intel_lrc.c 66.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138

139
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 141 142
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

186 187 188 189 190
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
191 192

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193
	const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 195 196 197 198 199
		ppgtt->pdp.page_directory[n]->daddr : \
		ppgtt->scratch_pd->daddr; \
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213
enum {
	ADVANCED_CONTEXT = 0,
	LEGACY_CONTEXT,
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
#define GEN8_CTX_MODE_SHIFT 3
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
214
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
215

216 217 218
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx);

219 220 221 222 223 224
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
225
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
226 227 228
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
229 230
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
231 232
	WARN_ON(i915.enable_ppgtt == -1);

233 234 235
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

236 237 238
	if (enable_execlists == 0)
		return 0;

239 240
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
241 242 243 244
		return 1;

	return 0;
}
245

246 247 248 249 250 251 252 253 254 255 256 257
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
258 259 260 261 262 263 264 265 266
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

267 268
static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
					 struct drm_i915_gem_object *ctx_obj)
269
{
270
	struct drm_device *dev = ring->dev;
271 272
	uint64_t desc;
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
273 274

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
275 276 277

	desc = GEN8_CTX_VALID;
	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
278 279
	if (IS_GEN8(ctx_obj->base.dev))
		desc |= GEN8_CTX_L3LLC_COHERENT;
280 281 282 283 284 285 286 287
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

288 289 290 291 292 293 294
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	if (IS_GEN9(dev) &&
	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
	    (ring->id == BCS || ring->id == VCS ||
	    ring->id == VECS || ring->id == VCS2))
		desc |= GEN8_CTX_FORCE_RESTORE;

295 296 297 298 299 300 301
	return desc;
}

static void execlists_elsp_write(struct intel_engine_cs *ring,
				 struct drm_i915_gem_object *ctx_obj0,
				 struct drm_i915_gem_object *ctx_obj1)
{
302 303
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
304 305 306 307 308
	uint64_t temp = 0;
	uint32_t desc[4];

	/* XXX: You must always write both descriptors in the order below. */
	if (ctx_obj1)
309
		temp = execlists_ctx_descriptor(ring, ctx_obj1);
310 311 312 313 314
	else
		temp = 0;
	desc[1] = (u32)(temp >> 32);
	desc[0] = (u32)temp;

315
	temp = execlists_ctx_descriptor(ring, ctx_obj0);
316 317 318
	desc[3] = (u32)(temp >> 32);
	desc[2] = (u32)temp;

319 320 321 322 323
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
	I915_WRITE_FW(RING_ELSP(ring), desc[1]);
	I915_WRITE_FW(RING_ELSP(ring), desc[0]);
	I915_WRITE_FW(RING_ELSP(ring), desc[3]);
324

325
	/* The context is automatically loaded after the following */
326
	I915_WRITE_FW(RING_ELSP(ring), desc[2]);
327 328

	/* ELSP is a wo register, so use another nearby reg for posting instead */
329 330 331
	POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
332 333
}

334 335
static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
				    struct drm_i915_gem_object *ring_obj,
336
				    struct i915_hw_ppgtt *ppgtt,
337
				    u32 tail)
338 339 340 341 342 343 344 345
{
	struct page *page;
	uint32_t *reg_state;

	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	reg_state[CTX_RING_TAIL+1] = tail;
346
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
347

348 349 350 351 352 353 354 355 356 357
	/* True PPGTT with dynamic page allocation: update PDP registers and
	 * point the unallocated PDPs to the scratch page
	 */
	if (ppgtt) {
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

358 359 360 361 362
	kunmap_atomic(reg_state);

	return 0;
}

363 364 365
static void execlists_submit_contexts(struct intel_engine_cs *ring,
				      struct intel_context *to0, u32 tail0,
				      struct intel_context *to1, u32 tail1)
366
{
367 368
	struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
369
	struct drm_i915_gem_object *ctx_obj1 = NULL;
370
	struct intel_ringbuffer *ringbuf1 = NULL;
371 372

	BUG_ON(!ctx_obj0);
373
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
374
	WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
375

376
	execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
377

378
	if (to1) {
379
		ringbuf1 = to1->engine[ring->id].ringbuf;
380 381
		ctx_obj1 = to1->engine[ring->id].state;
		BUG_ON(!ctx_obj1);
382
		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
383
		WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
384

385
		execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
386 387 388 389 390
	}

	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
}

391 392
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
393 394
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
395 396

	assert_spin_locked(&ring->execlist_lock);
397

398 399 400 401 402 403
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

404 405 406 407 408 409 410 411
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
412
		} else if (req0->ctx == cursor->ctx) {
413 414
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
415
			cursor->elsp_submitted = req0->elsp_submitted;
416
			list_del(&req0->execlist_link);
417 418
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
419 420 421 422 423 424 425
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

426 427 428 429 430
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
431
		if (req0->elsp_submitted) {
432 433 434 435 436 437 438 439 440 441 442 443 444 445
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

446 447
	WARN_ON(req1 && req1->elsp_submitted);

448 449 450
	execlists_submit_contexts(ring, req0->ctx, req0->tail,
				  req1 ? req1->ctx : NULL,
				  req1 ? req1->tail : 0);
451 452 453 454

	req0->elsp_submitted++;
	if (req1)
		req1->elsp_submitted++;
455 456
}

457 458 459
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
460
	struct drm_i915_gem_request *head_req;
461 462 463 464

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
465
					    struct drm_i915_gem_request,
466 467 468 469
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
470
				head_req->ctx->engine[ring->id].state;
471
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
472 473 474 475 476
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
477 478
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
479 480
				return true;
			}
481 482 483 484 485 486
		}
	}

	return false;
}

487
/**
488
 * intel_lrc_irq_handler() - handle Context Switch interrupts
489 490 491 492 493
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
494
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
	u32 status;
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
	write_pointer = status_pointer & 0x07;
	if (read_pointer > write_pointer)
		write_pointer += 6;

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8);
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8 + 4);

520 521 522 523 524 525 526 527 528 529
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

	if (submit_contexts != 0)
		execlists_context_unqueue(ring);

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
	ring->next_context_status_buffer = write_pointer % 6;

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
}

547 548
static int execlists_context_queue(struct intel_engine_cs *ring,
				   struct intel_context *to,
549 550
				   u32 tail,
				   struct drm_i915_gem_request *request)
551
{
552
	struct drm_i915_gem_request *cursor;
553
	int num_elements = 0;
554

555 556 557
	if (to != ring->default_context)
		intel_lr_context_pin(ring, to);

558 559 560 561 562 563 564 565 566
	if (!request) {
		/*
		 * If there isn't a request associated with this submission,
		 * create one as a temporary holder.
		 */
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
		request->ring = ring;
567
		request->ctx = to;
568 569
		kref_init(&request->ref);
		i915_gem_context_reference(request->ctx);
570
	} else {
571
		i915_gem_request_reference(request);
572
		WARN_ON(to != request->ctx);
573
	}
574
	request->tail = tail;
575

576
	spin_lock_irq(&ring->execlist_lock);
577

578 579 580 581 582
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
583
		struct drm_i915_gem_request *tail_req;
584 585

		tail_req = list_last_entry(&ring->execlist_queue,
586
					   struct drm_i915_gem_request,
587 588
					   execlist_link);

589
		if (to == tail_req->ctx) {
590
			WARN(tail_req->elsp_submitted != 0,
591
				"More than 2 already-submitted reqs queued\n");
592
			list_del(&tail_req->execlist_link);
593 594
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
595 596 597
		}
	}

598
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
599
	if (num_elements == 0)
600 601
		execlists_context_unqueue(ring);

602
	spin_unlock_irq(&ring->execlist_lock);
603 604 605 606

	return 0;
}

607
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
608
{
609
	struct intel_engine_cs *ring = req->ring;
610 611 612 613 614 615 616
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

617
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
618 619 620 621 622 623 624
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

625
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
626 627
				 struct list_head *vmas)
{
628
	const unsigned other_rings = ~intel_ring_flag(req->ring);
629 630 631 632 633 634 635 636
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

637
		if (obj->active & other_rings) {
638
			ret = i915_gem_object_sync(obj, req->ring, &req);
639 640 641
			if (ret)
				return ret;
		}
642 643 644 645 646 647 648 649 650 651 652 653 654

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
655
	return logical_ring_invalidate_all_caches(req);
656 657
}

658
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
659 660 661
{
	int ret;

662 663
	if (request->ctx != request->ring->default_context) {
		ret = intel_lr_context_pin(request->ring, request->ctx);
664
		if (ret)
665 666 667
			return ret;
	}

668
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
669 670 671 672

	return 0;
}

673 674 675
static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
				       struct intel_context *ctx,
				       int bytes)
676 677 678
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_i915_gem_request *request;
679 680
	unsigned space;
	int ret;
681

682 683 684
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

685 686 687 688 689 690 691 692 693
	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

	list_for_each_entry(request, &ring->request_list, list) {
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
694
		if (request->ringbuf != ringbuf)
695 696 697
			continue;

		/* Would completion of this request free enough space? */
698 699 700
		space = __intel_ring_space(request->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= bytes)
701 702 703
			break;
	}

704
	if (WARN_ON(&request->list == &ring->request_list))
705 706 707 708 709 710
		return -ENOSPC;

	ret = i915_wait_request(request);
	if (ret)
		return ret;

711 712
	ringbuf->space = space;
	return 0;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
 * @ringbuf: Logical Ringbuffer to advance.
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
static void
intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
				      struct intel_context *ctx,
				      struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *ring = ringbuf->ring;

	intel_logical_ring_advance(ringbuf);

	if (intel_ring_stopped(ring))
		return;

	execlists_context_queue(ring, ctx, ringbuf->tail, request);
}

static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
				    struct intel_context *ctx)
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

745 746 747
	/* Can't wrap if space has already been reserved! */
	WARN_ON(ringbuf->reserved_in_use);

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	if (ringbuf->space < rem) {
		int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);

		if (ret)
			return ret;
	}

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);

	return 0;
}

static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
				struct intel_context *ctx, int bytes)
{
	int ret;

771 772 773 774 775 776 777 778
	/*
	 * Add on the reserved size to the request to make sure that after
	 * the intended commands have been emitted, there is guaranteed to
	 * still be enough free space to send them to the hardware.
	 */
	if (!ringbuf->reserved_in_use)
		bytes += ringbuf->reserved_size;

779 780 781 782
	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
		ret = logical_ring_wrap_buffer(ringbuf, ctx);
		if (unlikely(ret))
			return ret;
783 784 785 786 787 788 789

		if(ringbuf->reserved_size) {
			uint32_t size = ringbuf->reserved_size;

			intel_ring_reserved_space_cancel(ringbuf);
			intel_ring_reserved_space_reserve(ringbuf, size);
		}
790 791 792 793 794 795 796 797 798 799 800 801 802 803
	}

	if (unlikely(ringbuf->space < bytes)) {
		ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
		if (unlikely(ret))
			return ret;
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
804
 * @request: The request to start some new work for
805 806 807 808 809 810 811 812 813
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
814 815
static int intel_logical_ring_begin(struct drm_i915_gem_request *req,
				    int num_dwords)
816
{
817
	struct drm_i915_private *dev_priv;
818 819
	int ret;

820 821 822
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

823 824 825 826 827
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

828 829
	ret = logical_ring_prepare(req->ringbuf, req->ctx,
				   num_dwords * sizeof(uint32_t));
830 831 832
	if (ret)
		return ret;

833
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
834 835 836
	return 0;
}

837 838 839 840 841 842 843 844 845 846
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
847
 * @dispatch_flags: translated execbuffer call flags.
848 849 850 851 852 853
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
854
int intel_execlists_submission(struct i915_execbuffer_params *params,
855
			       struct drm_i915_gem_execbuffer2 *args,
856
			       struct list_head *vmas)
857
{
858 859
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
860
	struct drm_i915_private *dev_priv = dev->dev_private;
861 862
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
		return -EINVAL;
	} else {
		if (args->DR4 == 0xffffffff) {
			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
			args->DR4 = 0;
		}

		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
			return -EINVAL;
		}
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

913
	ret = execlists_move_to_gpu(params->request, vmas);
914 915 916 917 918
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
919
		ret = intel_logical_ring_begin(params->request, 4);
920 921 922 923 924 925 926 927 928 929 930 931
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
		intel_logical_ring_emit(ringbuf, INSTPM);
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

932 933 934
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

935
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
936 937 938
	if (ret)
		return ret;

939
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
940

941
	i915_gem_execbuffer_move_to_active(vmas, params->request);
942
	i915_gem_execbuffer_retire_commands(params);
943

944 945 946
	return 0;
}

947 948
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
949
	struct drm_i915_gem_request *req, *tmp;
950 951 952 953 954 955 956
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
957
	spin_lock_irq(&ring->execlist_lock);
958
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
959
	spin_unlock_irq(&ring->execlist_lock);
960 961

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
962
		struct intel_context *ctx = req->ctx;
963 964 965 966 967
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
			intel_lr_context_unpin(ring, ctx);
968
		list_del(&req->execlist_link);
969
		i915_gem_request_unreference(req);
970 971 972
	}
}

973 974
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
993 994
}

995
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
996
{
997
	struct intel_engine_cs *ring = req->ring;
998 999 1000 1001 1002
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

1003
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1004 1005 1006 1007 1008 1009 1010
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

1011 1012 1013 1014
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1015
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1016 1017 1018
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1019
	if (ctx->engine[ring->id].pin_count++ == 0) {
1020 1021 1022
		ret = i915_gem_obj_ggtt_pin(ctx_obj,
				GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret)
1023
			goto reset_pin_count;
1024 1025 1026 1027

		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
		if (ret)
			goto unpin_ctx_obj;
1028 1029
	}

1030 1031 1032 1033
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1034 1035
reset_pin_count:
	ctx->engine[ring->id].pin_count = 0;
1036

1037 1038 1039 1040 1041 1042 1043
	return ret;
}

void intel_lr_context_unpin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1044
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1045 1046 1047

	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1048
		if (--ctx->engine[ring->id].pin_count == 0) {
1049
			intel_unpin_ringbuffer_obj(ringbuf);
1050
			i915_gem_object_ggtt_unpin(ctx_obj);
1051
		}
1052 1053 1054
	}
}

1055
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1056 1057
{
	int ret, i;
1058 1059
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1060 1061 1062 1063
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1064
	if (WARN_ON_ONCE(w->count == 0))
1065 1066 1067
		return 0;

	ring->gpu_caches_dirty = true;
1068
	ret = logical_ring_flush_all_caches(req);
1069 1070 1071
	if (ret)
		return ret;

1072
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1086
	ret = logical_ring_flush_all_caches(req);
1087 1088 1089 1090 1091 1092
	if (ret)
		return ret;

	return 0;
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
#define wa_ctx_emit(batch, cmd)						\
	do {								\
		if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) {	\
			return -ENOSPC;					\
		}							\
		batch[index++] = (cmd);					\
	} while (0)

static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.

 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1155 1156
	/* WaDisableCtxRestoreArbitration:bdw,chv */
	wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
		struct drm_i915_private *dev_priv = to_i915(ring->dev);
		uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
					 GEN8_LQSC_FLUSH_COHERENT_LINES);

		wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
		wa_ctx_emit(batch, GEN8_L3SQCREG4);
		wa_ctx_emit(batch, l3sqc4_flush);

		wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
				    PIPE_CONTROL_DC_FLUSH_ENABLE));
		wa_ctx_emit(batch, 0);
		wa_ctx_emit(batch, 0);
		wa_ctx_emit(batch, 0);
		wa_ctx_emit(batch, 0);

		wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
		wa_ctx_emit(batch, GEN8_L3SQCREG4);
		wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
	}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, MI_NOOP);

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1217 1218 1219
	/* WaDisableCtxRestoreArbitration:bdw,chv */
	wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	wa_ctx_emit(batch, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1265 1266 1267 1268 1269 1270
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

	page = i915_gem_object_get_page(wa_ctx->obj, 0);
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
	} else {
		WARN(INTEL_INFO(ring->dev)->gen >= 8,
		     "WA batch buffer is not initialized for Gen%d\n",
		     INTEL_INFO(ring->dev)->gen);
		lrc_destroy_wa_ctx_obj(ring);
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1310 1311 1312 1313 1314
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1315 1316 1317
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1318 1319 1320 1321
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1322
	ring->next_context_status_buffer = 0;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1350
	return init_workarounds_ring(ring);
1351 1352
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1364
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1365
			      u64 offset, unsigned dispatch_flags)
1366
{
1367
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1368
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1369 1370
	int ret;

1371
	ret = intel_logical_ring_begin(req, 4);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1385 1386 1387 1388 1389 1390
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1391
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1418
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1419 1420 1421
			   u32 invalidate_domains,
			   u32 unused)
{
1422
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1423 1424 1425 1426 1427 1428
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1429
	ret = intel_logical_ring_begin(request, 4);
1430 1431 1432 1433 1434
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1459
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1460 1461 1462
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1463
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1464 1465
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1466
	bool vf_flush_wa;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

1488 1489 1490 1491 1492 1493 1494
	/*
	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
	 * control.
	 */
	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;

1495
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1496 1497 1498
	if (ret)
		return ret;

1499 1500 1501 1502 1503 1504 1505 1506 1507
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1529
static int gen8_emit_request(struct drm_i915_gem_request *request)
1530
{
1531
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1532 1533 1534 1535
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1536 1537 1538 1539 1540
	/*
	 * Reserve space for 2 NOOPs at the end of each request to be
	 * used as a workaround for not being allowed to do lite
	 * restore with HEAD==TAIL (WaIdleLiteRestore).
	 */
1541
	ret = intel_logical_ring_begin(request, 8);
1542 1543 1544
	if (ret)
		return ret;

1545
	cmd = MI_STORE_DWORD_IMM_GEN4;
1546 1547 1548 1549 1550 1551 1552
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1553
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1554 1555
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1556
	intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1557

1558 1559 1560 1561 1562 1563 1564 1565
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

1566 1567 1568
	return 0;
}

1569
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1570 1571 1572 1573
{
	struct render_state so;
	int ret;

1574
	ret = i915_gem_render_state_prepare(req->ring, &so);
1575 1576 1577 1578 1579 1580
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1581
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1582
				       I915_DISPATCH_SECURE);
1583 1584 1585
	if (ret)
		goto out;

1586
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1587 1588 1589 1590 1591 1592

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1593
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1594 1595 1596
{
	int ret;

1597
	ret = intel_logical_ring_workarounds_emit(req);
1598 1599 1600
	if (ret)
		return ret;

1601
	return intel_lr_context_render_state_init(req);
1602 1603
}

1604 1605 1606 1607 1608 1609
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1610 1611
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1612
	struct drm_i915_private *dev_priv;
1613

1614 1615 1616
	if (!intel_ring_initialized(ring))
		return;

1617 1618
	dev_priv = ring->dev->dev_private;

1619 1620
	intel_logical_ring_stop(ring);
	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1621
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1622 1623 1624 1625 1626

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1627
	i915_gem_batch_pool_fini(&ring->batch_pool);
1628 1629 1630 1631 1632

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1633 1634

	lrc_destroy_wa_ctx_obj(ring);
1635 1636 1637 1638
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1639 1640 1641 1642 1643 1644 1645 1646
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1647
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1648 1649
	init_waitqueue_head(&ring->irq_queue);

1650
	INIT_LIST_HEAD(&ring->execlist_queue);
1651
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1652 1653
	spin_lock_init(&ring->execlist_lock);

1654 1655 1656 1657
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

1658 1659 1660
	ret = intel_lr_context_deferred_create(ring->default_context, ring);

	return ret;
1661 1662 1663 1664 1665 1666
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1667
	int ret;
1668 1669 1670 1671 1672 1673

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1674 1675 1676 1677
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1678

1679 1680 1681 1682
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
1683
	ring->init_context = gen8_init_rcs_context;
1684
	ring->cleanup = intel_fini_pipe_control;
1685 1686
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1687
	ring->emit_request = gen8_emit_request;
1688
	ring->emit_flush = gen8_emit_flush_render;
1689 1690
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1691
	ring->emit_bb_start = gen8_emit_bb_start;
1692

1693
	ring->dev = dev;
1694 1695

	ret = intel_init_pipe_control(ring);
1696 1697 1698
	if (ret)
		return ret;

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1710 1711
	ret = logical_ring_init(dev, ring);
	if (ret) {
1712
		lrc_destroy_wa_ctx_obj(ring);
1713
	}
1714 1715

	return ret;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1728 1729
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1730

1731
	ring->init_hw = gen8_init_common_ring;
1732 1733
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1734
	ring->emit_request = gen8_emit_request;
1735
	ring->emit_flush = gen8_emit_flush;
1736 1737
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1738
	ring->emit_bb_start = gen8_emit_bb_start;
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1753 1754
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1755

1756
	ring->init_hw = gen8_init_common_ring;
1757 1758
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1759
	ring->emit_request = gen8_emit_request;
1760
	ring->emit_flush = gen8_emit_flush;
1761 1762
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1763
	ring->emit_bb_start = gen8_emit_bb_start;
1764

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1778 1779
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1780

1781
	ring->init_hw = gen8_init_common_ring;
1782 1783
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1784
	ring->emit_request = gen8_emit_request;
1785
	ring->emit_flush = gen8_emit_flush;
1786 1787
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1788
	ring->emit_bb_start = gen8_emit_bb_start;
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1803 1804
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1805

1806
	ring->init_hw = gen8_init_common_ring;
1807 1808
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1809
	ring->emit_request = gen8_emit_request;
1810
	ring->emit_flush = gen8_emit_flush;
1811 1812
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1813
	ring->emit_bb_start = gen8_emit_bb_start;
1814

1815 1816 1817
	return logical_ring_init(dev, ring);
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1924 1925 1926 1927
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
1928 1929
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1930
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1931 1932 1933 1934
	struct page *page;
	uint32_t *reg_state;
	int ret;

1935 1936 1937
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
1969 1970
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1971 1972 1973 1974 1975
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1976 1977 1978
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2029 2030 2031

	/* With dynamic page allocation, PDPs may not be allocated at this point,
	 * Point the unallocated PDPs to the scratch page
2032 2033 2034 2035 2036
	 */
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2037 2038
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2039 2040
		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2052 2053 2054 2055 2056 2057 2058 2059
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2060 2061
void intel_lr_context_free(struct intel_context *ctx)
{
2062 2063 2064 2065
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2066

2067
		if (ctx_obj) {
2068 2069 2070 2071
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

2072 2073 2074 2075
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
2076
			WARN_ON(ctx->engine[ring->id].pin_count);
2077 2078
			intel_destroy_ringbuffer_obj(ringbuf);
			kfree(ringbuf);
2079 2080 2081 2082 2083 2084 2085 2086 2087
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

2088
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2089 2090 2091

	switch (ring->id) {
	case RCS:
2092 2093 2094 2095
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2106 2107
}

2108
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	/* The status page is offset 0 from the default context object
	 * in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
	ring->status_page.page_addr =
			kmap(sg_page(default_ctx_obj->pages->sgl));
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
/**
 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2136
 * Return: non-zero on error.
2137
 */
2138 2139 2140
int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
2141
	const bool is_global_default_ctx = (ctx == ring->default_context);
2142 2143 2144
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2145
	struct intel_ringbuffer *ringbuf;
2146 2147
	int ret;

2148
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2149
	WARN_ON(ctx->engine[ring->id].state);
2150

2151 2152
	context_size = round_up(get_lr_context_size(ring), 4096);

2153
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2154 2155 2156
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2157 2158
	}

2159 2160 2161 2162 2163 2164 2165 2166
	if (is_global_default_ctx) {
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret) {
			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
					ret);
			drm_gem_object_unreference(&ctx_obj->base);
			return ret;
		}
2167 2168
	}

2169 2170 2171 2172 2173
	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
	if (!ringbuf) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				ring->name);
		ret = -ENOMEM;
2174
		goto error_unpin_ctx;
2175 2176
	}

2177
	ringbuf->ring = ring;
2178

2179 2180 2181 2182 2183
	ringbuf->size = 32 * PAGE_SIZE;
	ringbuf->effective_size = ringbuf->size;
	ringbuf->head = 0;
	ringbuf->tail = 0;
	ringbuf->last_retired_head = -1;
2184
	intel_ring_update_space(ringbuf);
2185

2186 2187 2188 2189 2190
	if (ringbuf->obj == NULL) {
		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
		if (ret) {
			DRM_DEBUG_DRIVER(
				"Failed to allocate ringbuffer obj %s: %d\n",
2191
				ring->name, ret);
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
			goto error_free_rbuf;
		}

		if (is_global_default_ctx) {
			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
			if (ret) {
				DRM_ERROR(
					"Failed to pin and map ringbuffer %s: %d\n",
					ring->name, ret);
				goto error_destroy_rbuf;
			}
		}

2205 2206 2207 2208 2209 2210
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		goto error;
2211 2212 2213
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2214
	ctx->engine[ring->id].state = ctx_obj;
2215

2216 2217
	if (ctx == ring->default_context)
		lrc_setup_hardware_status_page(ring, ctx_obj);
2218
	else if (ring->id == RCS && !ctx->rcs_initialized) {
2219
		if (ring->init_context) {
2220 2221 2222 2223 2224 2225
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ctx, &req);
			if (ret)
				return ret;

2226
			ret = ring->init_context(req);
2227
			if (ret) {
2228
				DRM_ERROR("ring init context: %d\n", ret);
2229
				i915_gem_request_cancel(req);
2230 2231 2232 2233
				ctx->engine[ring->id].ringbuf = NULL;
				ctx->engine[ring->id].state = NULL;
				goto error;
			}
2234

2235
			i915_add_request_no_flush(req);
2236 2237
		}

2238 2239 2240
		ctx->rcs_initialized = true;
	}

2241
	return 0;
2242 2243

error:
2244 2245 2246 2247 2248
	if (is_global_default_ctx)
		intel_unpin_ringbuffer_obj(ringbuf);
error_destroy_rbuf:
	intel_destroy_ringbuffer_obj(ringbuf);
error_free_rbuf:
2249
	kfree(ringbuf);
2250
error_unpin_ctx:
2251 2252
	if (is_global_default_ctx)
		i915_gem_object_ggtt_unpin(ctx_obj);
2253 2254
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
2255
}
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
		page = i915_gem_object_get_page(ctx_obj, 1);
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}