_wa;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

1500 1501 1502 1503 1504 1505 1506
	/*
	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
	 * control.
	 */
	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;

1507
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1508 1509 1510
	if (ret)
		return ret;

1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1541
static int gen8_emit_request(struct drm_i915_gem_request *request)
1542
{
1543
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1544 1545 1546 1547
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1548 1549 1550 1551 1552
	/*
	 * Reserve space for 2 NOOPs at the end of each request to be
	 * used as a workaround for not being allowed to do lite
	 * restore with HEAD==TAIL (WaIdleLiteRestore).
	 */
1553
	ret = intel_logical_ring_begin(request, 8);
1554 1555 1556
	if (ret)
		return ret;

1557
	cmd = MI_STORE_DWORD_IMM_GEN4;
1558 1559 1560 1561 1562 1563 1564
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1565
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1566 1567
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1568
	intel_logical_ring_advance_and_submit(request);
1569

1570 1571 1572 1573 1574 1575 1576 1577
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

1578 1579 1580
	return 0;
}

1581
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1582 1583 1584 1585
{
	struct render_state so;
	int ret;

1586
	ret = i915_gem_render_state_prepare(req->ring, &so);
1587 1588 1589 1590 1591 1592
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1593
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1594
				       I915_DISPATCH_SECURE);
1595 1596 1597
	if (ret)
		goto out;

1598
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1599 1600 1601 1602 1603 1604

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1605
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1606 1607 1608
{
	int ret;

1609
	ret = intel_logical_ring_workarounds_emit(req);
1610 1611 1612
	if (ret)
		return ret;

1613
	return intel_lr_context_render_state_init(req);
1614 1615
}

1616 1617 1618 1619 1620 1621
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1622 1623
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1624
	struct drm_i915_private *dev_priv;
1625

1626 1627 1628
	if (!intel_ring_initialized(ring))
		return;

1629 1630
	dev_priv = ring->dev->dev_private;

1631 1632
	intel_logical_ring_stop(ring);
	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1633 1634 1635 1636 1637

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1638
	i915_gem_batch_pool_fini(&ring->batch_pool);
1639 1640 1641 1642 1643

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1644 1645

	lrc_destroy_wa_ctx_obj(ring);
1646 1647 1648 1649
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1650 1651 1652 1653 1654 1655 1656 1657
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1658
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1659 1660
	init_waitqueue_head(&ring->irq_queue);

1661
	INIT_LIST_HEAD(&ring->execlist_queue);
1662
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1663 1664
	spin_lock_init(&ring->execlist_lock);

1665 1666 1667 1668
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

1669 1670 1671
	ret = intel_lr_context_deferred_create(ring->default_context, ring);

	return ret;
1672 1673 1674 1675 1676 1677
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1678
	int ret;
1679 1680 1681 1682 1683 1684

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1685 1686 1687 1688
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1689

1690 1691 1692 1693
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
1694
	ring->init_context = gen8_init_rcs_context;
1695
	ring->cleanup = intel_fini_pipe_control;
1696 1697
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1698
	ring->emit_request = gen8_emit_request;
1699
	ring->emit_flush = gen8_emit_flush_render;
1700 1701
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1702
	ring->emit_bb_start = gen8_emit_bb_start;
1703

1704
	ring->dev = dev;
1705 1706

	ret = intel_init_pipe_control(ring);
1707 1708 1709
	if (ret)
		return ret;

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1721 1722
	ret = logical_ring_init(dev, ring);
	if (ret) {
1723
		lrc_destroy_wa_ctx_obj(ring);
1724
	}
1725 1726

	return ret;
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1739 1740
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1741

1742
	ring->init_hw = gen8_init_common_ring;
1743 1744
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1745
	ring->emit_request = gen8_emit_request;
1746
	ring->emit_flush = gen8_emit_flush;
1747 1748
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1749
	ring->emit_bb_start = gen8_emit_bb_start;
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1764 1765
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1766

1767
	ring->init_hw = gen8_init_common_ring;
1768 1769
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1770
	ring->emit_request = gen8_emit_request;
1771
	ring->emit_flush = gen8_emit_flush;
1772 1773
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1774
	ring->emit_bb_start = gen8_emit_bb_start;
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1789 1790
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1791

1792
	ring->init_hw = gen8_init_common_ring;
1793 1794
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1795
	ring->emit_request = gen8_emit_request;
1796
	ring->emit_flush = gen8_emit_flush;
1797 1798
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1799
	ring->emit_bb_start = gen8_emit_bb_start;
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1814 1815
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1816

1817
	ring->init_hw = gen8_init_common_ring;
1818 1819
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1820
	ring->emit_request = gen8_emit_request;
1821
	ring->emit_flush = gen8_emit_flush;
1822 1823
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1824
	ring->emit_bb_start = gen8_emit_bb_start;
1825

1826 1827 1828
	return logical_ring_init(dev, ring);
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1935 1936 1937 1938
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
1939 1940
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1941
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1942 1943 1944 1945
	struct page *page;
	uint32_t *reg_state;
	int ret;

1946 1947 1948
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
1980 1981
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1982 1983 1984 1985 1986
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1987 1988 1989
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2040 2041 2042

	/* With dynamic page allocation, PDPs may not be allocated at this point,
	 * Point the unallocated PDPs to the scratch page
2043 2044 2045 2046 2047
	 */
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2048 2049
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2050 2051
		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2063 2064 2065 2066 2067 2068 2069 2070
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2071 2072
void intel_lr_context_free(struct intel_context *ctx)
{
2073 2074 2075 2076
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2077

2078
		if (ctx_obj) {
2079 2080 2081 2082
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

2083 2084 2085 2086
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
2087
			WARN_ON(ctx->engine[ring->id].pin_count);
2088 2089
			intel_destroy_ringbuffer_obj(ringbuf);
			kfree(ringbuf);
2090 2091 2092 2093 2094 2095 2096 2097 2098
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

2099
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2100 2101 2102

	switch (ring->id) {
	case RCS:
2103 2104 2105 2106
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2117 2118
}

2119
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	/* The status page is offset 0 from the default context object
	 * in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
	ring->status_page.page_addr =
			kmap(sg_page(default_ctx_obj->pages->sgl));
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/**
 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2147
 * Return: non-zero on error.
2148
 */
2149 2150 2151
int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
2152
	const bool is_global_default_ctx = (ctx == ring->default_context);
2153 2154 2155
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2156
	struct intel_ringbuffer *ringbuf;
2157 2158
	int ret;

2159
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2160
	WARN_ON(ctx->engine[ring->id].state);
2161

2162 2163
	context_size = round_up(get_lr_context_size(ring), 4096);

2164
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2165 2166 2167
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2168 2169
	}

2170 2171 2172 2173 2174 2175 2176 2177
	if (is_global_default_ctx) {
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret) {
			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
					ret);
			drm_gem_object_unreference(&ctx_obj->base);
			return ret;
		}
2178 2179
	}

2180 2181 2182 2183 2184
	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
	if (!ringbuf) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				ring->name);
		ret = -ENOMEM;
2185
		goto error_unpin_ctx;
2186 2187
	}

2188
	ringbuf->ring = ring;
2189

2190 2191 2192 2193 2194
	ringbuf->size = 32 * PAGE_SIZE;
	ringbuf->effective_size = ringbuf->size;
	ringbuf->head = 0;
	ringbuf->tail = 0;
	ringbuf->last_retired_head = -1;
2195
	intel_ring_update_space(ringbuf);
2196

2197 2198 2199 2200 2201
	if (ringbuf->obj == NULL) {
		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
		if (ret) {
			DRM_DEBUG_DRIVER(
				"Failed to allocate ringbuffer obj %s: %d\n",
2202
				ring->name, ret);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
			goto error_free_rbuf;
		}

		if (is_global_default_ctx) {
			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
			if (ret) {
				DRM_ERROR(
					"Failed to pin and map ringbuffer %s: %d\n",
					ring->name, ret);
				goto error_destroy_rbuf;
			}
		}

2216 2217 2218 2219 2220 2221
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		goto error;
2222 2223 2224
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2225
	ctx->engine[ring->id].state = ctx_obj;
2226

2227 2228
	if (ctx == ring->default_context)
		lrc_setup_hardware_status_page(ring, ctx_obj);
2229
	else if (ring->id == RCS && !ctx->rcs_initialized) {
2230
		if (ring->init_context) {
2231 2232 2233 2234 2235 2236
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ctx, &req);
			if (ret)
				return ret;

2237
			ret = ring->init_context(req);
2238
			if (ret) {
2239
				DRM_ERROR("ring init context: %d\n", ret);
2240
				i915_gem_request_cancel(req);
2241 2242 2243 2244
				ctx->engine[ring->id].ringbuf = NULL;
				ctx->engine[ring->id].state = NULL;
				goto error;
			}
2245

2246
			i915_add_request_no_flush(req);
2247 2248
		}

2249 2250 2251
		ctx->rcs_initialized = true;
	}

2252
	return 0;
2253 2254

error:
2255 2256 2257 2258 2259
	if (is_global_default_ctx)
		intel_unpin_ringbuffer_obj(ringbuf);
error_destroy_rbuf:
	intel_destroy_ringbuffer_obj(ringbuf);
error_free_rbuf:
2260
	kfree(ringbuf);
2261
error_unpin_ctx:
2262 2263
	if (is_global_default_ctx)
		i915_gem_object_ggtt_unpin(ctx_obj);
2264 2265
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
2266
}
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
		page = i915_gem_object_get_page(ctx_obj, 1);
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}