intel_lrc.c 58.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138

139
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 141 142
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
enum {
	ADVANCED_CONTEXT = 0,
	LEGACY_CONTEXT,
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
#define GEN8_CTX_MODE_SHIFT 3
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32

206 207 208
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx);

209 210 211 212 213 214
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
215
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
216 217 218
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
219 220
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
221 222
	WARN_ON(i915.enable_ppgtt == -1);

223 224 225
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

226 227 228
	if (enable_execlists == 0)
		return 0;

229 230
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
231 232 233 234
		return 1;

	return 0;
}
235

236 237 238 239 240 241 242 243 244 245 246 247
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
248 249 250 251 252 253 254 255 256
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

257 258
static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
					 struct drm_i915_gem_object *ctx_obj)
259
{
260
	struct drm_device *dev = ring->dev;
261 262
	uint64_t desc;
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263 264

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265 266 267 268 269 270 271 272 273 274 275 276

	desc = GEN8_CTX_VALID;
	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
	desc |= GEN8_CTX_L3LLC_COHERENT;
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

277 278 279 280 281 282 283
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	if (IS_GEN9(dev) &&
	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
	    (ring->id == BCS || ring->id == VCS ||
	    ring->id == VECS || ring->id == VCS2))
		desc |= GEN8_CTX_FORCE_RESTORE;

284 285 286 287 288 289 290
	return desc;
}

static void execlists_elsp_write(struct intel_engine_cs *ring,
				 struct drm_i915_gem_object *ctx_obj0,
				 struct drm_i915_gem_object *ctx_obj1)
{
291 292
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
293 294 295 296 297
	uint64_t temp = 0;
	uint32_t desc[4];

	/* XXX: You must always write both descriptors in the order below. */
	if (ctx_obj1)
298
		temp = execlists_ctx_descriptor(ring, ctx_obj1);
299 300 301 302 303
	else
		temp = 0;
	desc[1] = (u32)(temp >> 32);
	desc[0] = (u32)temp;

304
	temp = execlists_ctx_descriptor(ring, ctx_obj0);
305 306 307
	desc[3] = (u32)(temp >> 32);
	desc[2] = (u32)temp;

308
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309 310 311
	I915_WRITE(RING_ELSP(ring), desc[1]);
	I915_WRITE(RING_ELSP(ring), desc[0]);
	I915_WRITE(RING_ELSP(ring), desc[3]);
312

313 314 315 316 317
	/* The context is automatically loaded after the following */
	I915_WRITE(RING_ELSP(ring), desc[2]);

	/* ELSP is a wo register, so use another nearby reg for posting instead */
	POSTING_READ(RING_EXECLIST_STATUS(ring));
318
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319 320
}

321 322 323
static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
				    struct drm_i915_gem_object *ring_obj,
				    u32 tail)
324 325 326 327 328 329 330 331
{
	struct page *page;
	uint32_t *reg_state;

	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	reg_state[CTX_RING_TAIL+1] = tail;
332
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333 334 335 336 337 338

	kunmap_atomic(reg_state);

	return 0;
}

339 340 341
static void execlists_submit_contexts(struct intel_engine_cs *ring,
				      struct intel_context *to0, u32 tail0,
				      struct intel_context *to1, u32 tail1)
342
{
343 344
	struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345
	struct drm_i915_gem_object *ctx_obj1 = NULL;
346
	struct intel_ringbuffer *ringbuf1 = NULL;
347 348

	BUG_ON(!ctx_obj0);
349
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350
	WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351

352
	execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353

354
	if (to1) {
355
		ringbuf1 = to1->engine[ring->id].ringbuf;
356 357
		ctx_obj1 = to1->engine[ring->id].state;
		BUG_ON(!ctx_obj1);
358
		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359
		WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360

361
		execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362 363 364 365 366
	}

	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
}

367 368
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
369 370
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371 372

	assert_spin_locked(&ring->execlist_lock);
373 374 375 376 377 378 379 380 381

	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
382
		} else if (req0->ctx == cursor->ctx) {
383 384
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
385
			cursor->elsp_submitted = req0->elsp_submitted;
386
			list_del(&req0->execlist_link);
387 388
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
389 390 391 392 393 394 395
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

396 397
	WARN_ON(req1 && req1->elsp_submitted);

398 399 400
	execlists_submit_contexts(ring, req0->ctx, req0->tail,
				  req1 ? req1->ctx : NULL,
				  req1 ? req1->tail : 0);
401 402 403 404

	req0->elsp_submitted++;
	if (req1)
		req1->elsp_submitted++;
405 406
}

407 408 409
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
410
	struct drm_i915_gem_request *head_req;
411 412 413 414

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
415
					    struct drm_i915_gem_request,
416 417 418 419
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
420
				head_req->ctx->engine[ring->id].state;
421
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
422 423 424 425 426
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
427 428
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
429 430
				return true;
			}
431 432 433 434 435 436
		}
	}

	return false;
}

437
/**
438
 * intel_lrc_irq_handler() - handle Context Switch interrupts
439 440 441 442 443
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
444
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
	u32 status;
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
	write_pointer = status_pointer & 0x07;
	if (read_pointer > write_pointer)
		write_pointer += 6;

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8);
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8 + 4);

470 471 472 473 474 475 476 477 478 479
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

	if (submit_contexts != 0)
		execlists_context_unqueue(ring);

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
	ring->next_context_status_buffer = write_pointer % 6;

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
}

497 498
static int execlists_context_queue(struct intel_engine_cs *ring,
				   struct intel_context *to,
499 500
				   u32 tail,
				   struct drm_i915_gem_request *request)
501
{
502
	struct drm_i915_gem_request *cursor;
503
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
504
	unsigned long flags;
505
	int num_elements = 0;
506

507 508 509
	if (to != ring->default_context)
		intel_lr_context_pin(ring, to);

510 511 512 513 514 515 516 517 518 519
	if (!request) {
		/*
		 * If there isn't a request associated with this submission,
		 * create one as a temporary holder.
		 */
		WARN(1, "execlist context submission without request");
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
		request->ring = ring;
520
		request->ctx = to;
521 522
	} else {
		WARN_ON(to != request->ctx);
523
	}
524
	request->tail = tail;
525
	i915_gem_request_reference(request);
526
	i915_gem_context_reference(request->ctx);
527

528
	intel_runtime_pm_get(dev_priv);
529 530 531

	spin_lock_irqsave(&ring->execlist_lock, flags);

532 533 534 535 536
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
537
		struct drm_i915_gem_request *tail_req;
538 539

		tail_req = list_last_entry(&ring->execlist_queue,
540
					   struct drm_i915_gem_request,
541 542
					   execlist_link);

543
		if (to == tail_req->ctx) {
544
			WARN(tail_req->elsp_submitted != 0,
545
				"More than 2 already-submitted reqs queued\n");
546
			list_del(&tail_req->execlist_link);
547 548
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
549 550 551
		}
	}

552
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
553
	if (num_elements == 0)
554 555 556 557 558 559 560
		execlists_context_unqueue(ring);

	spin_unlock_irqrestore(&ring->execlist_lock, flags);

	return 0;
}

561 562
static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
					      struct intel_context *ctx)
563 564 565 566 567 568 569 570 571
{
	struct intel_engine_cs *ring = ringbuf->ring;
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

572 573
	ret = ring->emit_flush(ringbuf, ctx,
			       I915_GEM_GPU_DOMAINS, flush_domains);
574 575 576 577 578 579 580 581
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
582
				 struct intel_context *ctx,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
				 struct list_head *vmas)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

		ret = i915_gem_object_sync(obj, ring);
		if (ret)
			return ret;

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
610
	return logical_ring_invalidate_all_caches(ringbuf, ctx);
611 612
}

613 614 615 616 617 618 619 620 621 622
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
623
 * @dispatch_flags: translated execbuffer call flags.
624 625 626 627 628 629
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
630 631 632 633 634 635
int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
			       struct intel_engine_cs *ring,
			       struct intel_context *ctx,
			       struct drm_i915_gem_execbuffer2 *args,
			       struct list_head *vmas,
			       struct drm_i915_gem_object *batch_obj,
636
			       u64 exec_start, u32 dispatch_flags)
637
{
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
		return -EINVAL;
	} else {
		if (args->DR4 == 0xffffffff) {
			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
			args->DR4 = 0;
		}

		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
			return -EINVAL;
		}
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

690
	ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
691 692 693 694 695
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
696
		ret = intel_logical_ring_begin(ringbuf, ctx, 4);
697 698 699 700 701 702 703 704 705 706 707 708
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
		intel_logical_ring_emit(ringbuf, INSTPM);
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

709
	ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
710 711 712 713 714 715
	if (ret)
		return ret;

	i915_gem_execbuffer_move_to_active(vmas, ring);
	i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);

716 717 718
	return 0;
}

719 720
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
721
	struct drm_i915_gem_request *req, *tmp;
722 723 724 725 726 727 728 729 730 731 732 733 734 735
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	unsigned long flags;
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
	spin_lock_irqsave(&ring->execlist_lock, flags);
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
	spin_unlock_irqrestore(&ring->execlist_lock, flags);

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
736
		struct intel_context *ctx = req->ctx;
737 738 739 740 741
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
			intel_lr_context_unpin(ring, ctx);
742
		intel_runtime_pm_put(dev_priv);
743
		i915_gem_context_unreference(ctx);
744
		list_del(&req->execlist_link);
745
		i915_gem_request_unreference(req);
746 747 748
	}
}

749 750
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
769 770
}

771 772
int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
				  struct intel_context *ctx)
773 774 775 776 777 778 779
{
	struct intel_engine_cs *ring = ringbuf->ring;
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

780
	ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
781 782 783 784 785 786 787
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

788
/*
789 790 791 792 793 794 795 796
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
 * @ringbuf: Logical Ringbuffer to advance.
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
797 798 799 800
static void
intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
				      struct intel_context *ctx,
				      struct drm_i915_gem_request *request)
801
{
802 803
	struct intel_engine_cs *ring = ringbuf->ring;

804 805
	intel_logical_ring_advance(ringbuf);

806
	if (intel_ring_stopped(ring))
807 808
		return;

809
	execlists_context_queue(ring, ctx, ringbuf->tail, request);
810 811
}

812 813 814 815
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
816
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
817 818 819
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
820
	if (ctx->engine[ring->id].pin_count++ == 0) {
821 822 823
		ret = i915_gem_obj_ggtt_pin(ctx_obj,
				GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret)
824
			goto reset_pin_count;
825 826 827 828

		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
		if (ret)
			goto unpin_ctx_obj;
829 830
	}

831 832 833 834
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
835 836
reset_pin_count:
	ctx->engine[ring->id].pin_count = 0;
837

838 839 840 841 842 843 844
	return ret;
}

void intel_lr_context_unpin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
845
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
846 847 848

	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
849
		if (--ctx->engine[ring->id].pin_count == 0) {
850
			intel_unpin_ringbuffer_obj(ringbuf);
851
			i915_gem_object_ggtt_unpin(ctx_obj);
852
		}
853 854 855
	}
}

856 857
static int logical_ring_alloc_request(struct intel_engine_cs *ring,
				      struct intel_context *ctx)
858
{
859
	struct drm_i915_gem_request *request;
860
	struct drm_i915_private *dev_private = ring->dev->dev_private;
861 862
	int ret;

863
	if (ring->outstanding_lazy_request)
864
		return 0;
865

866
	request = kzalloc(sizeof(*request), GFP_KERNEL);
867 868
	if (request == NULL)
		return -ENOMEM;
869

870 871 872 873 874
	if (ctx != ring->default_context) {
		ret = intel_lr_context_pin(ring, ctx);
		if (ret) {
			kfree(request);
			return ret;
875
		}
876
	}
877

878
	kref_init(&request->ref);
879
	request->ring = ring;
880
	request->uniq = dev_private->request_uniq++;
881

882
	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
883 884 885 886
	if (ret) {
		intel_lr_context_unpin(ring, ctx);
		kfree(request);
		return ret;
887 888
	}

889 890 891 892 893 894 895
	/* Hold a reference to the context this request belongs to
	 * (we will need it when the time comes to emit/retire the
	 * request).
	 */
	request->ctx = ctx;
	i915_gem_context_reference(request->ctx);

896
	ring->outstanding_lazy_request = request;
897
	return 0;
898 899 900 901 902 903 904 905 906
}

static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
				     int bytes)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_i915_gem_request *request;
	int ret;

907 908
	if (intel_ring_space(ringbuf) >= bytes)
		return 0;
909 910

	list_for_each_entry(request, &ring->request_list, list) {
911 912 913 914 915 916 917 918 919 920
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
		struct intel_context *ctx = request->ctx;
		if (ctx->engine[ring->id].ringbuf != ringbuf)
			continue;

		/* Would completion of this request free enough space? */
921 922 923 924 925 926
		if (__intel_ring_space(request->tail, ringbuf->tail,
				       ringbuf->size) >= bytes) {
			break;
		}
	}

927
	if (&request->list == &ring->request_list)
928 929
		return -ENOSPC;

930
	ret = i915_wait_request(request);
931 932 933 934 935
	if (ret)
		return ret;

	i915_gem_retire_requests_ring(ring);

936
	return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
937 938 939
}

static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
940
				       struct intel_context *ctx,
941 942 943 944 945 946 947 948 949 950 951 952 953
				       int bytes)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long end;
	int ret;

	ret = logical_ring_wait_request(ringbuf, bytes);
	if (ret != -ENOSPC)
		return ret;

	/* Force the context submission in case we have been skipping it */
954
	intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
955 956 957 958 959 960 961 962

	/* With GEM the hangcheck timer should kick us out of the loop,
	 * leaving it early runs the risk of corrupting GEM state (due
	 * to running on almost untested codepaths). But on resume
	 * timers don't work yet, so prevent a complete hang in that
	 * case by choosing an insanely large timeout. */
	end = jiffies + 60 * HZ;

963
	ret = 0;
964
	do {
965
		if (intel_ring_space(ringbuf) >= bytes)
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
			break;

		msleep(1);

		if (dev_priv->mm.interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
					   dev_priv->mm.interruptible);
		if (ret)
			break;

		if (time_after(jiffies, end)) {
			ret = -EBUSY;
			break;
		}
	} while (1);

	return ret;
}

989 990
static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
				    struct intel_context *ctx)
991 992 993 994 995
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	if (ringbuf->space < rem) {
996
		int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

		if (ret)
			return ret;
	}

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
1008
	intel_ring_update_space(ringbuf);
1009 1010 1011 1012

	return 0;
}

1013 1014
static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
				struct intel_context *ctx, int bytes)
1015 1016 1017 1018
{
	int ret;

	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1019
		ret = logical_ring_wrap_buffer(ringbuf, ctx);
1020 1021 1022 1023 1024
		if (unlikely(ret))
			return ret;
	}

	if (unlikely(ringbuf->space < bytes)) {
1025
		ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1026 1027 1028 1029 1030 1031 1032
		if (unlikely(ret))
			return ret;
	}

	return 0;
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
 * @ringbuf: Logical ringbuffer.
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
1046 1047
int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
			     struct intel_context *ctx, int num_dwords)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

1059
	ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1060 1061 1062 1063
	if (ret)
		return ret;

	/* Preallocate the olr before touching the ring */
1064
	ret = logical_ring_alloc_request(ring, ctx);
1065 1066 1067 1068 1069 1070 1071
	if (ret)
		return ret;

	ringbuf->space -= num_dwords * sizeof(uint32_t);
	return 0;
}

1072 1073 1074 1075 1076 1077 1078 1079 1080
static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
					       struct intel_context *ctx)
{
	int ret, i;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1081
	if (WARN_ON_ONCE(w->count == 0))
1082 1083 1084
		return 0;

	ring->gpu_caches_dirty = true;
1085
	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1086 1087 1088
	if (ret)
		return ret;

1089
	ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1103
	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1104 1105 1106 1107 1108 1109
	if (ret)
		return ret;

	return 0;
}

1110 1111 1112 1113 1114
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1115 1116 1117
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1118 1119 1120 1121
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1122
	ring->next_context_status_buffer = 0;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1150
	return init_workarounds_ring(ring);
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1164
static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1165
			      struct intel_context *ctx,
1166
			      u64 offset, unsigned dispatch_flags)
1167
{
1168
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1169 1170
	int ret;

1171
	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1185 1186 1187 1188 1189 1190
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1191
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1218
static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1219
			   struct intel_context *ctx,
1220 1221 1222 1223 1224 1225 1226 1227 1228
			   u32 invalidate_domains,
			   u32 unused)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1229
	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

	if (ring == &dev_priv->ring[VCS]) {
		if (invalidate_domains & I915_GEM_GPU_DOMAINS)
			cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
				MI_FLUSH_DW_STORE_INDEX |
				MI_FLUSH_DW_OP_STOREDW;
	} else {
		if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
			cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
				MI_FLUSH_DW_OP_STOREDW;
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1258
				  struct intel_context *ctx,
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
				  u32 invalidate_domains,
				  u32 flush_domains)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

1285
	ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1310 1311
static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
			     struct drm_i915_gem_request *request)
1312 1313 1314 1315 1316
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1317
	ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
1318 1319 1320
	if (ret)
		return ret;

1321
	cmd = MI_STORE_DWORD_IMM_GEN4;
1322 1323 1324 1325 1326 1327 1328
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1329 1330
	intel_logical_ring_emit(ringbuf,
		i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1331 1332
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1333
	intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1334 1335 1336 1337

	return 0;
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
					      struct intel_context *ctx)
{
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	struct render_state so;
	struct drm_i915_file_private *file_priv = ctx->file_priv;
	struct drm_file *file = file_priv ? file_priv->file : NULL;
	int ret;

	ret = i915_gem_render_state_prepare(ring, &so);
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

	ret = ring->emit_bb_start(ringbuf,
			ctx,
			so.ggtt_offset,
			I915_DISPATCH_SECURE);
	if (ret)
		goto out;

	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);

	ret = __i915_add_request(ring, file, so.obj);
	/* intel_logical_ring_add_request moves object to inactive if it
	 * fails */
out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static int gen8_init_rcs_context(struct intel_engine_cs *ring,
		       struct intel_context *ctx)
{
	int ret;

	ret = intel_logical_ring_workarounds_emit(ring, ctx);
	if (ret)
		return ret;

	return intel_lr_context_render_state_init(ring, ctx);
}

1383 1384 1385 1386 1387 1388
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1389 1390
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1391
	struct drm_i915_private *dev_priv;
1392

1393 1394 1395
	if (!intel_ring_initialized(ring))
		return;

1396 1397
	dev_priv = ring->dev->dev_private;

1398 1399
	intel_logical_ring_stop(ring);
	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1400
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1411 1412 1413 1414
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	init_waitqueue_head(&ring->irq_queue);

1425
	INIT_LIST_HEAD(&ring->execlist_queue);
1426
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1427 1428
	spin_lock_init(&ring->execlist_lock);

1429 1430 1431 1432
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

1433 1434 1435
	ret = intel_lr_context_deferred_create(ring->default_context, ring);

	return ret;
1436 1437 1438 1439 1440 1441
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1442
	int ret;
1443 1444 1445 1446 1447 1448

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1449 1450 1451 1452
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1453

1454 1455 1456 1457
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
1458
	ring->init_context = gen8_init_rcs_context;
1459
	ring->cleanup = intel_fini_pipe_control;
1460 1461
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1462
	ring->emit_request = gen8_emit_request;
1463
	ring->emit_flush = gen8_emit_flush_render;
1464 1465
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1466
	ring->emit_bb_start = gen8_emit_bb_start;
1467

1468 1469 1470 1471 1472 1473
	ring->dev = dev;
	ret = logical_ring_init(dev, ring);
	if (ret)
		return ret;

	return intel_init_pipe_control(ring);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1486 1487
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1488

1489
	ring->init_hw = gen8_init_common_ring;
1490 1491
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1492
	ring->emit_request = gen8_emit_request;
1493
	ring->emit_flush = gen8_emit_flush;
1494 1495
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1496
	ring->emit_bb_start = gen8_emit_bb_start;
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1511 1512
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1513

1514
	ring->init_hw = gen8_init_common_ring;
1515 1516
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1517
	ring->emit_request = gen8_emit_request;
1518
	ring->emit_flush = gen8_emit_flush;
1519 1520
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1521
	ring->emit_bb_start = gen8_emit_bb_start;
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1536 1537
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1538

1539
	ring->init_hw = gen8_init_common_ring;
1540 1541
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1542
	ring->emit_request = gen8_emit_request;
1543
	ring->emit_flush = gen8_emit_flush;
1544 1545
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1546
	ring->emit_bb_start = gen8_emit_bb_start;
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1561 1562
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1563

1564
	ring->init_hw = gen8_init_common_ring;
1565 1566
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1567
	ring->emit_request = gen8_emit_request;
1568
	ring->emit_flush = gen8_emit_flush;
1569 1570
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1571
	ring->emit_bb_start = gen8_emit_bb_start;
1572

1573 1574 1575
	return logical_ring_init(dev, ring);
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1682 1683 1684 1685
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
1686 1687
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1688
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1689 1690 1691 1692
	struct page *page;
	uint32_t *reg_state;
	int ret;

1693 1694 1695
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
1727 1728
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1729 1730 1731 1732 1733
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1734 1735 1736
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		/* TODO: according to BSpec, the register state context
		 * for CHV does not have these. OTOH, these registers do
		 * exist in CHV. I'm waiting for a clarification */
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1775 1776 1777 1778 1779 1780 1781 1782
	reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
	reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
	reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
	reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
	reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
	reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
	reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
	reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1783 1784
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1785 1786
		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

1798 1799 1800 1801 1802 1803 1804 1805
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
1806 1807
void intel_lr_context_free(struct intel_context *ctx)
{
1808 1809 1810 1811
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1812

1813
		if (ctx_obj) {
1814 1815 1816 1817
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

1818 1819 1820 1821
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
1822
			WARN_ON(ctx->engine[ring->id].pin_count);
1823 1824
			intel_destroy_ringbuffer_obj(ringbuf);
			kfree(ringbuf);
1825 1826 1827 1828 1829 1830 1831 1832 1833
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

1834
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1835 1836 1837

	switch (ring->id) {
	case RCS:
1838 1839 1840 1841
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1852 1853
}

1854
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	/* The status page is offset 0 from the default context object
	 * in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
	ring->status_page.page_addr =
			kmap(sg_page(default_ctx_obj->pages->sgl));
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/**
 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
1882
 * Return: non-zero on error.
1883
 */
1884 1885 1886
int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
1887
	const bool is_global_default_ctx = (ctx == ring->default_context);
1888 1889 1890
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
1891
	struct intel_ringbuffer *ringbuf;
1892 1893
	int ret;

1894
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1895
	WARN_ON(ctx->engine[ring->id].state);
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905
	context_size = round_up(get_lr_context_size(ring), 4096);

	ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
	if (IS_ERR(ctx_obj)) {
		ret = PTR_ERR(ctx_obj);
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
		return ret;
	}

1906 1907 1908 1909 1910 1911 1912 1913
	if (is_global_default_ctx) {
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret) {
			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
					ret);
			drm_gem_object_unreference(&ctx_obj->base);
			return ret;
		}
1914 1915
	}

1916 1917 1918 1919 1920
	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
	if (!ringbuf) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				ring->name);
		ret = -ENOMEM;
1921
		goto error_unpin_ctx;
1922 1923
	}

1924
	ringbuf->ring = ring;
1925

1926 1927 1928 1929 1930
	ringbuf->size = 32 * PAGE_SIZE;
	ringbuf->effective_size = ringbuf->size;
	ringbuf->head = 0;
	ringbuf->tail = 0;
	ringbuf->last_retired_head = -1;
1931
	intel_ring_update_space(ringbuf);
1932

1933 1934 1935 1936 1937
	if (ringbuf->obj == NULL) {
		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
		if (ret) {
			DRM_DEBUG_DRIVER(
				"Failed to allocate ringbuffer obj %s: %d\n",
1938
				ring->name, ret);
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
			goto error_free_rbuf;
		}

		if (is_global_default_ctx) {
			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
			if (ret) {
				DRM_ERROR(
					"Failed to pin and map ringbuffer %s: %d\n",
					ring->name, ret);
				goto error_destroy_rbuf;
			}
		}

1952 1953 1954 1955 1956 1957
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		goto error;
1958 1959 1960
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
1961
	ctx->engine[ring->id].state = ctx_obj;
1962

1963 1964
	if (ctx == ring->default_context)
		lrc_setup_hardware_status_page(ring, ctx_obj);
1965
	else if (ring->id == RCS && !ctx->rcs_initialized) {
1966 1967
		if (ring->init_context) {
			ret = ring->init_context(ring, ctx);
1968
			if (ret) {
1969
				DRM_ERROR("ring init context: %d\n", ret);
1970 1971 1972 1973
				ctx->engine[ring->id].ringbuf = NULL;
				ctx->engine[ring->id].state = NULL;
				goto error;
			}
1974 1975
		}

1976 1977 1978
		ctx->rcs_initialized = true;
	}

1979
	return 0;
1980 1981

error:
1982 1983 1984 1985 1986
	if (is_global_default_ctx)
		intel_unpin_ringbuffer_obj(ringbuf);
error_destroy_rbuf:
	intel_destroy_ringbuffer_obj(ringbuf);
error_free_rbuf:
1987
	kfree(ringbuf);
1988
error_unpin_ctx:
1989 1990
	if (is_global_default_ctx)
		i915_gem_object_ggtt_unpin(ctx_obj);
1991 1992
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
1993
}
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
		page = i915_gem_object_get_page(ctx_obj, 1);
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}