amd64_edac.c 69.9 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27
/*
28 29
 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
 * later.
30
 */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static int ddr2_dbam_revCG[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2]		= 128,
			   [3]		= 256,
			   [4]		= 512,
			   [5]		= 1024,
			   [6]		= 2048,
};

static int ddr2_dbam_revD[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2 ... 3]	= 128,
			   [4]		= 256,
			   [5]		= 512,
			   [6]		= 256,
			   [7]		= 512,
			   [8 ... 9]	= 1024,
			   [10]		= 2048,
};

static int ddr2_dbam[] = { [0]		= 128,
			   [1]		= 256,
			   [2 ... 4]	= 512,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
			   [11]		= 8192,
};

static int ddr3_dbam[] = { [0]		= -1,
			   [1]		= 256,
			   [2]		= 512,
			   [3 ... 4]	= -1,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
69
			   [11]		= 8192,
70 71 72 73 74 75 76 77 78 79
};

/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */

80 81 82 83 84

struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u32 reg = 0;
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
201
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
217
		if (scrubrates[i].scrubval < min_rate)
218 219 220 221 222 223 224 225 226 227 228 229 230 231
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

232
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
233

234 235 236
	if (scrubval)
		return scrubrates[i].bandwidth;

237 238 239
	return 0;
}

240
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
241 242 243
{
	struct amd64_pvt *pvt = mci->pvt_info;

244
	return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
245 246
}

247
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
248 249 250
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
251
	int i, retval = -EINVAL;
252

253
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
254 255 256

	scrubval = scrubval & 0x001F;

257
	amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
258

259
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
260
		if (scrubrates[i].scrubval == scrubval) {
261
			retval = scrubrates[i].bandwidth;
262 263 264
			break;
		}
	}
265
	return retval;
266 267
}

268
/*
269 270
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
271
 */
272
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
273
{
274
	u64 addr;
275 276 277 278 279 280 281 282 283

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

284 285
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
	int node_id;
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
312
	intlv_en = dram_intlv_en(pvt, 0);
313 314

	if (intlv_en == 0) {
315
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
316
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
317
				goto found;
318
		}
319
		goto err_no_match;
320 321
	}

322 323 324
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
325
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
326 327 328 329 330 331
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
332
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
333 334
			break;	/* intlv_sel field matches */

335
		if (++node_id >= DRAM_RANGES)
336 337 338 339 340
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
341 342 343
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
344 345 346 347 348 349 350 351 352 353 354 355
		return NULL;
	}

found:
	return edac_mc_find(node_id);

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
356 357

/*
358 359
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
360
 */
361 362
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
363
{
364 365
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
366

367 368 369 370 371 372 373 374 375 376
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
377

378 379 380 381 382
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
383

384
	*base  = (csbase & base_bits) << addr_shift;
385

386 387 388 389 390
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
391 392
}

393 394 395 396 397 398
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

399 400 401 402 403 404 405 406 407 408 409 410
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

411 412
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
413 414
			continue;

415 416 417
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}
	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
456
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
457 458 459 460 461
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

462
	/* valid for Fam10h and above */
463
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
464 465 466 467
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

468
	if (!dhar_valid(pvt)) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

492
	base = dhar_base(pvt);
493 494 495 496 497

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
498
		*hole_offset = f10_dhar_offset(pvt);
499
	else
500
		*hole_offset = k8_dhar_offset(pvt);
501 502 503 504 505 506 507 508 509

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
541
	struct amd64_pvt *pvt = mci->pvt_info;
542 543 544
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

545
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
573
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
609
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
610 611
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int node_id, intlv_shift;
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
	BUG_ON((node_id < 0) || (node_id > 7));

661
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
662 663 664 665 666 667 668 669

	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

670 671
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
672

673
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
690
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

708
	base     = get_dram_base(pvt, pvt->mc_node_id);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
753
	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
754

755
	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
756 757

	*input_addr_min = base & ~mask;
758
	*input_addr_max = base | mask;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
784 785
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
786 787
	return csrow;
}
788

789
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
790 791 792 793 794 795 796

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
797
	u8 bit;
798
	enum dev_type edac_cap = EDAC_FLAG_NONE;
799

800
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
801 802 803
		? 19
		: 17;

804
	if (pvt->dclr0 & BIT(bit))
805 806 807 808 809 810
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


811
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
812

813 814 815 816 817 818 819 820 821 822 823
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

824 825 826
	if (boot_cpu_data.x86 == 0x10)
		debugf1("  DCT 128bit mode width: %s\n",
			(dclr & BIT(11)) ?  "128b" : "64b");
827 828 829 830 831 832 833 834

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

835
/* Display and decode various NB registers for debug purposes. */
836
static void dump_misc_regs(struct amd64_pvt *pvt)
837
{
838 839 840
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
841
		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
842

843
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
844 845
		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
846 847

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
848

849
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
850

851 852
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
853 854 855
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
856

857
	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
858

859 860
	amd64_debug_display_dimm_sizes(0, pvt);

861
	/* everything below this point is Fam10h and above */
862
	if (boot_cpu_data.x86 == 0xf)
863
		return;
864 865

	amd64_debug_display_dimm_sizes(1, pvt);
866

867
	amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
868

869
	/* Only if NOT ganged does dclr1 have valid info */
870 871
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
872 873
}

874
/*
875
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
876
 */
877
static void prep_chip_selects(struct amd64_pvt *pvt)
878
{
879
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
880 881
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
882
	} else {
883 884
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
885 886 887 888
	}
}

/*
889
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
890
 */
891
static void read_dct_base_mask(struct amd64_pvt *pvt)
892
{
893
	int cs;
894

895
	prep_chip_selects(pvt);
896

897 898 899 900 901
	for_each_chip_select(cs, 0, pvt) {
		u32 reg0   = DCSB0 + (cs * 4);
		u32 reg1   = DCSB1 + (cs * 4);
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
902

903
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
904
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
905
				cs, *base0, reg0);
906

907 908
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
909

910 911 912
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
				cs, *base1, reg1);
913 914
	}

915 916 917 918 919
	for_each_chip_select_mask(cs, 0, pvt) {
		u32 reg0   = DCSM0 + (cs * 4);
		u32 reg1   = DCSM1 + (cs * 4);
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
920

921
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
922
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
923
				cs, *mask0, reg0);
924

925 926
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
927

928 929 930
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
				cs, *mask1, reg1);
931 932 933
	}
}

934
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
935 936 937
{
	enum mem_type type;

938 939 940 941
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
942 943 944 945
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
946 947 948 949
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

950
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
951 952 953 954

	return type;
}

955
/* Get the number of DCT channels the memory controller is using. */
956 957
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
958
	int flag;
959

960
	if (pvt->ext_model >= K8_REV_F)
961 962
		/* RevF (NPT) and later */
		flag = pvt->dclr0 & F10_WIDTH_128;
963
	else
964 965 966 967 968 969 970 971 972
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

973 974
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
975
{
976 977 978 979 980 981 982 983 984
	u8 start_bit = 1;
	u8 end_bit   = 47;

	if (boot_cpu_data.x86 == 0xf) {
		start_bit = 3;
		end_bit   = 39;
	}

	return m->addr & GENMASK(start_bit, end_bit);
985 986
}

987
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
988
{
989
	u32 off = range << 3;
990

991 992
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
993

994 995
	if (boot_cpu_data.x86 == 0xf)
		return;
996

997 998
	if (!dram_rw(pvt, range))
		return;
999

1000 1001
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1002 1003
}

1004 1005
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				    u16 syndrome)
1006 1007
{
	struct mem_ctl_info *src_mci;
1008
	struct amd64_pvt *pvt = mci->pvt_info;
1009 1010 1011 1012
	int channel, csrow;
	u32 page, offset;

	/* CHIPKILL enabled */
1013
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1014
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1015 1016 1017 1018 1019 1020
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1021 1022
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1035
		channel = ((sys_addr & BIT(3)) != 0);
1036 1037 1038 1039 1040 1041
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1042
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1043
	if (!src_mci) {
1044
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1045
			     (unsigned long)sys_addr);
1046 1047 1048 1049
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1050 1051
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1052 1053 1054
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1055
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1056 1057 1058 1059 1060 1061

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1062
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1063
{
1064
	int *dbam_map;
1065

1066 1067 1068 1069 1070 1071
	if (pvt->ext_model >= K8_REV_F)
		dbam_map = ddr2_dbam;
	else if (pvt->ext_model >= K8_REV_D)
		dbam_map = ddr2_dbam_revD;
	else
		dbam_map = ddr2_dbam_revCG;
1072

1073
	return dbam_map[cs_mode];
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1084
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1085
{
1086
	int i, j, channels = 0;
1087

1088 1089 1090
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & F10_WIDTH_128))
		return 2;
1091 1092

	/*
1093 1094 1095
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1096 1097 1098 1099
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1100
	debugf0("Data width is not 128 bits - need more decoding\n");
1101

1102 1103 1104 1105 1106
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1107 1108
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1109

1110 1111 1112 1113 1114 1115
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1116 1117
	}

1118 1119 1120
	if (channels > 2)
		channels = 2;

1121
	amd64_info("MCT channel count: %d\n", channels);
1122 1123 1124 1125

	return channels;
}

1126
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1127
{
1128 1129 1130 1131 1132 1133 1134 1135
	int *dbam_map;

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
		dbam_map = ddr3_dbam;
	else
		dbam_map = ddr2_dbam;

	return dbam_map[cs_mode];
1136 1137
}

1138 1139 1140
static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{

1141 1142 1143
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1144

1145
		debugf0("  mode: %s, All DCTs on: %s\n",
1146 1147 1148 1149 1150 1151 1152
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
			(dct_dram_enabled(pvt) ? "yes"   : "no"));

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

1153
		debugf0("  data interleave for ECC: %s, "
1154 1155 1156 1157
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

1158 1159
		debugf0("  channel interleave: %s, "
			"interleave bits selector: 0x%x\n",
1160
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1161 1162 1163
			dct_sel_interleave_addr(pvt));
	}

1164
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1165 1166
}

1167
/*
1168
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1169 1170
 * Interleaving Modes.
 */
1171
static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1172
				bool hi_range_sel, u8 intlv_en)
1173
{
1174
	u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1175 1176

	if (dct_ganging_enabled(pvt))
1177
		return 0;
1178

1179 1180
	if (hi_range_sel)
		return dct_sel_high;
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1204 1205 1206 1207

	return 0;
}

1208 1209 1210 1211
/* Convert the sys_addr to the normalized DCT address */
static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1212 1213
{
	u64 chan_off;
1214 1215 1216 1217
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u32 hole_valid		= dhar_valid(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
		    hole_valid &&
		    (sys_addr >= BIT_64(32)))
1235
			chan_off = hole_off;
1236 1237 1238
		else
			chan_off = dct_sel_base_off;
	} else {
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
		if (hole_valid && (sys_addr >= BIT_64(32)))
1249
			chan_off = hole_off;
1250
		else
1251
			chan_off = dram_base;
1252 1253
	}

1254
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
}

/* Hack for the time being - Can we get this from BIOS?? */
#define	CH0SPARE_RANK	0
#define	CH1SPARE_RANK	1

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1265
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1266 1267 1268 1269 1270
{
	u32 swap_done;
	u32 bad_dram_cs;

	/* Depending on channel, isolate respective SPARING info */
1271
	if (dct) {
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH1SPARE_RANK;
	} else {
		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH0SPARE_RANK;
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1293
static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1294 1295 1296
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1297
	u64 cs_base, cs_mask;
1298 1299 1300
	int cs_found = -EINVAL;
	int csrow;

1301
	mci = mcis[nid];
1302 1303 1304 1305 1306
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1307
	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1308

1309 1310
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1311 1312
			continue;

1313
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1314

1315 1316
		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			csrow, cs_base, cs_mask);
1317

1318
		cs_mask = ~cs_mask;
1319

1320 1321 1322
		debugf1("    (InputAddr & ~CSMask)=0x%llx "
			"(CSBase & ~CSMask)=0x%llx\n",
			(in_addr & cs_mask), (cs_base & cs_mask));
1323

1324 1325
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1326 1327 1328 1329 1330 1331 1332 1333

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
static u64 f10_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

	if (boot_cpu_data.x86 == 0x10) {
		/* only revC3 and revE have that feature */
		if (boot_cpu_data.x86_model < 4 ||
		    (boot_cpu_data.x86_model < 0xa &&
		     boot_cpu_data.x86_mask < 3))
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1370
/* For a given @dram_range, check if @sys_addr falls within it. */
1371
static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
1372 1373
				  u64 sys_addr, int *nid, int *chan_sel)
{
1374
	int cs_found = -EINVAL;
1375
	u64 chan_addr;
1376
	u32 dct_sel_base;
1377
	u8 channel;
1378
	bool high_range = false;
1379

1380
	u8 node_id    = dram_dst_node(pvt, range);
1381
	u8 intlv_en   = dram_intlv_en(pvt, range);
1382
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1383

1384 1385
	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		range, sys_addr, get_dram_limit(pvt, range));
1386

1387
	if (intlv_en &&
1388 1389 1390
	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
		return -EINVAL;

1391 1392
	sys_addr = f10_swap_interleaved_region(pvt, sys_addr);

1393 1394 1395 1396 1397 1398 1399 1400 1401
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1402
		high_range = true;
1403 1404 1405

	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);

1406 1407
	chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
					  high_range, dct_sel_base);
1408

1409 1410 1411 1412
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1413

1414
	/* remove channel interleave */
1415 1416 1417
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1432 1433
	}

1434
	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1435

1436
	cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
				       int *node, int *chan_sel)
{
1448
	int range, cs_found = -EINVAL;
1449

1450
	for (range = 0; range < DRAM_RANGES; range++) {
1451

1452
		if (!dram_rw(pvt, range))
1453 1454
			continue;

1455 1456
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1457

1458
			cs_found = f10_match_to_this_node(pvt, range,
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1469 1470
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1471
 *
1472 1473
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1474
 */
1475 1476
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				     u16 syndrome)
1477 1478 1479 1480 1481 1482 1483
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;

	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);

1484 1485 1486 1487 1488 1489
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1490

1491 1492 1493 1494 1495
	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1496
	if (dct_ganging_enabled(pvt))
1497
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1498

1499 1500 1501 1502
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1503
		/*
1504
		 * Channel unknown, report all channels on this CSROW as failed.
1505
		 */
1506
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1507
			edac_mc_handle_ce(mci, page, offset, syndrome,
1508
					  csrow, chan, EDAC_MOD_STR);
1509 1510 1511
}

/*
1512
 * debug routine to display the memory sizes of all logical DIMMs and its
1513
 * CSROWs
1514
 */
1515
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1516
{
1517
	int dimm, size0, size1, factor = 0;
1518 1519
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1520

1521
	if (boot_cpu_data.x86 == 0xf) {
1522 1523 1524
		if (pvt->dclr0 & F10_WIDTH_128)
			factor = 1;

1525
		/* K8 families < revF not supported yet */
1526
	       if (pvt->ext_model < K8_REV_F)
1527 1528 1529 1530 1531
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1532
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1533 1534
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1535

1536
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1537

1538 1539
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1540 1541 1542 1543
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1544
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1545
			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1546 1547

		size1 = 0;
1548
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1549
			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1550

1551 1552 1553
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1554 1555 1556
	}
}

1557 1558
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1559
		.ctl_name = "K8",
1560 1561
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1562
		.ops = {
1563 1564 1565
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1566
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1567 1568 1569
		}
	},
	[F10_CPUS] = {
1570
		.ctl_name = "F10h",
1571 1572
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1573
		.ops = {
1574
			.early_channel_count	= f1x_early_channel_count,
1575 1576 1577
			.read_dram_ctl_register	= f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
			.dbam_to_cs		= f10_dbam_to_chip_select,
1578 1579 1580 1581 1582 1583
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
		.ops = {
1584
			.early_channel_count	= f1x_early_channel_count,
1585
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1607
/*
1608 1609 1610
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1611
 *
1612
 * Algorithm courtesy of Ross LaFetra from AMD.
1613
 */
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1651 1652
};

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1676
			   int v_dim)
1677
{
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
		int v_idx =  err_sym * v_dim;
		int v_end = (err_sym + 1) * v_dim;

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1696

1697 1698 1699
					if (!s)
						return err_sym;
				}
1700

1701 1702 1703 1704
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1705 1706 1707 1708 1709
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	int err_sym = -1;

	if (pvt->syn_type == 8)
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
					  pvt->syn_type);
	else if (pvt->syn_type == 4)
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
					  pvt->syn_type);
	else {
1764
		amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1765
		return err_sym;
1766
	}
1767 1768

	return map_err_sym_to_channel(err_sym, pvt->syn_type);
1769 1770
}

1771 1772 1773 1774
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
1775
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1776 1777
{
	struct amd64_pvt *pvt = mci->pvt_info;
1778
	u64 sys_addr;
1779
	u16 syndrome;
1780 1781

	/* Ensure that the Error Address is VALID */
1782
	if (!(m->status & MCI_STATUS_ADDRV)) {
1783
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1784 1785 1786 1787
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1788
	sys_addr = get_error_address(m);
1789
	syndrome = extract_syndrome(m->status);
1790

1791
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1792

1793
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1794 1795 1796
}

/* Handle any Un-correctable Errors (UEs) */
1797
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1798
{
1799
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1800
	int csrow;
1801
	u64 sys_addr;
1802 1803 1804 1805
	u32 page, offset;

	log_mci = mci;

1806
	if (!(m->status & MCI_STATUS_ADDRV)) {
1807
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1808 1809 1810 1811
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1812
	sys_addr = get_error_address(m);
1813 1814 1815 1816 1817

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1818
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1819
	if (!src_mci) {
1820 1821
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1822 1823 1824 1825 1826 1827
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1828
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1829
	if (csrow < 0) {
1830 1831
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1832 1833
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1834
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1835 1836 1837 1838
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1839
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1840
					    struct mce *m)
1841
{
1842 1843 1844
	u16 ec = EC(m->status);
	u8 xec = XEC(m->status, 0x1f);
	u8 ecc_type = (m->status >> 45) & 0x3;
1845

1846
	/* Bail early out if this was an 'observed' error */
1847
	if (PP(ec) == NBSL_PP_OBS)
1848
		return;
1849

1850 1851
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1852 1853
		return;

1854
	if (ecc_type == 2)
1855
		amd64_handle_ce(mci, m);
1856
	else if (ecc_type == 1)
1857
		amd64_handle_ue(mci, m);
1858 1859
}

1860
void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1861
{
1862
	struct mem_ctl_info *mci = mcis[node_id];
1863

1864
	__amd64_decode_bus_error(mci, m);
1865 1866
}

1867
/*
1868
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1869
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1870
 */
1871
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1872 1873
{
	/* Reserve the ADDRESS MAP Device */
1874 1875
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
1876 1877 1878
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
1879
		return -ENODEV;
1880 1881 1882
	}

	/* Reserve the MISC Device */
1883 1884 1885 1886
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
1887

1888 1889 1890
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
1891

1892
		return -ENODEV;
1893
	}
1894 1895 1896
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
1897 1898 1899 1900

	return 0;
}

1901
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1902
{
1903 1904
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
1905 1906 1907 1908 1909 1910
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
1911
static void read_mc_regs(struct amd64_pvt *pvt)
1912 1913
{
	u64 msr_val;
1914
	u32 tmp;
1915
	int range;
1916 1917 1918 1919 1920

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
1921 1922
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
1923 1924 1925 1926

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
1927 1928
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1929 1930 1931
	} else
		debugf0("  TOP_MEM2 disabled.\n");

1932
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1933 1934 1935 1936

	if (pvt->ops->read_dram_ctl_register)
		pvt->ops->read_dram_ctl_register(pvt);

1937 1938
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
1958 1959
	}

1960
	read_dct_base_mask(pvt);
1961

1962
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1963
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1964

1965
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1966

1967 1968
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1969

1970
	if (!dct_ganging_enabled(pvt)) {
1971 1972
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1973
	}
1974

1975
	if (boot_cpu_data.x86 >= 0x10) {
1976
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
1977 1978
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
	}
1979

1980 1981 1982 1983 1984 1985 1986 1987
	if (boot_cpu_data.x86 == 0x10 &&
	    boot_cpu_data.x86_model > 7 &&
	    /* F3x180[EccSymbolSize]=1 => x8 symbols */
	    tmp & BIT(25))
		pvt->syn_type = 8;
	else
		pvt->syn_type = 4;

1988
	dump_misc_regs(pvt);
1989 1990 1991 1992 1993 1994
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
1995
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
2027
	u32 cs_mode, nr_pages;
2028 2029 2030 2031 2032 2033 2034 2035

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2036
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2037

2038
	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2039 2040 2041 2042 2043 2044 2045

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2046
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2057
static int init_csrows(struct mem_ctl_info *mci)
2058 2059
{
	struct csrow_info *csrow;
2060
	struct amd64_pvt *pvt = mci->pvt_info;
2061
	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2062
	u32 val;
2063
	int i, empty = 1;
2064

2065
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2066

2067
	pvt->nbcfg = val;
2068

2069 2070
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
2071
		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2072

2073
	for_each_chip_select(i, 0, pvt) {
2074 2075
		csrow = &mci->csrows[i];

2076
		if (!csrow_enabled(i, 0, pvt)) {
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2092 2093 2094

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
		csrow->page_mask = ~mask;
2095 2096
		/* 8 bytes of resolution */

2097
		csrow->mtype = amd64_determine_memory_type(pvt, i);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2113
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2114
			csrow->edac_mode =
2115
			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2116 2117 2118 2119 2120 2121 2122
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2123

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
	cpumask_var_t mask;
2138
	int cpu, nbe;
2139 2140 2141
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2142
		amd64_warn("%s: Error allocating mask\n", __func__);
2143 2144 2145 2146 2147 2148 2149 2150
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2151
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2152
		nbe = reg->l & MSR_MCGCTL_NBE;
2153 2154

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2155
			cpu, reg->q,
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2168
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2169 2170
{
	cpumask_var_t cmask;
2171
	int cpu;
2172 2173

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2174
		amd64_warn("%s: error allocating mask\n", __func__);
2175 2176 2177
		return false;
	}

2178
	get_cpus_on_this_dct_cpumask(cmask, nid);
2179 2180 2181 2182 2183

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2184 2185
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2186
		if (on) {
2187
			if (reg->l & MSR_MCGCTL_NBE)
2188
				s->flags.nb_mce_enable = 1;
2189

2190
			reg->l |= MSR_MCGCTL_NBE;
2191 2192
		} else {
			/*
2193
			 * Turn off NB MCE reporting only when it was off before
2194
			 */
2195
			if (!s->flags.nb_mce_enable)
2196
				reg->l &= ~MSR_MCGCTL_NBE;
2197 2198 2199 2200 2201 2202 2203 2204 2205
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2206 2207
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2208
{
2209
	bool ret = true;
B
Borislav Petkov 已提交
2210
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2211

2212 2213 2214 2215 2216
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2217
	amd64_read_pci_cfg(F3, NBCTL, &value);
2218

2219 2220
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2221 2222

	value |= mask;
B
Borislav Petkov 已提交
2223
	amd64_write_pci_cfg(F3, NBCTL, value);
2224

2225
	amd64_read_pci_cfg(F3, NBCFG, &value);
2226

2227 2228
	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2229

2230
	if (!(value & NBCFG_ECC_ENABLE)) {
2231
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2232

2233
		s->flags.nb_ecc_prev = 0;
2234

2235
		/* Attempt to turn on DRAM ECC Enable */
2236 2237
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2238

2239
		amd64_read_pci_cfg(F3, NBCFG, &value);
2240

2241
		if (!(value & NBCFG_ECC_ENABLE)) {
2242 2243
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2244
			ret = false;
2245
		} else {
2246
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2247
		}
2248
	} else {
2249
		s->flags.nb_ecc_prev = 1;
2250
	}
2251

2252 2253
	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2254

2255
	return ret;
2256 2257
}

2258 2259
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2260
{
B
Borislav Petkov 已提交
2261 2262
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2263

2264
	if (!s->nbctl_valid)
2265 2266
		return;

B
Borislav Petkov 已提交
2267
	amd64_read_pci_cfg(F3, NBCTL, &value);
2268
	value &= ~mask;
2269
	value |= s->old_nbctl;
2270

B
Borislav Petkov 已提交
2271
	amd64_write_pci_cfg(F3, NBCTL, value);
2272

2273 2274
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2275 2276 2277
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2278 2279 2280
	}

	/* restore the NB Enable MCGCTL bit */
2281
	if (toggle_ecc_err_reporting(s, nid, OFF))
2282
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2283 2284 2285
}

/*
2286 2287 2288 2289
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2290
 */
2291 2292 2293 2294 2295
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2296

2297
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2298 2299
{
	u32 value;
2300
	u8 ecc_en = 0;
2301
	bool nb_mce_en = false;
2302

2303
	amd64_read_pci_cfg(F3, NBCFG, &value);
2304

2305
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2306
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2307

2308
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2309
	if (!nb_mce_en)
2310 2311 2312
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2313

2314 2315 2316 2317 2318
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2319 2320
}

2321 2322 2323 2324 2325 2326
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2327
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2328 2329 2330 2331 2332 2333
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2334 2335 2336
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2337 2338 2339 2340 2341 2342

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2343
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2344 2345 2346 2347 2348 2349
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2350
	if (pvt->nbcap & NBCAP_SECDED)
2351 2352
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2353
	if (pvt->nbcap & NBCAP_CHIPKILL)
2354 2355 2356 2357 2358
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2359
	mci->ctl_name		= pvt->ctl_name;
2360
	mci->dev_name		= pci_name(pvt->F2);
2361 2362 2363 2364 2365 2366 2367
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2368 2369 2370 2371
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2372
{
2373 2374 2375 2376
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2377
	case 0xf:
2378
		fam_type		= &amd64_family_types[K8_CPUS];
2379
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2380 2381
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= K8_MIN_SCRUB_RATE_BITS;
2382 2383
		break;
	case 0x10:
2384
		fam_type		= &amd64_family_types[F10_CPUS];
2385
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2386 2387
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= F10_MIN_SCRUB_RATE_BITS;
2388 2389 2390
		break;

	default:
2391
		amd64_err("Unsupported family!\n");
2392
		return NULL;
2393
	}
2394

2395 2396
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2397
	amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2398
		     (fam == 0xf ?
2399 2400 2401
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2402
	return fam_type;
2403 2404
}

2405
static int amd64_init_one_instance(struct pci_dev *F2)
2406 2407
{
	struct amd64_pvt *pvt = NULL;
2408
	struct amd64_family_type *fam_type = NULL;
2409
	struct mem_ctl_info *mci = NULL;
2410
	int err = 0, ret;
2411
	u8 nid = get_node_id(F2);
2412 2413 2414 2415

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2416
		goto err_ret;
2417

2418
	pvt->mc_node_id	= nid;
2419
	pvt->F2 = F2;
2420

2421
	ret = -EINVAL;
2422 2423
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2424 2425
		goto err_free;

2426
	ret = -ENODEV;
2427
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2428 2429 2430
	if (err)
		goto err_free;

2431
	read_mc_regs(pvt);
2432 2433 2434 2435

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2436
	 * tables in the 'mci' structure.
2437
	 */
2438
	ret = -EINVAL;
2439 2440
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2441
		goto err_siblings;
2442 2443

	ret = -ENOMEM;
2444
	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2445
	if (!mci)
2446
		goto err_siblings;
2447 2448

	mci->pvt_info = pvt;
2449
	mci->dev = &pvt->F2->dev;
2450

2451 2452 2453
	setup_mci_misc_attrs(mci);

	if (init_csrows(mci))
2454 2455
		mci->edac_cap = EDAC_FLAG_NONE;

2456
	set_mc_sysfs_attrs(mci);
2457 2458 2459 2460 2461 2462 2463

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2464 2465 2466 2467 2468 2469
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2470 2471 2472 2473
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2474 2475 2476 2477 2478
	return 0;

err_add_mc:
	edac_mc_free(mci);

2479 2480
err_siblings:
	free_mc_sibling_devs(pvt);
2481

2482 2483
err_free:
	kfree(pvt);
2484

2485
err_ret:
2486 2487 2488
	return ret;
}

2489
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2490
					     const struct pci_device_id *mc_type)
2491
{
2492
	u8 nid = get_node_id(pdev);
2493
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2494
	struct ecc_settings *s;
2495
	int ret = 0;
2496 2497

	ret = pci_enable_device(pdev);
2498 2499 2500 2501
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2502

2503 2504 2505
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2506
		goto err_out;
2507 2508 2509

	ecc_stngs[nid] = s;

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2523
	if (ret < 0) {
2524
		amd64_err("Error probing instance: %d\n", nid);
2525 2526
		restore_ecc_error_reporting(s, nid, F3);
	}
2527 2528

	return ret;
2529 2530 2531 2532 2533 2534 2535

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2536 2537 2538 2539 2540 2541
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2542 2543 2544
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2545 2546 2547 2548 2549 2550 2551 2552

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2553
	restore_ecc_error_reporting(s, nid, F3);
2554

2555
	free_mc_sibling_devs(pvt);
2556

2557 2558 2559 2560
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2561 2562
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2563

2564
	/* Free the EDAC CORE resources */
2565
	mci->pvt_info = NULL;
2566
	mcis[nid] = NULL;
2567 2568

	kfree(pvt);
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2600
	.probe		= amd64_probe_one_instance,
2601 2602 2603 2604
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2605
static void setup_pci_device(void)
2606 2607 2608 2609 2610 2611 2612
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2613
	mci = mcis[0];
2614 2615 2616 2617
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2618
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2632
	int err = -ENODEV;
2633 2634 2635 2636 2637

	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");

	opstate_init();

2638
	if (amd_cache_northbridges() < 0)
2639
		goto err_ret;
2640

2641
	err = -ENOMEM;
2642 2643
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2644
	if (!(mcis && ecc_stngs))
2645 2646
		goto err_ret;

2647
	msrs = msrs_alloc();
2648
	if (!msrs)
2649
		goto err_free;
2650

2651 2652
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2653
		goto err_pci;
2654

2655
	err = -ENODEV;
2656 2657
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2658

2659 2660
	setup_pci_device();
	return 0;
2661

2662
err_no_instances:
2663
	pci_unregister_driver(&amd64_pci_driver);
2664

2665 2666 2667
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2668

2669 2670 2671 2672 2673 2674 2675
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2676
err_ret:
2677 2678 2679 2680 2681 2682 2683 2684 2685
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2686

2687 2688 2689
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2690 2691 2692
	kfree(mcis);
	mcis = NULL;

2693 2694
	msrs_free(msrs);
	msrs = NULL;
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");