amd64_edac.c 75.4 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27
/*
28 29
 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
 * later.
30
 */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static int ddr2_dbam_revCG[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2]		= 128,
			   [3]		= 256,
			   [4]		= 512,
			   [5]		= 1024,
			   [6]		= 2048,
};

static int ddr2_dbam_revD[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2 ... 3]	= 128,
			   [4]		= 256,
			   [5]		= 512,
			   [6]		= 256,
			   [7]		= 512,
			   [8 ... 9]	= 1024,
			   [10]		= 2048,
};

static int ddr2_dbam[] = { [0]		= 128,
			   [1]		= 256,
			   [2 ... 4]	= 512,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
			   [11]		= 8192,
};

static int ddr3_dbam[] = { [0]		= -1,
			   [1]		= 256,
			   [2]		= 512,
			   [3 ... 4]	= -1,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
69
			   [11]		= 8192,
70 71 72 73 74 75 76 77 78 79
};

/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */

80 81 82 83 84

struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
128
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
144
		if (scrubrates[i].scrubval < min_rate)
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);

161 162 163
	if (scrubval)
		return scrubrates[i].bandwidth;

164 165 166
	return 0;
}

167
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
168 169 170
{
	struct amd64_pvt *pvt = mci->pvt_info;

171
	return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
172 173
}

174
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
175 176 177
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
178
	int i, retval = -EINVAL;
179

180
	amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
181 182 183

	scrubval = scrubval & 0x001F;

184
	amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
185

186
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
187
		if (scrubrates[i].scrubval == scrubval) {
188
			retval = scrubrates[i].bandwidth;
189 190 191
			break;
		}
	}
192
	return retval;
193 194
}

195 196 197
/* Map from a CSROW entry to the mask entry that operates on it */
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
{
198
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
199 200 201
		return csrow;
	else
		return csrow >> 1;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
}

/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsb0[csrow];
	else
		return pvt->dcsb1[csrow];
}

/*
 * Return the 'mask' address the i'th CS entry. This function is needed because
 * there number of DCSM registers on Rev E and prior vs Rev F and later is
 * different.
 */
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
	else
		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
}


/*
 * In *base and *limit, pass back the full 40-bit base and limit physical
 * addresses for the node given by node_id.  This information is obtained from
 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
 * base and limit addresses are of type SysAddr, as defined at the start of
 * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
 * in the address range they represent.
 */
static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
			       u64 *base, u64 *limit)
{
	*base = pvt->dram_base[node_id];
	*limit = pvt->dram_limit[node_id];
}

/*
 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
 * with node_id
 */
static int amd64_base_limit_match(struct amd64_pvt *pvt,
					u64 sys_addr, int node_id)
{
	u64 base, limit, addr;

	amd64_get_base_and_limit(pvt, node_id, &base, &limit);

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

	return (addr >= base) && (addr <= limit);
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
	int node_id;
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
	intlv_en = pvt->dram_IntlvEn[0];

	if (intlv_en == 0) {
291
		for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
292
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
293
				goto found;
294
		}
295
		goto err_no_match;
296 297
	}

298 299 300
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
301
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
302 303 304 305 306 307
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
308
		if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
309 310 311 312 313 314 315 316
			break;	/* intlv_sel field matches */

		if (++node_id >= DRAM_REG_COUNT)
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
317 318 319
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
320 321 322 323 324 325 326 327 328 329 330 331
		return NULL;
	}

found:
	return edac_mc_find(node_id);

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

/*
 * Extract the DRAM CS base address from selected csrow register.
 */
static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
{
	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
				pvt->dcs_shift;
}

/*
 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
 */
static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
{
	u64 dcsm_bits, other_bits;
	u64 mask;

	/* Extract bits from DRAM CS Mask. */
	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;

	other_bits = pvt->dcsm_mask;
	other_bits = ~(other_bits << pvt->dcs_shift);

	/*
	 * The extracted bits from DCSM belong in the spaces represented by
	 * the cleared bits in other_bits.
	 */
	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;

	return mask;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

	/*
	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
	 * base/mask register pair, test the condition shown near the start of
	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
	 */
382
	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

		/* This DRAM chip select is disabled on this node */
		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
			continue;

		base = base_from_dct_base(pvt, csrow);
		mask = ~mask_from_dct_mask(pvt, csrow);

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}

	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Return the base value defined by the DRAM Base register for the node
 * represented by mci.  This function returns the full 40-bit value despite the
 * fact that the register only stores bits 39-24 of the value. See section
 * 3.4.4.1 (BKDG #26094, K8, revA-E)
 */
static inline u64 get_dram_base(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	return pvt->dram_base[pvt->mc_node_id];
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
442
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

	/* only valid for Fam10h */
	if (boot_cpu_data.x86 == 0x10 &&
	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

	if ((pvt->dhar & DHAR_VALID) == 0) {
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

	base = dhar_base(pvt->dhar);

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
		*hole_offset = f10_dhar_offset(pvt->dhar);
	else
		*hole_offset = k8_dhar_offset(pvt->dhar);

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

	dram_base = get_dram_base(mci);

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
	    (dram_addr & 0xfff);

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int node_id, intlv_shift;
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
	BUG_ON((node_id < 0) || (node_id > 7));

	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);

	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
	    (input_addr & 0xfff);

	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
739
	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

	base = base_from_dct_base(pvt, csrow);
	mask = mask_from_dct_mask(pvt, csrow);

	*input_addr_min = base & ~mask;
	*input_addr_max = base | mask | pvt->dcs_mask_notused;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
771 772
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
773 774
	return csrow;
}
775

776
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
777

778 779 780 781 782
static u16 extract_syndrome(struct err_regs *err)
{
	return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
}

783 784 785 786 787 788 789
/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
	int bit;
790
	enum dev_type edac_cap = EDAC_FLAG_NONE;
791

792
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
793 794 795
		? 19
		: 17;

796
	if (pvt->dclr0 & BIT(bit))
797 798 799 800 801 802
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


803
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

	debugf1("  DCT 128bit mode width: %s\n",
		(dclr & BIT(11)) ?  "128b" : "64b");

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

826 827 828 829 830
/* Display and decode various NB registers for debug purposes. */
static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
{
	int ganged;

831 832 833 834
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
835

836 837 838 839 840
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
		(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
841

842
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
843

844 845 846 847 848 849
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
			pvt->dhar,
			dhar_base(pvt->dhar),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
						   : f10_dhar_offset(pvt->dhar));
850

851 852
	debugf1("  DramHoleValid: %s\n",
		(pvt->dhar & DHAR_VALID) ? "yes" : "no");
853

854
	/* everything below this point is Fam10h and above */
855 856
	if (boot_cpu_data.x86 == 0xf) {
		amd64_debug_display_dimm_sizes(0, pvt);
857
		return;
858
	}
859

860
	amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
861

862
	/* Only if NOT ganged does dclr1 have valid info */
863 864
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
865 866 867 868 869 870 871

	/*
	 * Determine if ganged and then dump memory sizes for first controller,
	 * and if NOT ganged dump info for 2nd controller.
	 */
	ganged = dct_ganging_enabled(pvt);

872
	amd64_debug_display_dimm_sizes(0, pvt);
873 874

	if (!ganged)
875
		amd64_debug_display_dimm_sizes(1, pvt);
876 877 878 879 880
}

/* Read in both of DBAM registers */
static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
{
881
	amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
882

883
	if (boot_cpu_data.x86 >= 0x10)
884
		amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/*
 * NOTE: CPU Revision Dependent code: Rev E and Rev F
 *
 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
 * set the shift factor for the DCSB and DCSM values.
 *
 * ->dcs_mask_notused, RevE:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of section
 * 3.5.4 (p. 84).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
 * gaps.
 *
 * ->dcs_mask_notused, RevF and later:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of NPT section
 * 4.5.4 (p. 87).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [36:27] and [21:13].
 *
 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
 * which are all bits in the above-mentioned gaps.
 */
static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
{
918

919
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
920 921 922 923 924 925 926
		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_E_DCS_SHIFT;
		pvt->cs_count		= 8;
		pvt->num_dcsm		= 8;
	} else {
927 928 929 930
		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
931 932
		pvt->cs_count		= 8;
		pvt->num_dcsm		= 4;
933 934 935 936 937 938 939 940
	}
}

/*
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
 */
static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
{
941
	int cs, reg;
942 943 944

	amd64_set_dct_base_and_mask(pvt);

945
	for (cs = 0; cs < pvt->cs_count; cs++) {
946
		reg = K8_DCSB0 + (cs * 4);
947
		if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
948 949 950 951 952 953
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsb0[cs], reg);

		/* If DCT are NOT ganged, then read in DCT1's base */
		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
			reg = F10_DCSB1 + (cs * 4);
954
			if (!amd64_read_pci_cfg(pvt->F2, reg,
955
						&pvt->dcsb1[cs]))
956 957 958 959 960 961 962 963
				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsb1[cs], reg);
		} else {
			pvt->dcsb1[cs] = 0;
		}
	}

	for (cs = 0; cs < pvt->num_dcsm; cs++) {
964
		reg = K8_DCSM0 + (cs * 4);
965
		if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
966 967 968 969 970 971
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsm0[cs], reg);

		/* If DCT are NOT ganged, then read in DCT1's mask */
		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
			reg = F10_DCSM1 + (cs * 4);
972
			if (!amd64_read_pci_cfg(pvt->F2, reg,
973
						&pvt->dcsm1[cs]))
974 975
				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsm1[cs], reg);
976
		} else {
977
			pvt->dcsm1[cs] = 0;
978
		}
979 980 981
	}
}

982
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
983 984 985
{
	enum mem_type type;

986
	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
987 988 989 990
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
991 992 993 994
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

995
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
996 997 998 999

	return type;
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/*
 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
 * and the later RevF memory controllers (DDR vs DDR2)
 *
 * Return:
 *      number of memory channels in operation
 * Pass back:
 *      contents of the DCL0_LOW register
 */
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
	int flag, err = 0;

1013
	err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
1014 1015 1016
	if (err)
		return err;

1017
	if (pvt->ext_model >= K8_REV_F)
1018 1019
		/* RevF (NPT) and later */
		flag = pvt->dclr0 & F10_WIDTH_128;
1020
	else
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

/* extract the ERROR ADDRESS for the K8 CPUs */
static u64 k8_get_error_address(struct mem_ctl_info *mci,
1032
				struct err_regs *info)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
{
	return (((u64) (info->nbeah & 0xff)) << 32) +
			(info->nbeal & ~0x03);
}

/*
 * Read the Base and Limit registers for K8 based Memory controllers; extract
 * fields from the 'raw' reg into separate data fields
 *
 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
 */
static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
	u32 low;
	u32 off = dram << 3;	/* 8 bytes between DRAM entries */

1049
	amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
1050 1051

	/* Extract parts into separate data entries */
1052
	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1053 1054 1055
	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
	pvt->dram_rw_en[dram] = (low & 0x3);

1056
	amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
1057 1058 1059 1060 1061

	/*
	 * Extract parts into separate data entries. Limit is the HIGHEST memory
	 * location of the region, so lower 24 bits need to be all ones
	 */
1062
	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1063 1064 1065 1066 1067
	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
	pvt->dram_DstNode[dram] = (low & 0x7);
}

static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1068
				    struct err_regs *err_info, u64 sys_addr)
1069 1070 1071 1072
{
	struct mem_ctl_info *src_mci;
	int channel, csrow;
	u32 page, offset;
1073
	u16 syndrome;
1074

1075
	syndrome = extract_syndrome(err_info);
1076 1077

	/* CHIPKILL enabled */
1078
	if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
1079
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1080 1081 1082 1083 1084 1085
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1086 1087
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1100
		channel = ((sys_addr & BIT(3)) != 0);
1101 1102 1103 1104 1105 1106
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1107
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1108
	if (!src_mci) {
1109
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1110
			     (unsigned long)sys_addr);
1111 1112 1113 1114
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1115 1116
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1117 1118 1119
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1120
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1121 1122 1123 1124 1125 1126

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1127
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1128
{
1129
	int *dbam_map;
1130

1131 1132 1133 1134 1135 1136
	if (pvt->ext_model >= K8_REV_F)
		dbam_map = ddr2_dbam;
	else if (pvt->ext_model >= K8_REV_D)
		dbam_map = ddr2_dbam_revD;
	else
		dbam_map = ddr2_dbam_revCG;
1137

1138
	return dbam_map[cs_mode];
1139 1140
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
static int f10_early_channel_count(struct amd64_pvt *pvt)
{
1151
	int dbams[] = { DBAM0, DBAM1 };
1152
	int i, j, channels = 0;
1153 1154 1155 1156 1157 1158 1159 1160 1161
	u32 dbam;

	/* If we are in 128 bit mode, then we are using 2 channels */
	if (pvt->dclr0 & F10_WIDTH_128) {
		channels = 2;
		return channels;
	}

	/*
1162 1163 1164
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1165 1166 1167 1168
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1169
	debugf0("Data width is not 128 bits - need more decoding\n");
1170

1171 1172 1173 1174 1175
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1176
	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1177
		if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
1178 1179
			goto err_reg;

1180 1181 1182 1183 1184 1185
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1186 1187
	}

1188 1189 1190
	if (channels > 2)
		channels = 2;

1191
	amd64_info("MCT channel count: %d\n", channels);
1192 1193 1194 1195 1196 1197 1198 1199

	return channels;

err_reg:
	return -1;

}

1200
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1201
{
1202 1203 1204 1205 1206 1207 1208 1209
	int *dbam_map;

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
		dbam_map = ddr3_dbam;
	else
		dbam_map = ddr2_dbam;

	return dbam_map[cs_mode];
1210 1211 1212
}

static u64 f10_get_error_address(struct mem_ctl_info *mci,
1213
			struct err_regs *info)
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	return (((u64) (info->nbeah & 0xffff)) << 32) +
			(info->nbeal & ~0x01);
}

/*
 * Read the Base and Limit registers for F10 based Memory controllers. Extract
 * fields from the 'raw' reg into separate data fields.
 *
 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
 */
static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;

	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);

	/* read the 'raw' DRAM BASE Address register */
1233 1234
	amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
	amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
1235 1236 1237 1238 1239 1240 1241 1242 1243

	/* Extract parts into separate data entries */
	pvt->dram_rw_en[dram] = (low_base & 0x3);

	if (pvt->dram_rw_en[dram] == 0)
		return;

	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;

1244
	pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1245
			       (((u64)low_base  & 0xFFFF0000) << 8);
1246 1247 1248 1249 1250

	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);

	/* read the 'raw' LIMIT registers */
1251 1252
	amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
	amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
1253 1254 1255 1256 1257 1258 1259 1260

	pvt->dram_DstNode[dram] = (low_limit & 0x7);
	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;

	/*
	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
	 * memory location of the region, so low 24 bits need to be all ones.
	 */
1261
	pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1262
				(((u64) low_limit & 0xFFFF0000) << 8) |
1263
				0x00FFFFFF;
1264
}
1265 1266 1267 1268

static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{

1269
	if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
1270
				&pvt->dram_ctl_select_low)) {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
			"High range addresses at: 0x%x\n",
			pvt->dram_ctl_select_low,
			dct_sel_baseaddr(pvt));

		debugf0("  DCT mode: %s, All DCTs on: %s\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
			(dct_dram_enabled(pvt) ? "yes"   : "no"));

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

		debugf0("  DCT data interleave for ECC: %s, "
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

		debugf0("  DCT channel interleave: %s, "
			"DCT interleave bits selector: 0x%x\n",
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1292 1293 1294
			dct_sel_interleave_addr(pvt));
	}

1295
	amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
1296
			   &pvt->dram_ctl_select_high);
1297 1298
}

1299 1300 1301 1302
/*
 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
 * Interleaving Modes.
 */
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				int hi_range_sel, u32 intlv_en)
{
	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;

	if (dct_ganging_enabled(pvt))
		cs = 0;
	else if (hi_range_sel)
		cs = dct_sel_high;
	else if (dct_interleave_enabled(pvt)) {
1313 1314 1315
		/*
		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
		 */
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		if (dct_sel_interleave_addr(pvt) == 0)
			cs = sys_addr >> 6 & 1;
		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			if (dct_sel_interleave_addr(pvt) & 1)
				cs = (sys_addr >> 9 & 1) ^ temp;
			else
				cs = (sys_addr >> 6 & 1) ^ temp;
		} else if (intlv_en & 4)
			cs = sys_addr >> 15 & 1;
		else if (intlv_en & 2)
			cs = sys_addr >> 14 & 1;
		else if (intlv_en & 1)
			cs = sys_addr >> 13 & 1;
		else
			cs = sys_addr >> 12 & 1;
	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
		cs = ~dct_sel_high & 1;
	else
		cs = 0;

	return cs;
}

static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
{
	if (intlv_en == 1)
		return 1;
	else if (intlv_en == 3)
		return 2;
	else if (intlv_en == 7)
		return 3;

	return 0;
}

1353 1354
/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1355 1356
						 u32 dct_sel_base_addr,
						 u64 dct_sel_base_off,
1357
						 u32 hole_valid, u32 hole_off,
1358 1359 1360 1361 1362
						 u64 dram_base)
{
	u64 chan_off;

	if (hi_range_sel) {
1363
		if (!(dct_sel_base_addr & 0xFFFF0000) &&
1364
		   hole_valid && (sys_addr >= 0x100000000ULL))
1365 1366 1367 1368
			chan_off = hole_off << 16;
		else
			chan_off = dct_sel_base_off;
	} else {
1369
		if (hole_valid && (sys_addr >= 0x100000000ULL))
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
			chan_off = hole_off << 16;
		else
			chan_off = dram_base & 0xFFFFF8000000ULL;
	}

	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
			(chan_off & 0x0000FFFFFF800000ULL);
}

/* Hack for the time being - Can we get this from BIOS?? */
#define	CH0SPARE_RANK	0
#define	CH1SPARE_RANK	1

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
static inline int f10_process_possible_spare(int csrow,
				u32 cs, struct amd64_pvt *pvt)
{
	u32 swap_done;
	u32 bad_dram_cs;

	/* Depending on channel, isolate respective SPARING info */
	if (cs) {
		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH1SPARE_RANK;
	} else {
		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH0SPARE_RANK;
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	u32 cs_base, cs_mask;
	int cs_found = -EINVAL;
	int csrow;

1424
	mci = mcis[nid];
1425 1426 1427 1428 1429 1430 1431
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);

1432
	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

		cs_base = amd64_get_dct_base(pvt, cs, csrow);
		if (!(cs_base & K8_DCSB_CS_ENABLE))
			continue;

		/*
		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
		 * of the actual address.
		 */
		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;

		/*
		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
		 */
		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);

		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
				csrow, cs_base, cs_mask);

		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;

		debugf1("              Final CSMask=0x%x\n", cs_mask);
		debugf1("    (InputAddr & ~CSMask)=0x%x "
				"(CSBase & ~CSMask)=0x%x\n",
				(in_addr & ~cs_mask), (cs_base & ~cs_mask));

		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
			cs_found = f10_process_possible_spare(csrow, cs, pvt);

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
/* For a given @dram_range, check if @sys_addr falls within it. */
static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
				  u64 sys_addr, int *nid, int *chan_sel)
{
	int node_id, cs_found = -EINVAL, high_range = 0;
	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
	u32 hole_valid, tmp, dct_sel_base, channel;
	u64 dram_base, chan_addr, dct_sel_base_off;

	dram_base = pvt->dram_base[dram_range];
	intlv_en = pvt->dram_IntlvEn[dram_range];

	node_id = pvt->dram_DstNode[dram_range];
	intlv_sel = pvt->dram_IntlvSel[dram_range];

	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);

	/*
	 * This assumes that one node's DHAR is the same as all the other
	 * nodes' DHAR.
	 */
	hole_off = (pvt->dhar & 0x0000FF80);
	hole_valid = (pvt->dhar & 0x1);
	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;

	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
			hole_off, hole_valid, intlv_sel);

1500
	if (intlv_en &&
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
		return -EINVAL;

	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
		high_range = 1;

	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);

	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
					     dct_sel_base_off, hole_valid,
					     hole_off, dram_base);

	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);

	/* remove Node ID (in case of memory interleaving) */
	tmp = chan_addr & 0xFC0;

	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;

	/* remove channel interleave and hash */
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
		if (dct_sel_interleave_addr(pvt) != 1)
			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
		else {
			tmp = chan_addr & 0xFC0;
			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
					| tmp;
		}
	}

	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
		chan_addr, (u32)(chan_addr >> 8));

	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
				       int *node, int *chan_sel)
{
	int dram_range, cs_found = -EINVAL;
	u64 dram_base, dram_limit;

	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {

		if (!pvt->dram_rw_en[dram_range])
			continue;

		dram_base = pvt->dram_base[dram_range];
		dram_limit = pvt->dram_limit[dram_range];

		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {

			cs_found = f10_match_to_this_node(pvt, dram_range,
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1580 1581
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1582
 *
1583 1584
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1585 1586
 */
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1587
				     struct err_regs *err_info,
1588 1589 1590 1591 1592
				     u64 sys_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;
1593
	u16 syndrome;
1594 1595 1596

	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);

1597 1598 1599 1600 1601 1602
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1603

1604
	syndrome = extract_syndrome(err_info);
1605 1606 1607 1608 1609 1610

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1611
	if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
1612
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1613

1614 1615 1616 1617
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1618
		/*
1619
		 * Channel unknown, report all channels on this CSROW as failed.
1620
		 */
1621
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1622
			edac_mc_handle_ce(mci, page, offset, syndrome,
1623
					  csrow, chan, EDAC_MOD_STR);
1624 1625 1626
}

/*
1627
 * debug routine to display the memory sizes of all logical DIMMs and its
1628 1629
 * CSROWs as well
 */
1630
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1631
{
1632
	int dimm, size0, size1, factor = 0;
1633 1634 1635
	u32 dbam;
	u32 *dcsb;

1636
	if (boot_cpu_data.x86 == 0xf) {
1637 1638 1639
		if (pvt->dclr0 & F10_WIDTH_128)
			factor = 1;

1640
		/* K8 families < revF not supported yet */
1641
	       if (pvt->ext_model < K8_REV_F)
1642 1643 1644 1645 1646 1647 1648
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1649 1650 1651 1652

	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;

1653 1654
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1655 1656 1657 1658 1659
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1660
			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1661 1662 1663

		size1 = 0;
		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1664
			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1665

1666 1667 1668
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1669 1670 1671
	}
}

1672 1673
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1674
		.ctl_name = "K8",
1675 1676
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1677
		.ops = {
1678 1679 1680 1681 1682
			.early_channel_count	= k8_early_channel_count,
			.get_error_address	= k8_get_error_address,
			.read_dram_base_limit	= k8_read_dram_base_limit,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1683 1684 1685
		}
	},
	[F10_CPUS] = {
1686
		.ctl_name = "F10h",
1687 1688
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1689
		.ops = {
1690 1691 1692 1693 1694 1695
			.early_channel_count	= f10_early_channel_count,
			.get_error_address	= f10_get_error_address,
			.read_dram_base_limit	= f10_read_dram_base_limit,
			.read_dram_ctl_register	= f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
			.dbam_to_cs		= f10_dbam_to_chip_select,
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1717
/*
1718 1719 1720
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1721
 *
1722
 * Algorithm courtesy of Ross LaFetra from AMD.
1723
 */
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1761 1762
};

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1786
			   int v_dim)
1787
{
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
		int v_idx =  err_sym * v_dim;
		int v_end = (err_sym + 1) * v_dim;

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1806

1807 1808 1809
					if (!s)
						return err_sym;
				}
1810

1811 1812 1813 1814
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1815 1816 1817 1818 1819
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	int err_sym = -1;

	if (pvt->syn_type == 8)
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
					  pvt->syn_type);
	else if (pvt->syn_type == 4)
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
					  pvt->syn_type);
	else {
1874
		amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1875
		return err_sym;
1876
	}
1877 1878

	return map_err_sym_to_channel(err_sym, pvt->syn_type);
1879 1880
}

1881 1882 1883 1884 1885
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
static void amd64_handle_ce(struct mem_ctl_info *mci,
1886
			    struct err_regs *info)
1887 1888
{
	struct amd64_pvt *pvt = mci->pvt_info;
1889
	u64 sys_addr;
1890 1891

	/* Ensure that the Error Address is VALID */
1892 1893
	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1894 1895 1896 1897
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1898
	sys_addr = pvt->ops->get_error_address(mci, info);
1899

1900
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1901

1902
	pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
1903 1904 1905 1906
}

/* Handle any Un-correctable Errors (UEs) */
static void amd64_handle_ue(struct mem_ctl_info *mci,
1907
			    struct err_regs *info)
1908
{
1909 1910
	struct amd64_pvt *pvt = mci->pvt_info;
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1911
	int csrow;
1912
	u64 sys_addr;
1913 1914 1915 1916
	u32 page, offset;

	log_mci = mci;

1917 1918
	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1919 1920 1921 1922
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1923
	sys_addr = pvt->ops->get_error_address(mci, info);
1924 1925 1926 1927 1928

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1929
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1930
	if (!src_mci) {
1931 1932
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1933 1934 1935 1936 1937 1938
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1939
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1940
	if (csrow < 0) {
1941 1942
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1943 1944
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1945
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1946 1947 1948 1949
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1950
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1951
					    struct err_regs *info)
1952
{
1953 1954
	u16 ec = EC(info->nbsl);
	u8 xec = XEC(info->nbsl, 0x1f);
B
Borislav Petkov 已提交
1955
	int ecc_type = (info->nbsh >> 13) & 0x3;
1956

1957 1958 1959
	/* Bail early out if this was an 'observed' error */
	if (PP(ec) == K8_NBSL_PP_OBS)
		return;
1960

1961 1962
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1963 1964
		return;

1965
	if (ecc_type == 2)
1966
		amd64_handle_ce(mci, info);
1967
	else if (ecc_type == 1)
1968 1969 1970
		amd64_handle_ue(mci, info);
}

1971
void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1972
{
1973
	struct mem_ctl_info *mci = mcis[node_id];
1974
	struct err_regs regs;
1975

1976 1977 1978 1979 1980 1981 1982
	regs.nbsl  = (u32) m->status;
	regs.nbsh  = (u32)(m->status >> 32);
	regs.nbeal = (u32) m->addr;
	regs.nbeah = (u32)(m->addr >> 32);
	regs.nbcfg = nbcfg;

	__amd64_decode_bus_error(mci, &regs);
1983 1984 1985 1986 1987

	/*
	 * Check the UE bit of the NB status high register, if set generate some
	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
	 * If it was a GART error, skip that process.
1988 1989
	 *
	 * FIXME: this should go somewhere else, if at all.
1990
	 */
1991
	if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
1992
		edac_mc_handle_ue_no_info(mci, "UE bit is set");
1993

1994 1995
}

1996
/*
1997
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1998
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1999
 */
2000
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2001 2002
{
	/* Reserve the ADDRESS MAP Device */
2003 2004
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
2005 2006 2007
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2008
		return -ENODEV;
2009 2010 2011
	}

	/* Reserve the MISC Device */
2012 2013 2014 2015
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2016

2017 2018 2019
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2020

2021
		return -ENODEV;
2022
	}
2023 2024 2025
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
2026 2027 2028 2029

	return 0;
}

2030
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2031
{
2032 2033
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2034 2035 2036 2037 2038 2039
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2040
static void read_mc_regs(struct amd64_pvt *pvt)
2041 2042
{
	u64 msr_val;
2043
	u32 tmp;
2044
	int dram;
2045 2046 2047 2048 2049

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2050 2051
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2052 2053 2054 2055

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2056 2057
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2058 2059 2060
	} else
		debugf0("  TOP_MEM2 disabled.\n");

2061
	amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

	if (pvt->ops->read_dram_ctl_register)
		pvt->ops->read_dram_ctl_register(pvt);

	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
		/*
		 * Call CPU specific READ function to get the DRAM Base and
		 * Limit values from the DCT.
		 */
		pvt->ops->read_dram_base_limit(pvt, dram);

		/*
		 * Only print out debug info on rows with both R and W Enabled.
		 * Normal processing, compiler should optimize this whole 'if'
		 * debug output block away.
		 */
		if (pvt->dram_rw_en[dram] != 0) {
2079 2080
			debugf1("  DRAM-BASE[%d]: 0x%016llx "
				"DRAM-LIMIT:  0x%016llx\n",
2081
				dram,
2082 2083 2084
				pvt->dram_base[dram],
				pvt->dram_limit[dram]);

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
			debugf1("        IntlvEn=%s %s %s "
				"IntlvSel=%d DstNode=%d\n",
				pvt->dram_IntlvEn[dram] ?
					"Enabled" : "Disabled",
				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
				pvt->dram_IntlvSel[dram],
				pvt->dram_DstNode[dram]);
		}
	}

	amd64_read_dct_base_mask(pvt);

2098
	amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
2099 2100
	amd64_read_dbam_reg(pvt);

2101
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2102

2103 2104
	amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
	amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
2105

2106 2107
	if (boot_cpu_data.x86 >= 0x10) {
		if (!dct_ganging_enabled(pvt)) {
2108 2109
			amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
			amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
2110
		}
2111
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2112
	}
2113 2114 2115 2116 2117 2118 2119 2120 2121

	if (boot_cpu_data.x86 == 0x10 &&
	    boot_cpu_data.x86_model > 7 &&
	    /* F3x180[EccSymbolSize]=1 => x8 symbols */
	    tmp & BIT(25))
		pvt->syn_type = 8;
	else
		pvt->syn_type = 4;

2122 2123 2124 2125 2126 2127 2128
	amd64_dump_misc_regs(pvt);
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2129
 *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
2161
	u32 cs_mode, nr_pages;
2162 2163 2164 2165 2166 2167 2168 2169

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2170
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2171

2172
	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2173 2174 2175 2176 2177 2178 2179

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2180
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2191
static int init_csrows(struct mem_ctl_info *mci)
2192 2193
{
	struct csrow_info *csrow;
2194
	struct amd64_pvt *pvt = mci->pvt_info;
2195
	u64 input_addr_min, input_addr_max, sys_addr;
2196
	u32 val;
2197
	int i, empty = 1;
2198

2199
	amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
2200

2201 2202
	pvt->nbcfg = val;
	pvt->ctl_error_info.nbcfg = val;
2203

2204 2205 2206
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
		!!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
2207

2208
	for (i = 0; i < pvt->cs_count; i++) {
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
		csrow = &mci->csrows[i];

		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
		/* 8 bytes of resolution */

2230
		csrow->mtype = amd64_determine_memory_type(pvt, i);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
			csrow->edac_mode =
			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2256

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
	cpumask_var_t mask;
2271
	int cpu, nbe;
2272 2273 2274
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2275
		amd64_warn("%s: Error allocating mask\n", __func__);
2276 2277 2278 2279 2280 2281 2282 2283
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2284 2285
		struct msr *reg = per_cpu_ptr(msrs, cpu);
		nbe = reg->l & K8_MSR_MCGCTL_NBE;
2286 2287

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2288
			cpu, reg->q,
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2301
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2302 2303
{
	cpumask_var_t cmask;
2304
	int cpu;
2305 2306

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2307
		amd64_warn("%s: error allocating mask\n", __func__);
2308 2309 2310
		return false;
	}

2311
	get_cpus_on_this_dct_cpumask(cmask, nid);
2312 2313 2314 2315 2316

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2317 2318
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2319
		if (on) {
2320
			if (reg->l & K8_MSR_MCGCTL_NBE)
2321
				s->flags.nb_mce_enable = 1;
2322

2323
			reg->l |= K8_MSR_MCGCTL_NBE;
2324 2325
		} else {
			/*
2326
			 * Turn off NB MCE reporting only when it was off before
2327
			 */
2328
			if (!s->flags.nb_mce_enable)
2329
				reg->l &= ~K8_MSR_MCGCTL_NBE;
2330 2331 2332 2333 2334 2335 2336 2337 2338
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2339 2340
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2341
{
2342
	bool ret = true;
2343
	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2344

2345 2346 2347 2348 2349 2350
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

	amd64_read_pci_cfg(F3, K8_NBCTL, &value);
2351

2352 2353 2354
	/* turn on UECCEn and CECCEn bits */
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2355 2356

	value |= mask;
2357
	pci_write_config_dword(F3, K8_NBCTL, value);
2358

2359
	amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2360

2361 2362 2363
	debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		nid, value,
		!!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
2364 2365

	if (!(value & K8_NBCFG_ECC_ENABLE)) {
2366
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2367

2368
		s->flags.nb_ecc_prev = 0;
2369

2370 2371
		/* Attempt to turn on DRAM ECC Enable */
		value |= K8_NBCFG_ECC_ENABLE;
2372
		pci_write_config_dword(F3, K8_NBCFG, value);
2373

2374
		amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2375 2376

		if (!(value & K8_NBCFG_ECC_ENABLE)) {
2377 2378
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2379
			ret = false;
2380
		} else {
2381
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2382
		}
2383
	} else {
2384
		s->flags.nb_ecc_prev = 1;
2385
	}
2386

2387 2388 2389
	debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		nid, value,
		!!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
2390

2391
	return ret;
2392 2393
}

2394 2395
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2396
{
2397
	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2398

2399
	if (!s->nbctl_valid)
2400 2401
		return;

2402
	amd64_read_pci_cfg(F3, K8_NBCTL, &value);
2403
	value &= ~mask;
2404
	value |= s->old_nbctl;
2405

2406
	pci_write_config_dword(F3, K8_NBCTL, value);
2407

2408 2409
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2410
		amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2411
		value &= ~K8_NBCFG_ECC_ENABLE;
2412
		pci_write_config_dword(F3, K8_NBCFG, value);
2413 2414 2415
	}

	/* restore the NB Enable MCGCTL bit */
2416
	if (toggle_ecc_err_reporting(s, nid, OFF))
2417
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2418 2419 2420
}

/*
2421 2422 2423 2424
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2425
 */
2426 2427 2428 2429 2430
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2431

2432
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2433 2434
{
	u32 value;
2435
	u8 ecc_en = 0;
2436
	bool nb_mce_en = false;
2437

2438
	amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2439

2440 2441
	ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2442

2443
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2444
	if (!nb_mce_en)
2445 2446 2447
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2448

2449 2450 2451 2452 2453
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2454 2455
}

2456 2457 2458 2459 2460 2461
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2462
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2463 2464 2465 2466 2467 2468
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2469 2470 2471
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2472 2473 2474 2475 2476 2477

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2478
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

	if (pvt->nbcap & K8_NBCAP_SECDED)
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2494
	mci->ctl_name		= pvt->ctl_name;
2495
	mci->dev_name		= pci_name(pvt->F2);
2496 2497 2498 2499 2500 2501 2502
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2503 2504 2505 2506
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2507
{
2508 2509 2510 2511
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2512
	case 0xf:
2513
		fam_type		= &amd64_family_types[K8_CPUS];
2514
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2515 2516
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= K8_MIN_SCRUB_RATE_BITS;
2517 2518
		break;
	case 0x10:
2519
		fam_type		= &amd64_family_types[F10_CPUS];
2520
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2521 2522
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= F10_MIN_SCRUB_RATE_BITS;
2523 2524 2525
		break;

	default:
2526
		amd64_err("Unsupported family!\n");
2527
		return NULL;
2528
	}
2529

2530 2531
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2532
	amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2533
		     (fam == 0xf ?
2534 2535 2536
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2537
	return fam_type;
2538 2539
}

2540
static int amd64_init_one_instance(struct pci_dev *F2)
2541 2542
{
	struct amd64_pvt *pvt = NULL;
2543
	struct amd64_family_type *fam_type = NULL;
2544
	struct mem_ctl_info *mci = NULL;
2545
	int err = 0, ret;
2546
	u8 nid = get_node_id(F2);
2547 2548 2549 2550

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2551
		goto err_ret;
2552

2553
	pvt->mc_node_id	= nid;
2554
	pvt->F2 = F2;
2555

2556
	ret = -EINVAL;
2557 2558
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2559 2560
		goto err_free;

2561
	ret = -ENODEV;
2562
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2563 2564 2565
	if (err)
		goto err_free;

2566
	read_mc_regs(pvt);
2567 2568 2569 2570

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2571
	 * tables in the 'mci' structure.
2572
	 */
2573
	ret = -EINVAL;
2574 2575
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2576
		goto err_siblings;
2577 2578

	ret = -ENOMEM;
2579
	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
2580
	if (!mci)
2581
		goto err_siblings;
2582 2583

	mci->pvt_info = pvt;
2584
	mci->dev = &pvt->F2->dev;
2585

2586 2587 2588
	setup_mci_misc_attrs(mci);

	if (init_csrows(mci))
2589 2590
		mci->edac_cap = EDAC_FLAG_NONE;

2591
	set_mc_sysfs_attrs(mci);
2592 2593 2594 2595 2596 2597 2598

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2599 2600 2601 2602 2603 2604
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2605 2606 2607 2608
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2609 2610 2611 2612 2613
	return 0;

err_add_mc:
	edac_mc_free(mci);

2614 2615
err_siblings:
	free_mc_sibling_devs(pvt);
2616

2617 2618
err_free:
	kfree(pvt);
2619

2620
err_ret:
2621 2622 2623
	return ret;
}

2624
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2625
					     const struct pci_device_id *mc_type)
2626
{
2627
	u8 nid = get_node_id(pdev);
2628
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2629
	struct ecc_settings *s;
2630
	int ret = 0;
2631 2632

	ret = pci_enable_device(pdev);
2633 2634 2635 2636
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2637

2638 2639 2640
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2641
		goto err_out;
2642 2643 2644

	ecc_stngs[nid] = s;

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2658
	if (ret < 0) {
2659
		amd64_err("Error probing instance: %d\n", nid);
2660 2661
		restore_ecc_error_reporting(s, nid, F3);
	}
2662 2663

	return ret;
2664 2665 2666 2667 2668 2669 2670

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2671 2672 2673 2674 2675 2676
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2677 2678 2679
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2680 2681 2682 2683 2684 2685 2686 2687

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2688
	restore_ecc_error_reporting(s, nid, F3);
2689

2690
	free_mc_sibling_devs(pvt);
2691

2692 2693 2694 2695
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2696 2697
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2698

2699
	/* Free the EDAC CORE resources */
2700
	mci->pvt_info = NULL;
2701
	mcis[nid] = NULL;
2702 2703

	kfree(pvt);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2735
	.probe		= amd64_probe_one_instance,
2736 2737 2738 2739
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2740
static void setup_pci_device(void)
2741 2742 2743 2744 2745 2746 2747
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2748
	mci = mcis[0];
2749 2750 2751 2752
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2753
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2767
	int err = -ENODEV;
2768 2769 2770 2771 2772

	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");

	opstate_init();

2773
	if (amd_cache_northbridges() < 0)
2774
		goto err_ret;
2775

2776
	err = -ENOMEM;
2777 2778
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2779
	if (!(mcis && ecc_stngs))
2780 2781
		goto err_ret;

2782
	msrs = msrs_alloc();
2783
	if (!msrs)
2784
		goto err_free;
2785

2786 2787
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2788
		goto err_pci;
2789

2790
	err = -ENODEV;
2791 2792
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2793

2794 2795
	setup_pci_device();
	return 0;
2796

2797
err_no_instances:
2798
	pci_unregister_driver(&amd64_pci_driver);
2799

2800 2801 2802
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2803

2804 2805 2806 2807 2808 2809 2810
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2811
err_ret:
2812 2813 2814 2815 2816 2817 2818 2819 2820
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2821

2822 2823 2824
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2825 2826 2827
	kfree(mcis);
	mcis = NULL;

2828 2829
	msrs_free(msrs);
	msrs = NULL;
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");