amd64_edac.c 71.7 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34 35 36 37
struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

130 131 132 133 134 135 136 137 138 139
static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

140
	f15h_select_dct(pvt, dct);
141 142 143 144

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
163
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
179
		if (scrubrates[i].scrubval < min_rate)
180 181 182 183 184 185 186 187 188 189 190 191 192 193
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

194
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
195

196 197 198
	if (scrubval)
		return scrubrates[i].bandwidth;

199 200 201
	return 0;
}

202
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
203 204
{
	struct amd64_pvt *pvt = mci->pvt_info;
205
	u32 min_scrubrate = 0x5;
206

207 208 209
	if (boot_cpu_data.x86 == 0xf)
		min_scrubrate = 0x0;

210 211 212 213
	/* F15h Erratum #505 */
	if (boot_cpu_data.x86 == 0x15)
		f15h_select_dct(pvt, 0);

214
	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
215 216
}

217
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
218 219 220
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
221
	int i, retval = -EINVAL;
222

223 224 225 226
	/* F15h Erratum #505 */
	if (boot_cpu_data.x86 == 0x15)
		f15h_select_dct(pvt, 0);

227
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
228 229 230

	scrubval = scrubval & 0x001F;

231
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
232
		if (scrubrates[i].scrubval == scrubval) {
233
			retval = scrubrates[i].bandwidth;
234 235 236
			break;
		}
	}
237
	return retval;
238 239
}

240
/*
241 242
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
243
 */
244 245
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
				   unsigned nid)
246
{
247
	u64 addr;
248 249 250 251 252 253 254 255 256

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

257 258
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
259 260 261 262 263 264 265 266 267 268 269 270
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
271
	unsigned node_id;
272 273 274 275 276 277 278 279 280 281 282 283 284
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
285
	intlv_en = dram_intlv_en(pvt, 0);
286 287

	if (intlv_en == 0) {
288
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
289
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
290
				goto found;
291
		}
292
		goto err_no_match;
293 294
	}

295 296 297
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
298
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
299 300 301 302 303 304
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
305
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
306 307
			break;	/* intlv_sel field matches */

308
		if (++node_id >= DRAM_RANGES)
309 310 311 312 313
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
314 315 316
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
317 318 319 320
		return NULL;
	}

found:
321
	return edac_mc_find((int)node_id);
322 323 324 325 326 327 328

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
329 330

/*
331 332
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
333
 */
334 335
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
336
{
337 338
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
339

340 341 342 343 344 345 346 347 348 349
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
350

351 352 353 354 355
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
356

357
	*base  = (csbase & base_bits) << addr_shift;
358

359 360 361 362 363
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
364 365
}

366 367 368
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

369 370 371
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

372 373 374
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

375 376 377 378 379 380 381 382 383 384 385 386
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

387 388
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
389 390
			continue;

391 392 393
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}
	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
432
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
433 434 435 436 437
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

438
	/* valid for Fam10h and above */
439
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
440 441 442 443
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

444
	if (!dhar_valid(pvt)) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

468
	base = dhar_base(pvt);
469 470 471 472 473

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
474
		*hole_offset = f10_dhar_offset(pvt);
475
	else
476
		*hole_offset = k8_dhar_offset(pvt);
477 478 479 480 481 482 483 484 485

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
517
	struct amd64_pvt *pvt = mci->pvt_info;
518 519 520
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

521
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
549
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
585
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
586 587
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
621
	unsigned node_id, intlv_shift;
622 623 624 625 626 627 628 629 630 631 632 633 634
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
635 636

	BUG_ON(node_id > 7);
637

638
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
639 640 641 642 643 644 645
	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

646 647
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
648

649
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
666
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

684
	base     = get_dram_base(pvt, pvt->mc_node_id);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
741 742
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
743 744
	return csrow;
}
745

746
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
747 748 749 750 751

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
752
static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
753
{
754
	u8 bit;
755
	unsigned long edac_cap = EDAC_FLAG_NONE;
756

757
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
758 759 760
		? 19
		: 17;

761
	if (pvt->dclr0 & BIT(bit))
762 763 764 765 766
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

767
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
768

769 770 771 772 773 774 775 776 777 778 779
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

780 781 782
	if (boot_cpu_data.x86 == 0x10)
		debugf1("  DCT 128bit mode width: %s\n",
			(dclr & BIT(11)) ?  "128b" : "64b");
783 784 785 786 787 788 789 790

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

791
/* Display and decode various NB registers for debug purposes. */
792
static void dump_misc_regs(struct amd64_pvt *pvt)
793
{
794 795 796
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
797
		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
798

799
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
800 801
		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
802 803

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
804

805
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
806

807 808
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
809 810 811
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
812

813
	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
814

815
	amd64_debug_display_dimm_sizes(pvt, 0);
816

817
	/* everything below this point is Fam10h and above */
818
	if (boot_cpu_data.x86 == 0xf)
819
		return;
820

821
	amd64_debug_display_dimm_sizes(pvt, 1);
822

823
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
824

825
	/* Only if NOT ganged does dclr1 have valid info */
826 827
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
828 829
}

830
/*
831
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
832
 */
833
static void prep_chip_selects(struct amd64_pvt *pvt)
834
{
835
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
836 837
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
838
	} else {
839 840
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
841 842 843 844
	}
}

/*
845
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
846
 */
847
static void read_dct_base_mask(struct amd64_pvt *pvt)
848
{
849
	int cs;
850

851
	prep_chip_selects(pvt);
852

853
	for_each_chip_select(cs, 0, pvt) {
854 855
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
856 857
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
858

859
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
860
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
861
				cs, *base0, reg0);
862

863 864
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
865

866 867 868
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
				cs, *base1, reg1);
869 870
	}

871
	for_each_chip_select_mask(cs, 0, pvt) {
872 873
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
874 875
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
876

877
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
878
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
879
				cs, *mask0, reg0);
880

881 882
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
883

884 885 886
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
				cs, *mask1, reg1);
887 888 889
	}
}

890
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
891 892 893
{
	enum mem_type type;

894 895 896 897
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
898 899 900 901
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
902 903 904 905
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

906
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
907 908 909 910

	return type;
}

911
/* Get the number of DCT channels the memory controller is using. */
912 913
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
914
	int flag;
915

916
	if (pvt->ext_model >= K8_REV_F)
917
		/* RevF (NPT) and later */
918
		flag = pvt->dclr0 & WIDTH_128;
919
	else
920 921 922 923 924 925 926 927 928
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

929 930
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
931
{
932 933
	struct cpuinfo_x86 *c = &boot_cpu_data;
	u64 addr;
934 935 936
	u8 start_bit = 1;
	u8 end_bit   = 47;

937
	if (c->x86 == 0xf) {
938 939 940 941
		start_bit = 3;
		end_bit   = 39;
	}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	addr = m->addr & GENMASK(start_bit, end_bit);

	/*
	 * Erratum 637 workaround
	 */
	if (c->x86 == 0x15) {
		struct amd64_pvt *pvt;
		u64 cc6_base, tmp_addr;
		u32 tmp;
		u8 mce_nid, intlv_en;

		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
			return addr;

		mce_nid	= amd_get_nb_id(m->extcpu);
		pvt	= mcis[mce_nid]->pvt_info;

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
		cc6_base  = (tmp & GENMASK(0, 20)) << 3;

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
			return cc6_base | (addr & GENMASK(0, 23));

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);

		/* OR DramIntlvSel into bits [14:12] */
		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;

		/* add remaining [11:0] bits from original MC4_ADDR */
		tmp_addr |= addr & GENMASK(0, 11);

		return cc6_base | tmp_addr;
	}

	return addr;
989 990
}

991
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
992
{
993
	struct cpuinfo_x86 *c = &boot_cpu_data;
994
	int off = range << 3;
995

996 997
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
998

999
	if (c->x86 == 0xf)
1000
		return;
1001

1002 1003
	if (!dram_rw(pvt, range))
		return;
1004

1005 1006
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

	/* Factor in CC6 save area by reading dst node's limit reg */
	if (c->x86 == 0x15) {
		struct pci_dev *f1 = NULL;
		u8 nid = dram_dst_node(pvt, range);
		u32 llim;

		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
		if (WARN_ON(!f1))
			return;

		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);

		pvt->ranges[range].lim.lo &= GENMASK(0, 15);

					    /* {[39:27],111b} */
		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;

		pvt->ranges[range].lim.hi &= GENMASK(0, 7);

					    /* [47:40] */
		pvt->ranges[range].lim.hi |= llim >> 13;

		pci_dev_put(f1);
	}
1032 1033
}

1034 1035
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				    u16 syndrome)
1036 1037
{
	struct mem_ctl_info *src_mci;
1038
	struct amd64_pvt *pvt = mci->pvt_info;
1039 1040 1041 1042
	int channel, csrow;
	u32 page, offset;

	/* CHIPKILL enabled */
1043
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1044
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1045 1046 1047 1048 1049 1050
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1051 1052
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1065
		channel = ((sys_addr & BIT(3)) != 0);
1066 1067 1068 1069 1070 1071
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1072
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1073
	if (!src_mci) {
1074
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1075
			     (unsigned long)sys_addr);
1076 1077 1078 1079
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1080 1081
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1082 1083 1084
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1085
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1086 1087 1088 1089 1090 1091

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1092
static int ddr2_cs_size(unsigned i, bool dct_width)
1093
{
1094
	unsigned shift = 0;
1095

1096 1097 1098 1099
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1100
	else
1101
		shift = (i + 1) >> 1;
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				  unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1116
		unsigned diff;
1117 1118
		WARN_ON(cs_mode > 10);

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1146 1147 1148 1149 1150
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1161
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1162
{
1163
	int i, j, channels = 0;
1164

1165
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1166
	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1167
		return 2;
1168 1169

	/*
1170 1171 1172
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1173 1174 1175 1176
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1177
	debugf0("Data width is not 128 bits - need more decoding\n");
1178

1179 1180 1181 1182 1183
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1184 1185
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1186

1187 1188 1189 1190 1191 1192
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1193 1194
	}

1195 1196 1197
	if (channels > 2)
		channels = 2;

1198
	amd64_info("MCT channel count: %d\n", channels);
1199 1200 1201 1202

	return channels;
}

1203
static int ddr3_cs_size(unsigned i, bool dct_width)
1204
{
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1231 1232

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1233
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1234
	else
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);
1245

1246
	return ddr3_cs_size(cs_mode, false);
1247 1248
}

1249
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1250 1251
{

1252 1253 1254
	if (boot_cpu_data.x86 == 0xf)
		return;

1255 1256 1257
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1258

1259 1260
		debugf0("  DCTs operate in %s mode.\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1261 1262 1263 1264 1265

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

1266
		debugf0("  data interleave for ECC: %s, "
1267 1268 1269 1270
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

1271 1272
		debugf0("  channel interleave: %s, "
			"interleave bits selector: 0x%x\n",
1273
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1274 1275 1276
			dct_sel_interleave_addr(pvt));
	}

1277
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1278 1279
}

1280
/*
1281
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1282 1283
 * Interleaving Modes.
 */
1284
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1285
				bool hi_range_sel, u8 intlv_en)
1286
{
1287
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1288 1289

	if (dct_ganging_enabled(pvt))
1290
		return 0;
1291

1292 1293
	if (hi_range_sel)
		return dct_sel_high;
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1317 1318 1319 1320

	return 0;
}

1321
/* Convert the sys_addr to the normalized DCT address */
1322
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1323 1324
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1325 1326
{
	u64 chan_off;
1327 1328 1329
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1330

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1345
		    dhar_valid(pvt) &&
1346
		    (sys_addr >= BIT_64(32)))
1347
			chan_off = hole_off;
1348 1349 1350
		else
			chan_off = dct_sel_base_off;
	} else {
1351 1352 1353 1354 1355 1356 1357 1358 1359
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1360
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1361
			chan_off = hole_off;
1362
		else
1363
			chan_off = dram_base;
1364 1365
	}

1366
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1367 1368 1369 1370 1371 1372
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1373
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1374
{
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1398
static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1399 1400 1401
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1402
	u64 cs_base, cs_mask;
1403 1404 1405
	int cs_found = -EINVAL;
	int csrow;

1406
	mci = mcis[nid];
1407 1408 1409 1410 1411
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1412
	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1413

1414 1415
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1416 1417
			continue;

1418
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1419

1420 1421
		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			csrow, cs_base, cs_mask);
1422

1423
		cs_mask = ~cs_mask;
1424

1425 1426 1427
		debugf1("    (InputAddr & ~CSMask)=0x%llx "
			"(CSBase & ~CSMask)=0x%llx\n",
			(in_addr & cs_mask), (cs_base & cs_mask));
1428

1429 1430
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1431 1432 1433 1434 1435 1436 1437 1438

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1439 1440 1441 1442 1443
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1444
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

	if (boot_cpu_data.x86 == 0x10) {
		/* only revC3 and revE have that feature */
		if (boot_cpu_data.x86_model < 4 ||
		    (boot_cpu_data.x86_model < 0xa &&
		     boot_cpu_data.x86_mask < 3))
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1475
/* For a given @dram_range, check if @sys_addr falls within it. */
1476
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1477 1478
				  u64 sys_addr, int *nid, int *chan_sel)
{
1479
	int cs_found = -EINVAL;
1480
	u64 chan_addr;
1481
	u32 dct_sel_base;
1482
	u8 channel;
1483
	bool high_range = false;
1484

1485
	u8 node_id    = dram_dst_node(pvt, range);
1486
	u8 intlv_en   = dram_intlv_en(pvt, range);
1487
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1488

1489 1490
	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		range, sys_addr, get_dram_limit(pvt, range));
1491

1492 1493 1494 1495 1496 1497 1498 1499
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1500
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1501 1502
		return -EINVAL;

1503
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1514
		high_range = true;
1515

1516
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1517

1518
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1519
					  high_range, dct_sel_base);
1520

1521 1522 1523 1524
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1525

1526
	/* remove channel interleave */
1527 1528 1529
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1544 1545
	}

1546
	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1547

1548
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1549 1550 1551 1552 1553 1554 1555 1556

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

1557
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1558 1559
				       int *node, int *chan_sel)
{
1560 1561
	int cs_found = -EINVAL;
	unsigned range;
1562

1563
	for (range = 0; range < DRAM_RANGES; range++) {
1564

1565
		if (!dram_rw(pvt, range))
1566 1567
			continue;

1568 1569
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1570

1571
			cs_found = f1x_match_to_this_node(pvt, range,
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1582 1583
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1584
 *
1585 1586
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1587
 */
1588
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1589
				     u16 syndrome)
1590 1591 1592 1593 1594
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;

1595
	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1596

1597 1598 1599 1600 1601 1602
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1603

1604 1605 1606 1607 1608
	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1609
	if (dct_ganging_enabled(pvt))
1610
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1611

1612 1613 1614 1615
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1616
		/*
1617
		 * Channel unknown, report all channels on this CSROW as failed.
1618
		 */
1619
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1620
			edac_mc_handle_ce(mci, page, offset, syndrome,
1621
					  csrow, chan, EDAC_MOD_STR);
1622 1623 1624
}

/*
1625
 * debug routine to display the memory sizes of all logical DIMMs and its
1626
 * CSROWs
1627
 */
1628
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1629
{
1630
	int dimm, size0, size1, factor = 0;
1631 1632
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1633

1634
	if (boot_cpu_data.x86 == 0xf) {
1635
		if (pvt->dclr0 & WIDTH_128)
1636 1637
			factor = 1;

1638
		/* K8 families < revF not supported yet */
1639
	       if (pvt->ext_model < K8_REV_F)
1640 1641 1642 1643 1644
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1645
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1646 1647
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1648

1649
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1650

1651 1652
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1653 1654 1655 1656
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1657
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1658 1659
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1660 1661

		size1 = 0;
1662
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1663 1664
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1665

1666 1667 1668
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1669 1670 1671
	}
}

1672 1673
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1674
		.ctl_name = "K8",
1675 1676
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1677
		.ops = {
1678 1679 1680
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1681
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1682 1683 1684
		}
	},
	[F10_CPUS] = {
1685
		.ctl_name = "F10h",
1686 1687
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1688
		.ops = {
1689
			.early_channel_count	= f1x_early_channel_count,
1690
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1691
			.dbam_to_cs		= f10_dbam_to_chip_select,
1692 1693 1694 1695 1696
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1697 1698
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1699
		.ops = {
1700
			.early_channel_count	= f1x_early_channel_count,
1701
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1702
			.dbam_to_cs		= f15_dbam_to_chip_select,
1703
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1725
/*
1726 1727 1728
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1729
 *
1730
 * Algorithm courtesy of Ross LaFetra from AMD.
1731
 */
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1769 1770
};

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

1793 1794
static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
			   unsigned v_dim)
1795
{
1796 1797 1798 1799
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
1800 1801
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1814

1815 1816 1817
					if (!s)
						return err_sym;
				}
1818

1819 1820 1821 1822
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1823 1824 1825 1826 1827
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1871 1872
	int err_sym = -1;

1873
	if (pvt->ecc_sym_sz == 8)
1874 1875
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
1876 1877
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
1878 1879
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
1880
					  pvt->ecc_sym_sz);
1881
	else {
1882
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1883
		return err_sym;
1884
	}
1885

1886
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1887 1888
}

1889 1890 1891 1892
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
1893
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1894 1895
{
	struct amd64_pvt *pvt = mci->pvt_info;
1896
	u64 sys_addr;
1897
	u16 syndrome;
1898 1899

	/* Ensure that the Error Address is VALID */
1900
	if (!(m->status & MCI_STATUS_ADDRV)) {
1901
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1902 1903 1904 1905
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1906
	sys_addr = get_error_address(m);
1907
	syndrome = extract_syndrome(m->status);
1908

1909
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1910

1911
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1912 1913 1914
}

/* Handle any Un-correctable Errors (UEs) */
1915
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1916
{
1917
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1918
	int csrow;
1919
	u64 sys_addr;
1920 1921 1922 1923
	u32 page, offset;

	log_mci = mci;

1924
	if (!(m->status & MCI_STATUS_ADDRV)) {
1925
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1926 1927 1928 1929
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1930
	sys_addr = get_error_address(m);
1931 1932 1933 1934 1935

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1936
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1937
	if (!src_mci) {
1938 1939
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1940 1941 1942 1943 1944 1945
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1946
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1947
	if (csrow < 0) {
1948 1949
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1950 1951
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1952
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1953 1954 1955 1956
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1957
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1958
					    struct mce *m)
1959
{
1960 1961 1962
	u16 ec = EC(m->status);
	u8 xec = XEC(m->status, 0x1f);
	u8 ecc_type = (m->status >> 45) & 0x3;
1963

1964
	/* Bail early out if this was an 'observed' error */
1965
	if (PP(ec) == NBSL_PP_OBS)
1966
		return;
1967

1968 1969
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1970 1971
		return;

1972
	if (ecc_type == 2)
1973
		amd64_handle_ce(mci, m);
1974
	else if (ecc_type == 1)
1975
		amd64_handle_ue(mci, m);
1976 1977
}

1978
void amd64_decode_bus_error(int node_id, struct mce *m)
1979
{
1980
	__amd64_decode_bus_error(mcis[node_id], m);
1981 1982
}

1983
/*
1984
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1985
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1986
 */
1987
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1988 1989
{
	/* Reserve the ADDRESS MAP Device */
1990 1991
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
1992 1993 1994
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
1995
		return -ENODEV;
1996 1997 1998
	}

	/* Reserve the MISC Device */
1999 2000 2001 2002
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2003

2004 2005 2006
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2007

2008
		return -ENODEV;
2009
	}
2010 2011 2012
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
2013 2014 2015 2016

	return 0;
}

2017
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2018
{
2019 2020
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2021 2022 2023 2024 2025 2026
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2027
static void read_mc_regs(struct amd64_pvt *pvt)
2028
{
2029
	struct cpuinfo_x86 *c = &boot_cpu_data;
2030
	u64 msr_val;
2031
	u32 tmp;
2032
	unsigned range;
2033 2034 2035 2036 2037

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2038 2039
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2040 2041 2042 2043

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2044 2045
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2046 2047 2048
	} else
		debugf0("  TOP_MEM2 disabled.\n");

2049
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2050

2051
	read_dram_ctl_register(pvt);
2052

2053 2054
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
2074 2075
	}

2076
	read_dct_base_mask(pvt);
2077

2078
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2079
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2080

2081
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2082

2083 2084
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2085

2086
	if (!dct_ganging_enabled(pvt)) {
2087 2088
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2089
	}
2090

2091 2092 2093
	pvt->ecc_sym_sz = 4;

	if (c->x86 >= 0x10) {
2094
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2095
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2096

2097 2098 2099 2100
		/* F10h, revD and later can do x8 ECC too */
		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
2101
	dump_misc_regs(pvt);
2102 2103 2104 2105 2106 2107
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2108
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2138
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2139
{
2140
	u32 cs_mode, nr_pages;
2141
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2142 2143 2144 2145 2146 2147 2148 2149

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2150
	cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2151

2152
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2153

2154
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2165
static int init_csrows(struct mem_ctl_info *mci)
2166 2167
{
	struct csrow_info *csrow;
2168
	struct amd64_pvt *pvt = mci->pvt_info;
2169
	u64 base, mask;
2170
	u32 val;
2171 2172 2173
	int i, j, empty = 1;
	enum mem_type mtype;
	enum edac_type edac_mode;
2174

2175
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2176

2177
	pvt->nbcfg = val;
2178

2179 2180
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
2181
		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2182

2183
	for_each_chip_select(i, 0, pvt) {
2184 2185
		csrow = &mci->csrows[i];

2186
		if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2187 2188 2189 2190 2191 2192 2193 2194 2195
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
2196 2197 2198 2199
		if (csrow_enabled(i, 0, pvt))
			csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
		if (csrow_enabled(i, 1, pvt))
			csrow->nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2200 2201

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2202 2203
		/* 8 bytes of resolution */

2204
		mtype = amd64_determine_memory_type(pvt, i);
2205 2206

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2207
		debugf1("    nr_pages: %u\n", csrow->nr_pages);
2208 2209 2210 2211

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2212
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2213 2214
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2215
		else
2216 2217 2218 2219 2220 2221
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
			csrow->channels[j].dimm->mtype = mtype;
			csrow->channels[j].dimm->edac_mode = edac_mode;
		}
2222 2223 2224 2225
	}

	return empty;
}
2226

2227
/* get all cores on this DCT */
2228
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2229 2230 2231 2232 2233 2234 2235 2236 2237
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2238
static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2239 2240
{
	cpumask_var_t mask;
2241
	int cpu, nbe;
2242 2243 2244
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2245
		amd64_warn("%s: Error allocating mask\n", __func__);
2246 2247 2248 2249 2250 2251 2252 2253
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2254
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2255
		nbe = reg->l & MSR_MCGCTL_NBE;
2256 2257

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2258
			cpu, reg->q,
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2271
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2272 2273
{
	cpumask_var_t cmask;
2274
	int cpu;
2275 2276

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2277
		amd64_warn("%s: error allocating mask\n", __func__);
2278 2279 2280
		return false;
	}

2281
	get_cpus_on_this_dct_cpumask(cmask, nid);
2282 2283 2284 2285 2286

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2287 2288
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2289
		if (on) {
2290
			if (reg->l & MSR_MCGCTL_NBE)
2291
				s->flags.nb_mce_enable = 1;
2292

2293
			reg->l |= MSR_MCGCTL_NBE;
2294 2295
		} else {
			/*
2296
			 * Turn off NB MCE reporting only when it was off before
2297
			 */
2298
			if (!s->flags.nb_mce_enable)
2299
				reg->l &= ~MSR_MCGCTL_NBE;
2300 2301 2302 2303 2304 2305 2306 2307 2308
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2309 2310
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2311
{
2312
	bool ret = true;
B
Borislav Petkov 已提交
2313
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2314

2315 2316 2317 2318 2319
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2320
	amd64_read_pci_cfg(F3, NBCTL, &value);
2321

2322 2323
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2324 2325

	value |= mask;
B
Borislav Petkov 已提交
2326
	amd64_write_pci_cfg(F3, NBCTL, value);
2327

2328
	amd64_read_pci_cfg(F3, NBCFG, &value);
2329

2330 2331
	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2332

2333
	if (!(value & NBCFG_ECC_ENABLE)) {
2334
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2335

2336
		s->flags.nb_ecc_prev = 0;
2337

2338
		/* Attempt to turn on DRAM ECC Enable */
2339 2340
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2341

2342
		amd64_read_pci_cfg(F3, NBCFG, &value);
2343

2344
		if (!(value & NBCFG_ECC_ENABLE)) {
2345 2346
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2347
			ret = false;
2348
		} else {
2349
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2350
		}
2351
	} else {
2352
		s->flags.nb_ecc_prev = 1;
2353
	}
2354

2355 2356
	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2357

2358
	return ret;
2359 2360
}

2361 2362
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2363
{
B
Borislav Petkov 已提交
2364 2365
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2366

2367
	if (!s->nbctl_valid)
2368 2369
		return;

B
Borislav Petkov 已提交
2370
	amd64_read_pci_cfg(F3, NBCTL, &value);
2371
	value &= ~mask;
2372
	value |= s->old_nbctl;
2373

B
Borislav Petkov 已提交
2374
	amd64_write_pci_cfg(F3, NBCTL, value);
2375

2376 2377
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2378 2379 2380
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2381 2382 2383
	}

	/* restore the NB Enable MCGCTL bit */
2384
	if (toggle_ecc_err_reporting(s, nid, OFF))
2385
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2386 2387 2388
}

/*
2389 2390 2391 2392
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2393
 */
2394 2395 2396 2397 2398
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2399

2400
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2401 2402
{
	u32 value;
2403
	u8 ecc_en = 0;
2404
	bool nb_mce_en = false;
2405

2406
	amd64_read_pci_cfg(F3, NBCFG, &value);
2407

2408
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2409
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2410

2411
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2412
	if (!nb_mce_en)
2413 2414 2415
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2416

2417 2418 2419 2420 2421
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2422 2423
}

2424 2425 2426 2427 2428 2429
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2430
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2431 2432 2433 2434 2435 2436
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2437 2438 2439
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2440 2441 2442 2443 2444 2445

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2446 2447
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2448 2449 2450 2451 2452 2453
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2454
	if (pvt->nbcap & NBCAP_SECDED)
2455 2456
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2457
	if (pvt->nbcap & NBCAP_CHIPKILL)
2458 2459 2460 2461 2462
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2463
	mci->ctl_name		= fam->ctl_name;
2464
	mci->dev_name		= pci_name(pvt->F2);
2465 2466 2467 2468 2469 2470 2471
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2472 2473 2474 2475
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2476
{
2477 2478 2479 2480
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2481
	case 0xf:
2482
		fam_type		= &amd64_family_types[K8_CPUS];
2483
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2484
		break;
2485

2486
	case 0x10:
2487
		fam_type		= &amd64_family_types[F10_CPUS];
2488
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2489 2490 2491 2492 2493
		break;

	case 0x15:
		fam_type		= &amd64_family_types[F15_CPUS];
		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2494 2495 2496
		break;

	default:
2497
		amd64_err("Unsupported family!\n");
2498
		return NULL;
2499
	}
2500

2501 2502
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2503
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2504
		     (fam == 0xf ?
2505 2506 2507
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2508
	return fam_type;
2509 2510
}

2511
static int amd64_init_one_instance(struct pci_dev *F2)
2512 2513
{
	struct amd64_pvt *pvt = NULL;
2514
	struct amd64_family_type *fam_type = NULL;
2515
	struct mem_ctl_info *mci = NULL;
2516
	int err = 0, ret;
2517
	u8 nid = get_node_id(F2);
2518 2519 2520 2521

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2522
		goto err_ret;
2523

2524
	pvt->mc_node_id	= nid;
2525
	pvt->F2 = F2;
2526

2527
	ret = -EINVAL;
2528 2529
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2530 2531
		goto err_free;

2532
	ret = -ENODEV;
2533
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2534 2535 2536
	if (err)
		goto err_free;

2537
	read_mc_regs(pvt);
2538 2539 2540 2541

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2542
	 * tables in the 'mci' structure.
2543
	 */
2544
	ret = -EINVAL;
2545 2546
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2547
		goto err_siblings;
2548 2549

	ret = -ENOMEM;
2550
	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2551
	if (!mci)
2552
		goto err_siblings;
2553 2554

	mci->pvt_info = pvt;
2555
	mci->dev = &pvt->F2->dev;
2556

2557
	setup_mci_misc_attrs(mci, fam_type);
2558 2559

	if (init_csrows(mci))
2560 2561
		mci->edac_cap = EDAC_FLAG_NONE;

2562
	set_mc_sysfs_attrs(mci);
2563 2564 2565 2566 2567 2568 2569

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2570 2571 2572 2573 2574 2575
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2576 2577 2578 2579
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2580 2581 2582 2583 2584
	return 0;

err_add_mc:
	edac_mc_free(mci);

2585 2586
err_siblings:
	free_mc_sibling_devs(pvt);
2587

2588 2589
err_free:
	kfree(pvt);
2590

2591
err_ret:
2592 2593 2594
	return ret;
}

2595
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2596
					     const struct pci_device_id *mc_type)
2597
{
2598
	u8 nid = get_node_id(pdev);
2599
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2600
	struct ecc_settings *s;
2601
	int ret = 0;
2602 2603

	ret = pci_enable_device(pdev);
2604 2605 2606 2607
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2608

2609 2610 2611
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2612
		goto err_out;
2613 2614 2615

	ecc_stngs[nid] = s;

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2629
	if (ret < 0) {
2630
		amd64_err("Error probing instance: %d\n", nid);
2631 2632
		restore_ecc_error_reporting(s, nid, F3);
	}
2633 2634

	return ret;
2635 2636 2637 2638 2639 2640 2641

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2642 2643 2644 2645 2646 2647
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2648 2649 2650
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2651 2652 2653 2654 2655 2656 2657 2658

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2659
	restore_ecc_error_reporting(s, nid, F3);
2660

2661
	free_mc_sibling_devs(pvt);
2662

2663 2664 2665 2666
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2667 2668
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2669

2670
	/* Free the EDAC CORE resources */
2671
	mci->pvt_info = NULL;
2672
	mcis[nid] = NULL;
2673 2674

	kfree(pvt);
2675 2676 2677 2678 2679 2680 2681 2682
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
2683
static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2700 2701 2702 2703 2704 2705 2706 2707 2708
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},

2709 2710 2711 2712 2713 2714
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2715
	.probe		= amd64_probe_one_instance,
2716 2717 2718 2719
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2720
static void setup_pci_device(void)
2721 2722 2723 2724 2725 2726 2727
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2728
	mci = mcis[0];
2729 2730 2731 2732
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2733
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2747
	int err = -ENODEV;
2748

2749
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2750 2751 2752

	opstate_init();

2753
	if (amd_cache_northbridges() < 0)
2754
		goto err_ret;
2755

2756
	err = -ENOMEM;
2757 2758
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2759
	if (!(mcis && ecc_stngs))
2760
		goto err_free;
2761

2762
	msrs = msrs_alloc();
2763
	if (!msrs)
2764
		goto err_free;
2765

2766 2767
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2768
		goto err_pci;
2769

2770
	err = -ENODEV;
2771 2772
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2773

2774 2775
	setup_pci_device();
	return 0;
2776

2777
err_no_instances:
2778
	pci_unregister_driver(&amd64_pci_driver);
2779

2780 2781 2782
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2783

2784 2785 2786 2787 2788 2789 2790
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2791
err_ret:
2792 2793 2794 2795 2796 2797 2798 2799 2800
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2801

2802 2803 2804
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2805 2806 2807
	kfree(mcis);
	mcis = NULL;

2808 2809
	msrs_free(msrs);
	msrs = NULL;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");