intel_lrc.c 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

/*
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
43

44 45 46 47 48
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

#define GEN8_LR_CONTEXT_ALIGN 4096

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#define RING_ELSP(ring)			((ring)->mmio_base+0x230)
#define RING_CONTEXT_CONTROL(ring)	((ring)->mmio_base+0x244)

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

81 82
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
83 84
	WARN_ON(i915.enable_ppgtt == -1);

85 86 87 88 89 90 91 92
	if (enable_execlists == 0)
		return 0;

	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev))
		return 1;

	return 0;
}
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
			       struct intel_engine_cs *ring,
			       struct intel_context *ctx,
			       struct drm_i915_gem_execbuffer2 *args,
			       struct list_head *vmas,
			       struct drm_i915_gem_object *batch_obj,
			       u64 exec_start, u32 flags)
{
	/* TODO */
	return 0;
}

void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
	/* TODO */
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
{
	intel_logical_ring_advance(ringbuf);

	if (intel_ring_stopped(ringbuf->ring))
		return;

	/* TODO: how to submit a context to the ELSP is not here yet */
}

static int logical_ring_alloc_seqno(struct intel_engine_cs *ring)
{
	if (ring->outstanding_lazy_seqno)
		return 0;

	if (ring->preallocated_lazy_request == NULL) {
		struct drm_i915_gem_request *request;

		request = kmalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ring->preallocated_lazy_request = request;
	}

	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
}

static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
				     int bytes)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_i915_gem_request *request;
	u32 seqno = 0;
	int ret;

	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;

		ringbuf->space = intel_ring_space(ringbuf);
		if (ringbuf->space >= bytes)
			return 0;
	}

	list_for_each_entry(request, &ring->request_list, list) {
		if (__intel_ring_space(request->tail, ringbuf->tail,
				       ringbuf->size) >= bytes) {
			seqno = request->seqno;
			break;
		}
	}

	if (seqno == 0)
		return -ENOSPC;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

	/* TODO: make sure we update the right ringbuffer's last_retired_head
	 * when retiring requests */
	i915_gem_retire_requests_ring(ring);
	ringbuf->head = ringbuf->last_retired_head;
	ringbuf->last_retired_head = -1;

	ringbuf->space = intel_ring_space(ringbuf);
	return 0;
}

static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
				       int bytes)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long end;
	int ret;

	ret = logical_ring_wait_request(ringbuf, bytes);
	if (ret != -ENOSPC)
		return ret;

	/* Force the context submission in case we have been skipping it */
	intel_logical_ring_advance_and_submit(ringbuf);

	/* With GEM the hangcheck timer should kick us out of the loop,
	 * leaving it early runs the risk of corrupting GEM state (due
	 * to running on almost untested codepaths). But on resume
	 * timers don't work yet, so prevent a complete hang in that
	 * case by choosing an insanely large timeout. */
	end = jiffies + 60 * HZ;

	do {
		ringbuf->head = I915_READ_HEAD(ring);
		ringbuf->space = intel_ring_space(ringbuf);
		if (ringbuf->space >= bytes) {
			ret = 0;
			break;
		}

		msleep(1);

		if (dev_priv->mm.interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
					   dev_priv->mm.interruptible);
		if (ret)
			break;

		if (time_after(jiffies, end)) {
			ret = -EBUSY;
			break;
		}
	} while (1);

	return ret;
}

static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	if (ringbuf->space < rem) {
		int ret = logical_ring_wait_for_space(ringbuf, rem);

		if (ret)
			return ret;
	}

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	ringbuf->space = intel_ring_space(ringbuf);

	return 0;
}

static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
{
	int ret;

	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
		ret = logical_ring_wrap_buffer(ringbuf);
		if (unlikely(ret))
			return ret;
	}

	if (unlikely(ringbuf->space < bytes)) {
		ret = logical_ring_wait_for_space(ringbuf, bytes);
		if (unlikely(ret))
			return ret;
	}

	return 0;
}

int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

	ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
	if (ret)
		return ret;

	/* Preallocate the olr before touching the ring */
	ret = logical_ring_alloc_seqno(ring);
	if (ret)
		return ret;

	ringbuf->space -= num_dwords * sizeof(uint32_t);
	return 0;
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	ret = intel_init_pipe_control(ring);
	if (ret)
		return ret;

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

	return ret;
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
			   u32 invalidate_domains,
			   u32 unused)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

	ret = intel_logical_ring_begin(ringbuf, 4);
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

	if (ring == &dev_priv->ring[VCS]) {
		if (invalidate_domains & I915_GEM_GPU_DOMAINS)
			cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
				MI_FLUSH_DW_STORE_INDEX |
				MI_FLUSH_DW_OP_STOREDW;
	} else {
		if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
			cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
				MI_FLUSH_DW_OP_STOREDW;
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
				  u32 invalidate_domains,
				  u32 flush_domains)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

	ret = intel_logical_ring_begin(ringbuf, 6);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

423 424 425 426 427 428 429 430 431 432
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

	ret = intel_logical_ring_begin(ringbuf, 6);
	if (ret)
		return ret;

	cmd = MI_STORE_DWORD_IMM_GEN8;
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance_and_submit(ringbuf);

	return 0;
}

459 460
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	if (!intel_ring_initialized(ring))
		return;

	/* TODO: make sure the ring is stopped */
	ring->preallocated_lazy_request = NULL;
	ring->outstanding_lazy_seqno = 0;

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
477 478 479 480
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	int ret;
	struct intel_context *dctx = ring->default_context;
	struct drm_i915_gem_object *dctx_obj;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	init_waitqueue_head(&ring->irq_queue);

	ret = intel_lr_context_deferred_create(dctx, ring);
	if (ret)
		return ret;

	/* The status page is offset 0 from the context object in LRCs. */
	dctx_obj = dctx->engine[ring->id].state;
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj);
	ring->status_page.page_addr = kmap(sg_page(dctx_obj->pages->sgl));
	if (ring->status_page.page_addr == NULL)
		return -ENOMEM;
	ring->status_page.obj = dctx_obj;

	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

	if (ring->init) {
		ret = ring->init(ring);
		if (ret)
			return ret;
	}

515 516 517 518 519 520 521 522 523 524 525 526 527 528
	return 0;
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;

529 530
	ring->init = gen8_init_render_ring;
	ring->cleanup = intel_fini_pipe_control;
531 532
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
533
	ring->emit_request = gen8_emit_request;
534
	ring->emit_flush = gen8_emit_flush_render;
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549
	return logical_ring_init(dev, ring);
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;

550
	ring->init = gen8_init_common_ring;
551 552
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
553
	ring->emit_request = gen8_emit_request;
554
	ring->emit_flush = gen8_emit_flush;
555

556 557 558 559 560 561 562 563 564 565 566 567 568 569
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;

570
	ring->init = gen8_init_common_ring;
571 572
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
573
	ring->emit_request = gen8_emit_request;
574
	ring->emit_flush = gen8_emit_flush;
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;

590
	ring->init = gen8_init_common_ring;
591 592
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
593
	ring->emit_request = gen8_emit_request;
594
	ring->emit_flush = gen8_emit_flush;
595

596 597 598 599 600 601 602 603 604 605 606 607 608 609
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;

610
	ring->init = gen8_init_common_ring;
611 612
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
613
	ring->emit_request = gen8_emit_request;
614
	ring->emit_flush = gen8_emit_flush;
615

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	return logical_ring_init(dev, ring);
}

int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_gem_object *ring_obj = ringbuf->obj;
	struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
	struct page *page;
	uint32_t *reg_state;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
			_MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		/* TODO: according to BSpec, the register state context
		 * for CHV does not have these. OTOH, these registers do
		 * exist in CHV. I'm waiting for a clarification */
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
	reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
	reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
	reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
	reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
	reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
	reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
	reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
	reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
		reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

781 782
void intel_lr_context_free(struct intel_context *ctx)
{
783 784 785 786
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
787 788
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;

789
		if (ctx_obj) {
790 791
			intel_destroy_ringbuffer_obj(ringbuf);
			kfree(ringbuf);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
			i915_gem_object_ggtt_unpin(ctx_obj);
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

	WARN_ON(INTEL_INFO(ring->dev)->gen != 8);

	switch (ring->id) {
	case RCS:
		ret = GEN8_LR_CONTEXT_RENDER_SIZE;
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
817 818 819 820 821
}

int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
822 823 824
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
825
	struct intel_ringbuffer *ringbuf;
826 827
	int ret;

828
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
829 830
	if (ctx->engine[ring->id].state)
		return 0;
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	context_size = round_up(get_lr_context_size(ring), 4096);

	ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
	if (IS_ERR(ctx_obj)) {
		ret = PTR_ERR(ctx_obj);
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
		return ret;
	}

	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
		drm_gem_object_unreference(&ctx_obj->base);
		return ret;
	}

848 849 850 851 852 853 854 855 856 857
	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
	if (!ringbuf) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				ring->name);
		i915_gem_object_ggtt_unpin(ctx_obj);
		drm_gem_object_unreference(&ctx_obj->base);
		ret = -ENOMEM;
		return ret;
	}

858
	ringbuf->ring = ring;
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	ringbuf->size = 32 * PAGE_SIZE;
	ringbuf->effective_size = ringbuf->size;
	ringbuf->head = 0;
	ringbuf->tail = 0;
	ringbuf->space = ringbuf->size;
	ringbuf->last_retired_head = -1;

	/* TODO: For now we put this in the mappable region so that we can reuse
	 * the existing ringbuffer code which ioremaps it. When we start
	 * creating many contexts, this will no longer work and we must switch
	 * to a kmapish interface.
	 */
	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
				ring->name, ret);
875 876 877 878 879 880 881 882
		goto error;
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
883 884 885
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
886
	ctx->engine[ring->id].state = ctx_obj;
887 888

	return 0;
889 890 891 892 893 894

error:
	kfree(ringbuf);
	i915_gem_object_ggtt_unpin(ctx_obj);
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
895
}