intel_lrc.c 58.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138

139
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 141 142
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

186 187 188 189 190
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
191 192

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193
	const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 195 196 197 198 199
		ppgtt->pdp.page_directory[n]->daddr : \
		ppgtt->scratch_pd->daddr; \
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
enum {
	ADVANCED_CONTEXT = 0,
	LEGACY_CONTEXT,
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
#define GEN8_CTX_MODE_SHIFT 3
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32

215 216 217
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx);

218 219 220 221 222 223
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
224
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
225 226 227
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
228 229
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
230 231
	WARN_ON(i915.enable_ppgtt == -1);

232 233 234
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

235 236 237
	if (enable_execlists == 0)
		return 0;

238 239
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
240 241 242 243
		return 1;

	return 0;
}
244

245 246 247 248 249 250 251 252 253 254 255 256
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
257 258 259 260 261 262 263 264 265
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

266 267
static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
					 struct drm_i915_gem_object *ctx_obj)
268
{
269
	struct drm_device *dev = ring->dev;
270 271
	uint64_t desc;
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272 273

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274 275 276

	desc = GEN8_CTX_VALID;
	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277 278
	if (IS_GEN8(ctx_obj->base.dev))
		desc |= GEN8_CTX_L3LLC_COHERENT;
279 280 281 282 283 284 285 286
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

287 288 289 290 291 292 293
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	if (IS_GEN9(dev) &&
	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
	    (ring->id == BCS || ring->id == VCS ||
	    ring->id == VECS || ring->id == VCS2))
		desc |= GEN8_CTX_FORCE_RESTORE;

294 295 296 297 298 299 300
	return desc;
}

static void execlists_elsp_write(struct intel_engine_cs *ring,
				 struct drm_i915_gem_object *ctx_obj0,
				 struct drm_i915_gem_object *ctx_obj1)
{
301 302
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
303 304 305 306 307
	uint64_t temp = 0;
	uint32_t desc[4];

	/* XXX: You must always write both descriptors in the order below. */
	if (ctx_obj1)
308
		temp = execlists_ctx_descriptor(ring, ctx_obj1);
309 310 311 312 313
	else
		temp = 0;
	desc[1] = (u32)(temp >> 32);
	desc[0] = (u32)temp;

314
	temp = execlists_ctx_descriptor(ring, ctx_obj0);
315 316 317
	desc[3] = (u32)(temp >> 32);
	desc[2] = (u32)temp;

318 319 320 321 322
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
	I915_WRITE_FW(RING_ELSP(ring), desc[1]);
	I915_WRITE_FW(RING_ELSP(ring), desc[0]);
	I915_WRITE_FW(RING_ELSP(ring), desc[3]);
323

324
	/* The context is automatically loaded after the following */
325
	I915_WRITE_FW(RING_ELSP(ring), desc[2]);
326 327

	/* ELSP is a wo register, so use another nearby reg for posting instead */
328 329 330
	POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
331 332
}

333 334
static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
				    struct drm_i915_gem_object *ring_obj,
335
				    struct i915_hw_ppgtt *ppgtt,
336
				    u32 tail)
337 338 339 340 341 342 343 344
{
	struct page *page;
	uint32_t *reg_state;

	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	reg_state[CTX_RING_TAIL+1] = tail;
345
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
346

347 348 349 350 351 352 353 354 355 356
	/* True PPGTT with dynamic page allocation: update PDP registers and
	 * point the unallocated PDPs to the scratch page
	 */
	if (ppgtt) {
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

357 358 359 360 361
	kunmap_atomic(reg_state);

	return 0;
}

362 363 364
static void execlists_submit_contexts(struct intel_engine_cs *ring,
				      struct intel_context *to0, u32 tail0,
				      struct intel_context *to1, u32 tail1)
365
{
366 367
	struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
368
	struct drm_i915_gem_object *ctx_obj1 = NULL;
369
	struct intel_ringbuffer *ringbuf1 = NULL;
370 371

	BUG_ON(!ctx_obj0);
372
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
373
	WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
374

375
	execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
376

377
	if (to1) {
378
		ringbuf1 = to1->engine[ring->id].ringbuf;
379 380
		ctx_obj1 = to1->engine[ring->id].state;
		BUG_ON(!ctx_obj1);
381
		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
382
		WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
383

384
		execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
385 386 387 388 389
	}

	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
}

390 391
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
392 393
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
394 395

	assert_spin_locked(&ring->execlist_lock);
396 397 398 399 400 401 402 403 404

	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
405
		} else if (req0->ctx == cursor->ctx) {
406 407
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
408
			cursor->elsp_submitted = req0->elsp_submitted;
409
			list_del(&req0->execlist_link);
410 411
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
412 413 414 415 416 417 418
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
		if (req0 && req0->elsp_submitted) {
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

439 440
	WARN_ON(req1 && req1->elsp_submitted);

441 442 443
	execlists_submit_contexts(ring, req0->ctx, req0->tail,
				  req1 ? req1->ctx : NULL,
				  req1 ? req1->tail : 0);
444 445 446 447

	req0->elsp_submitted++;
	if (req1)
		req1->elsp_submitted++;
448 449
}

450 451 452
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
453
	struct drm_i915_gem_request *head_req;
454 455 456 457

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
458
					    struct drm_i915_gem_request,
459 460 461 462
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
463
				head_req->ctx->engine[ring->id].state;
464
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
465 466 467 468 469
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
470 471
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
472 473
				return true;
			}
474 475 476 477 478 479
		}
	}

	return false;
}

480
/**
481
 * intel_lrc_irq_handler() - handle Context Switch interrupts
482 483 484 485 486
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
487
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
	u32 status;
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
	write_pointer = status_pointer & 0x07;
	if (read_pointer > write_pointer)
		write_pointer += 6;

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8);
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8 + 4);

513 514 515 516 517 518 519 520 521 522
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

	if (submit_contexts != 0)
		execlists_context_unqueue(ring);

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
	ring->next_context_status_buffer = write_pointer % 6;

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
}

540 541
static int execlists_context_queue(struct intel_engine_cs *ring,
				   struct intel_context *to,
542 543
				   u32 tail,
				   struct drm_i915_gem_request *request)
544
{
545
	struct drm_i915_gem_request *cursor;
546
	int num_elements = 0;
547

548 549 550
	if (to != ring->default_context)
		intel_lr_context_pin(ring, to);

551 552 553 554 555 556 557 558 559
	if (!request) {
		/*
		 * If there isn't a request associated with this submission,
		 * create one as a temporary holder.
		 */
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
		request->ring = ring;
560
		request->ctx = to;
561 562
		kref_init(&request->ref);
		i915_gem_context_reference(request->ctx);
563
	} else {
564
		i915_gem_request_reference(request);
565
		WARN_ON(to != request->ctx);
566
	}
567
	request->tail = tail;
568

569
	spin_lock_irq(&ring->execlist_lock);
570

571 572 573 574 575
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
576
		struct drm_i915_gem_request *tail_req;
577 578

		tail_req = list_last_entry(&ring->execlist_queue,
579
					   struct drm_i915_gem_request,
580 581
					   execlist_link);

582
		if (to == tail_req->ctx) {
583
			WARN(tail_req->elsp_submitted != 0,
584
				"More than 2 already-submitted reqs queued\n");
585
			list_del(&tail_req->execlist_link);
586 587
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
588 589 590
		}
	}

591
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
592
	if (num_elements == 0)
593 594
		execlists_context_unqueue(ring);

595
	spin_unlock_irq(&ring->execlist_lock);
596 597 598 599

	return 0;
}

600 601
static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
					      struct intel_context *ctx)
602 603 604 605 606 607 608 609 610
{
	struct intel_engine_cs *ring = ringbuf->ring;
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

611 612
	ret = ring->emit_flush(ringbuf, ctx,
			       I915_GEM_GPU_DOMAINS, flush_domains);
613 614 615 616 617 618 619 620
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
621
				 struct intel_context *ctx,
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
				 struct list_head *vmas)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

		ret = i915_gem_object_sync(obj, ring);
		if (ret)
			return ret;

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
649
	return logical_ring_invalidate_all_caches(ringbuf, ctx);
650 651
}

652 653
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
					    struct intel_context *ctx)
654 655 656
{
	int ret;

657 658 659
	if (ctx != request->ring->default_context) {
		ret = intel_lr_context_pin(request->ring, ctx);
		if (ret)
660 661 662
			return ret;
	}

663 664
	request->ringbuf = ctx->engine[request->ring->id].ringbuf;
	request->ctx     = ctx;
665 666 667 668 669
	i915_gem_context_reference(request->ctx);

	return 0;
}

670 671 672
static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
				       struct intel_context *ctx,
				       int bytes)
673 674 675
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_i915_gem_request *request;
676
	int ret, new_space;
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

	list_for_each_entry(request, &ring->request_list, list) {
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
		struct intel_context *ctx = request->ctx;
		if (ctx->engine[ring->id].ringbuf != ringbuf)
			continue;

		/* Would completion of this request free enough space? */
692 693 694
		new_space = __intel_ring_space(request->postfix, ringbuf->tail,
				       ringbuf->size);
		if (new_space >= bytes)
695 696 697
			break;
	}

698
	if (WARN_ON(&request->list == &ring->request_list))
699 700 701 702 703 704 705 706
		return -ENOSPC;

	ret = i915_wait_request(request);
	if (ret)
		return ret;

	i915_gem_retire_requests_ring(ring);

707 708
	WARN_ON(intel_ring_space(ringbuf) < new_space);

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
 * @ringbuf: Logical Ringbuffer to advance.
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
static void
intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
				      struct intel_context *ctx,
				      struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *ring = ringbuf->ring;

	intel_logical_ring_advance(ringbuf);

	if (intel_ring_stopped(ring))
		return;

	execlists_context_queue(ring, ctx, ringbuf->tail, request);
}

static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
				    struct intel_context *ctx)
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	if (ringbuf->space < rem) {
		int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);

		if (ret)
			return ret;
	}

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);

	return 0;
}

static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
				struct intel_context *ctx, int bytes)
{
	int ret;

	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
		ret = logical_ring_wrap_buffer(ringbuf, ctx);
		if (unlikely(ret))
			return ret;
	}

	if (unlikely(ringbuf->space < bytes)) {
		ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
		if (unlikely(ret))
			return ret;
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
 * @ringbuf: Logical ringbuffer.
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
				    struct intel_context *ctx, int num_dwords)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

	ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
	if (ret)
		return ret;

	/* Preallocate the olr before touching the ring */
811
	ret = i915_gem_request_alloc(ring, ctx);
812 813 814 815 816 817 818
	if (ret)
		return ret;

	ringbuf->space -= num_dwords * sizeof(uint32_t);
	return 0;
}

819 820 821 822 823 824 825 826 827 828
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
829
 * @dispatch_flags: translated execbuffer call flags.
830 831 832 833 834 835
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
836 837 838 839 840 841
int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
			       struct intel_engine_cs *ring,
			       struct intel_context *ctx,
			       struct drm_i915_gem_execbuffer2 *args,
			       struct list_head *vmas,
			       struct drm_i915_gem_object *batch_obj,
842
			       u64 exec_start, u32 dispatch_flags)
843
{
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
		return -EINVAL;
	} else {
		if (args->DR4 == 0xffffffff) {
			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
			args->DR4 = 0;
		}

		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
			return -EINVAL;
		}
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

896
	ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
897 898 899 900 901
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
902
		ret = intel_logical_ring_begin(ringbuf, ctx, 4);
903 904 905 906 907 908 909 910 911 912 913 914
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
		intel_logical_ring_emit(ringbuf, INSTPM);
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

915
	ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
916 917 918
	if (ret)
		return ret;

919 920
	trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);

921 922 923
	i915_gem_execbuffer_move_to_active(vmas, ring);
	i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);

924 925 926
	return 0;
}

927 928
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
929
	struct drm_i915_gem_request *req, *tmp;
930 931 932 933 934 935 936
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
937
	spin_lock_irq(&ring->execlist_lock);
938
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
939
	spin_unlock_irq(&ring->execlist_lock);
940 941

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
942
		struct intel_context *ctx = req->ctx;
943 944 945 946 947
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
			intel_lr_context_unpin(ring, ctx);
948
		list_del(&req->execlist_link);
949
		i915_gem_request_unreference(req);
950 951 952
	}
}

953 954
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
973 974
}

975 976
int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
				  struct intel_context *ctx)
977 978 979 980 981 982 983
{
	struct intel_engine_cs *ring = ringbuf->ring;
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

984
	ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
985 986 987 988 989 990 991
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

992 993 994 995
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
996
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
997 998 999
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1000
	if (ctx->engine[ring->id].pin_count++ == 0) {
1001 1002 1003
		ret = i915_gem_obj_ggtt_pin(ctx_obj,
				GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret)
1004
			goto reset_pin_count;
1005 1006 1007 1008

		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
		if (ret)
			goto unpin_ctx_obj;
1009 1010
	}

1011 1012 1013 1014
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1015 1016
reset_pin_count:
	ctx->engine[ring->id].pin_count = 0;
1017

1018 1019 1020 1021 1022 1023 1024
	return ret;
}

void intel_lr_context_unpin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1025
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1026 1027 1028

	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1029
		if (--ctx->engine[ring->id].pin_count == 0) {
1030
			intel_unpin_ringbuffer_obj(ringbuf);
1031
			i915_gem_object_ggtt_unpin(ctx_obj);
1032
		}
1033 1034 1035
	}
}

1036 1037 1038 1039 1040 1041 1042 1043 1044
static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
					       struct intel_context *ctx)
{
	int ret, i;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1045
	if (WARN_ON_ONCE(w->count == 0))
1046 1047 1048
		return 0;

	ring->gpu_caches_dirty = true;
1049
	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1050 1051 1052
	if (ret)
		return ret;

1053
	ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1067
	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1068 1069 1070 1071 1072 1073
	if (ret)
		return ret;

	return 0;
}

1074 1075 1076 1077 1078
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1079 1080 1081
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1082 1083 1084 1085
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1086
	ring->next_context_status_buffer = 0;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1114
	return init_workarounds_ring(ring);
1115 1116
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1128
static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1129
			      struct intel_context *ctx,
1130
			      u64 offset, unsigned dispatch_flags)
1131
{
1132
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1133 1134
	int ret;

1135
	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1149 1150 1151 1152 1153 1154
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1155
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1182
static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1183
			   struct intel_context *ctx,
1184 1185 1186 1187 1188 1189 1190 1191 1192
			   u32 invalidate_domains,
			   u32 unused)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1193
	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1194 1195 1196 1197 1198
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1224
				  struct intel_context *ctx,
1225 1226 1227 1228 1229
				  u32 invalidate_domains,
				  u32 flush_domains)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1230
	bool vf_flush_wa;
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

1252 1253 1254 1255 1256 1257 1258 1259
	/*
	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
	 * control.
	 */
	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;

	ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1260 1261 1262
	if (ret)
		return ret;

1263 1264 1265 1266 1267 1268 1269 1270 1271
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1293 1294
static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
			     struct drm_i915_gem_request *request)
1295 1296 1297 1298 1299
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1300 1301 1302 1303 1304 1305
	/*
	 * Reserve space for 2 NOOPs at the end of each request to be
	 * used as a workaround for not being allowed to do lite
	 * restore with HEAD==TAIL (WaIdleLiteRestore).
	 */
	ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1306 1307 1308
	if (ret)
		return ret;

1309
	cmd = MI_STORE_DWORD_IMM_GEN4;
1310 1311 1312 1313 1314 1315 1316
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1317 1318
	intel_logical_ring_emit(ringbuf,
		i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1319 1320
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1321
	intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1322

1323 1324 1325 1326 1327 1328 1329 1330
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

1331 1332 1333
	return 0;
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
					      struct intel_context *ctx)
{
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	struct render_state so;
	struct drm_i915_file_private *file_priv = ctx->file_priv;
	struct drm_file *file = file_priv ? file_priv->file : NULL;
	int ret;

	ret = i915_gem_render_state_prepare(ring, &so);
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

	ret = ring->emit_bb_start(ringbuf,
			ctx,
			so.ggtt_offset,
			I915_DISPATCH_SECURE);
	if (ret)
		goto out;

	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);

	ret = __i915_add_request(ring, file, so.obj);
	/* intel_logical_ring_add_request moves object to inactive if it
	 * fails */
out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static int gen8_init_rcs_context(struct intel_engine_cs *ring,
		       struct intel_context *ctx)
{
	int ret;

	ret = intel_logical_ring_workarounds_emit(ring, ctx);
	if (ret)
		return ret;

	return intel_lr_context_render_state_init(ring, ctx);
}

1379 1380 1381 1382 1383 1384
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1385 1386
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1387
	struct drm_i915_private *dev_priv;
1388

1389 1390 1391
	if (!intel_ring_initialized(ring))
		return;

1392 1393
	dev_priv = ring->dev->dev_private;

1394 1395
	intel_logical_ring_stop(ring);
	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1396
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1397 1398 1399 1400 1401

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1402
	i915_gem_batch_pool_fini(&ring->batch_pool);
1403 1404 1405 1406 1407

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1408 1409 1410 1411
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1412 1413 1414 1415 1416 1417 1418 1419
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1420
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1421 1422
	init_waitqueue_head(&ring->irq_queue);

1423
	INIT_LIST_HEAD(&ring->execlist_queue);
1424
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1425 1426
	spin_lock_init(&ring->execlist_lock);

1427 1428 1429 1430
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

1431 1432 1433
	ret = intel_lr_context_deferred_create(ring->default_context, ring);

	return ret;
1434 1435 1436 1437 1438 1439
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1440
	int ret;
1441 1442 1443 1444 1445 1446

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1447 1448 1449 1450
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1451

1452 1453 1454 1455
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
1456
	ring->init_context = gen8_init_rcs_context;
1457
	ring->cleanup = intel_fini_pipe_control;
1458 1459
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1460
	ring->emit_request = gen8_emit_request;
1461
	ring->emit_flush = gen8_emit_flush_render;
1462 1463
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1464
	ring->emit_bb_start = gen8_emit_bb_start;
1465

1466 1467 1468 1469 1470 1471
	ring->dev = dev;
	ret = logical_ring_init(dev, ring);
	if (ret)
		return ret;

	return intel_init_pipe_control(ring);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1484 1485
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1486

1487
	ring->init_hw = gen8_init_common_ring;
1488 1489
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1490
	ring->emit_request = gen8_emit_request;
1491
	ring->emit_flush = gen8_emit_flush;
1492 1493
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1494
	ring->emit_bb_start = gen8_emit_bb_start;
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1509 1510
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1511

1512
	ring->init_hw = gen8_init_common_ring;
1513 1514
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1515
	ring->emit_request = gen8_emit_request;
1516
	ring->emit_flush = gen8_emit_flush;
1517 1518
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1519
	ring->emit_bb_start = gen8_emit_bb_start;
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1534 1535
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1536

1537
	ring->init_hw = gen8_init_common_ring;
1538 1539
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1540
	ring->emit_request = gen8_emit_request;
1541
	ring->emit_flush = gen8_emit_flush;
1542 1543
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1544
	ring->emit_bb_start = gen8_emit_bb_start;
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1559 1560
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1561

1562
	ring->init_hw = gen8_init_common_ring;
1563 1564
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1565
	ring->emit_request = gen8_emit_request;
1566
	ring->emit_flush = gen8_emit_flush;
1567 1568
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1569
	ring->emit_bb_start = gen8_emit_bb_start;
1570

1571 1572 1573
	return logical_ring_init(dev, ring);
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1680 1681 1682 1683
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
1684 1685
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1686
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1687 1688 1689 1690
	struct page *page;
	uint32_t *reg_state;
	int ret;

1691 1692 1693
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
1725 1726
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1727 1728 1729 1730 1731
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1732 1733 1734
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		/* TODO: according to BSpec, the register state context
		 * for CHV does not have these. OTOH, these registers do
		 * exist in CHV. I'm waiting for a clarification */
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1773 1774 1775

	/* With dynamic page allocation, PDPs may not be allocated at this point,
	 * Point the unallocated PDPs to the scratch page
1776 1777 1778 1779 1780
	 */
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
1781 1782
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1783 1784
		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

1796 1797 1798 1799 1800 1801 1802 1803
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
1804 1805
void intel_lr_context_free(struct intel_context *ctx)
{
1806 1807 1808 1809
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1810

1811
		if (ctx_obj) {
1812 1813 1814 1815
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

1816 1817 1818 1819
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
1820
			WARN_ON(ctx->engine[ring->id].pin_count);
1821 1822
			intel_destroy_ringbuffer_obj(ringbuf);
			kfree(ringbuf);
1823 1824 1825 1826 1827 1828 1829 1830 1831
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

1832
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1833 1834 1835

	switch (ring->id) {
	case RCS:
1836 1837 1838 1839
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1850 1851
}

1852
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	/* The status page is offset 0 from the default context object
	 * in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
	ring->status_page.page_addr =
			kmap(sg_page(default_ctx_obj->pages->sgl));
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
/**
 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
1880
 * Return: non-zero on error.
1881
 */
1882 1883 1884
int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
1885
	const bool is_global_default_ctx = (ctx == ring->default_context);
1886 1887 1888
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
1889
	struct intel_ringbuffer *ringbuf;
1890 1891
	int ret;

1892
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1893
	WARN_ON(ctx->engine[ring->id].state);
1894

1895 1896
	context_size = round_up(get_lr_context_size(ring), 4096);

1897
	ctx_obj = i915_gem_alloc_object(dev, context_size);
1898 1899 1900 1901 1902 1903
	if (IS_ERR(ctx_obj)) {
		ret = PTR_ERR(ctx_obj);
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
		return ret;
	}

1904 1905 1906 1907 1908 1909 1910 1911
	if (is_global_default_ctx) {
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret) {
			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
					ret);
			drm_gem_object_unreference(&ctx_obj->base);
			return ret;
		}
1912 1913
	}

1914 1915 1916 1917 1918
	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
	if (!ringbuf) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				ring->name);
		ret = -ENOMEM;
1919
		goto error_unpin_ctx;
1920 1921
	}

1922
	ringbuf->ring = ring;
1923

1924 1925 1926 1927 1928
	ringbuf->size = 32 * PAGE_SIZE;
	ringbuf->effective_size = ringbuf->size;
	ringbuf->head = 0;
	ringbuf->tail = 0;
	ringbuf->last_retired_head = -1;
1929
	intel_ring_update_space(ringbuf);
1930

1931 1932 1933 1934 1935
	if (ringbuf->obj == NULL) {
		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
		if (ret) {
			DRM_DEBUG_DRIVER(
				"Failed to allocate ringbuffer obj %s: %d\n",
1936
				ring->name, ret);
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
			goto error_free_rbuf;
		}

		if (is_global_default_ctx) {
			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
			if (ret) {
				DRM_ERROR(
					"Failed to pin and map ringbuffer %s: %d\n",
					ring->name, ret);
				goto error_destroy_rbuf;
			}
		}

1950 1951 1952 1953 1954 1955
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		goto error;
1956 1957 1958
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
1959
	ctx->engine[ring->id].state = ctx_obj;
1960

1961 1962
	if (ctx == ring->default_context)
		lrc_setup_hardware_status_page(ring, ctx_obj);
1963
	else if (ring->id == RCS && !ctx->rcs_initialized) {
1964 1965
		if (ring->init_context) {
			ret = ring->init_context(ring, ctx);
1966
			if (ret) {
1967
				DRM_ERROR("ring init context: %d\n", ret);
1968 1969 1970 1971
				ctx->engine[ring->id].ringbuf = NULL;
				ctx->engine[ring->id].state = NULL;
				goto error;
			}
1972 1973
		}

1974 1975 1976
		ctx->rcs_initialized = true;
	}

1977
	return 0;
1978 1979

error:
1980 1981 1982 1983 1984
	if (is_global_default_ctx)
		intel_unpin_ringbuffer_obj(ringbuf);
error_destroy_rbuf:
	intel_destroy_ringbuffer_obj(ringbuf);
error_free_rbuf:
1985
	kfree(ringbuf);
1986
error_unpin_ctx:
1987 1988
	if (is_global_default_ctx)
		i915_gem_object_ggtt_unpin(ctx_obj);
1989 1990
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
1991
}
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
		page = i915_gem_object_get_page(ctx_obj, 1);
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}