amd64_edac.c 71.9 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34 35 36 37
struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u32 reg = 0;
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
154
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
170
		if (scrubrates[i].scrubval < min_rate)
171 172 173 174 175 176 177 178 179 180 181 182 183 184
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

185
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
186

187 188 189
	if (scrubval)
		return scrubrates[i].bandwidth;

190 191 192
	return 0;
}

193
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
194 195
{
	struct amd64_pvt *pvt = mci->pvt_info;
196
	u32 min_scrubrate = 0x5;
197

198 199 200 201
	if (boot_cpu_data.x86 == 0xf)
		min_scrubrate = 0x0;

	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
202 203
}

204
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
205 206 207
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
208
	int i, retval = -EINVAL;
209

210
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
211 212 213

	scrubval = scrubval & 0x001F;

214
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
215
		if (scrubrates[i].scrubval == scrubval) {
216
			retval = scrubrates[i].bandwidth;
217 218 219
			break;
		}
	}
220
	return retval;
221 222
}

223
/*
224 225
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
226
 */
227 228
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
				   unsigned nid)
229
{
230
	u64 addr;
231 232 233 234 235 236 237 238 239

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

240 241
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
242 243 244 245 246 247 248 249 250 251 252 253
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
254
	unsigned node_id;
255 256 257 258 259 260 261 262 263 264 265 266 267
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
268
	intlv_en = dram_intlv_en(pvt, 0);
269 270

	if (intlv_en == 0) {
271
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
272
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
273
				goto found;
274
		}
275
		goto err_no_match;
276 277
	}

278 279 280
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
281
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
282 283 284 285 286 287
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
288
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
289 290
			break;	/* intlv_sel field matches */

291
		if (++node_id >= DRAM_RANGES)
292 293 294 295 296
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
297 298 299
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
300 301 302 303
		return NULL;
	}

found:
304
	return edac_mc_find((int)node_id);
305 306 307 308 309 310 311

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
312 313

/*
314 315
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
316
 */
317 318
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
319
{
320 321
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
322

323 324 325 326 327 328 329 330 331 332
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
333

334 335 336 337 338
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
339

340
	*base  = (csbase & base_bits) << addr_shift;
341

342 343 344 345 346
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
347 348
}

349 350 351
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

352 353 354
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

355 356 357
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

358 359 360 361 362 363 364 365 366 367 368 369
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

370 371
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
372 373
			continue;

374 375 376
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}
	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
415
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
416 417 418 419 420
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

421
	/* valid for Fam10h and above */
422
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
423 424 425 426
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

427
	if (!dhar_valid(pvt)) {
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

451
	base = dhar_base(pvt);
452 453 454 455 456

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
457
		*hole_offset = f10_dhar_offset(pvt);
458
	else
459
		*hole_offset = k8_dhar_offset(pvt);
460 461 462 463 464 465 466 467 468

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
500
	struct amd64_pvt *pvt = mci->pvt_info;
501 502 503
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

504
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
532
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
568
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
569 570
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
604
	unsigned node_id, intlv_shift;
605 606 607 608 609 610 611 612 613 614 615 616 617
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
618 619

	BUG_ON(node_id > 7);
620

621
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622 623 624 625 626 627 628
	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

629 630
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
631

632
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
649
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

667
	base     = get_dram_base(pvt, pvt->mc_node_id);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
712
	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
713

714
	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
715 716

	*input_addr_min = base & ~mask;
717
	*input_addr_max = base | mask;
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
743 744
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
745 746
	return csrow;
}
747

748
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
749 750 751 752 753 754 755

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
756
	u8 bit;
757
	enum dev_type edac_cap = EDAC_FLAG_NONE;
758

759
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
760 761 762
		? 19
		: 17;

763
	if (pvt->dclr0 & BIT(bit))
764 765 766 767 768
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

769
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
770

771 772 773 774 775 776 777 778 779 780 781
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

782 783 784
	if (boot_cpu_data.x86 == 0x10)
		debugf1("  DCT 128bit mode width: %s\n",
			(dclr & BIT(11)) ?  "128b" : "64b");
785 786 787 788 789 790 791 792

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

793
/* Display and decode various NB registers for debug purposes. */
794
static void dump_misc_regs(struct amd64_pvt *pvt)
795
{
796 797 798
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
799
		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
800

801
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
802 803
		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
804 805

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
806

807
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
808

809 810
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
811 812 813
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
814

815
	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
816

817
	amd64_debug_display_dimm_sizes(pvt, 0);
818

819
	/* everything below this point is Fam10h and above */
820
	if (boot_cpu_data.x86 == 0xf)
821
		return;
822

823
	amd64_debug_display_dimm_sizes(pvt, 1);
824

825
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
826

827
	/* Only if NOT ganged does dclr1 have valid info */
828 829
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
830 831
}

832
/*
833
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
834
 */
835
static void prep_chip_selects(struct amd64_pvt *pvt)
836
{
837
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
838 839
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
840
	} else {
841 842
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
843 844 845 846
	}
}

/*
847
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
848
 */
849
static void read_dct_base_mask(struct amd64_pvt *pvt)
850
{
851
	int cs;
852

853
	prep_chip_selects(pvt);
854

855
	for_each_chip_select(cs, 0, pvt) {
856 857
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
858 859
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
860

861
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
862
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
863
				cs, *base0, reg0);
864

865 866
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
867

868 869 870
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
				cs, *base1, reg1);
871 872
	}

873
	for_each_chip_select_mask(cs, 0, pvt) {
874 875
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
876 877
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
878

879
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
880
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
881
				cs, *mask0, reg0);
882

883 884
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
885

886 887 888
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
				cs, *mask1, reg1);
889 890 891
	}
}

892
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
893 894 895
{
	enum mem_type type;

896 897 898 899
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
900 901 902 903
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
904 905 906 907
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

908
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
909 910 911 912

	return type;
}

913
/* Get the number of DCT channels the memory controller is using. */
914 915
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
916
	int flag;
917

918
	if (pvt->ext_model >= K8_REV_F)
919
		/* RevF (NPT) and later */
920
		flag = pvt->dclr0 & WIDTH_128;
921
	else
922 923 924 925 926 927 928 929 930
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

931 932
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
933
{
934 935
	struct cpuinfo_x86 *c = &boot_cpu_data;
	u64 addr;
936 937 938
	u8 start_bit = 1;
	u8 end_bit   = 47;

939
	if (c->x86 == 0xf) {
940 941 942 943
		start_bit = 3;
		end_bit   = 39;
	}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	addr = m->addr & GENMASK(start_bit, end_bit);

	/*
	 * Erratum 637 workaround
	 */
	if (c->x86 == 0x15) {
		struct amd64_pvt *pvt;
		u64 cc6_base, tmp_addr;
		u32 tmp;
		u8 mce_nid, intlv_en;

		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
			return addr;

		mce_nid	= amd_get_nb_id(m->extcpu);
		pvt	= mcis[mce_nid]->pvt_info;

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
		cc6_base  = (tmp & GENMASK(0, 20)) << 3;

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
			return cc6_base | (addr & GENMASK(0, 23));

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);

		/* OR DramIntlvSel into bits [14:12] */
		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;

		/* add remaining [11:0] bits from original MC4_ADDR */
		tmp_addr |= addr & GENMASK(0, 11);

		return cc6_base | tmp_addr;
	}

	return addr;
991 992
}

993
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
994
{
995
	struct cpuinfo_x86 *c = &boot_cpu_data;
996
	int off = range << 3;
997

998 999
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1000

1001
	if (c->x86 == 0xf)
1002
		return;
1003

1004 1005
	if (!dram_rw(pvt, range))
		return;
1006

1007 1008
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	/* Factor in CC6 save area by reading dst node's limit reg */
	if (c->x86 == 0x15) {
		struct pci_dev *f1 = NULL;
		u8 nid = dram_dst_node(pvt, range);
		u32 llim;

		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
		if (WARN_ON(!f1))
			return;

		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);

		pvt->ranges[range].lim.lo &= GENMASK(0, 15);

					    /* {[39:27],111b} */
		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;

		pvt->ranges[range].lim.hi &= GENMASK(0, 7);

					    /* [47:40] */
		pvt->ranges[range].lim.hi |= llim >> 13;

		pci_dev_put(f1);
	}
1034 1035
}

1036 1037
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				    u16 syndrome)
1038 1039
{
	struct mem_ctl_info *src_mci;
1040
	struct amd64_pvt *pvt = mci->pvt_info;
1041 1042 1043 1044
	int channel, csrow;
	u32 page, offset;

	/* CHIPKILL enabled */
1045
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1046
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1047 1048 1049 1050 1051 1052
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1053 1054
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1067
		channel = ((sys_addr & BIT(3)) != 0);
1068 1069 1070 1071 1072 1073
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1074
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1075
	if (!src_mci) {
1076
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1077
			     (unsigned long)sys_addr);
1078 1079 1080 1081
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1082 1083
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1084 1085 1086
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1087
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1088 1089 1090 1091 1092 1093

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1094
static int ddr2_cs_size(unsigned i, bool dct_width)
1095
{
1096
	unsigned shift = 0;
1097

1098 1099 1100 1101
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1102
	else
1103
		shift = (i + 1) >> 1;
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				  unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
		WARN_ON(cs_mode > 10);

		if (cs_mode == 3 || cs_mode == 8)
			return 32 << (cs_mode - 1);
		else
			return 32 << cs_mode;
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1129 1130
}

1131 1132 1133 1134 1135 1136 1137 1138
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1139
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1140
{
1141
	int i, j, channels = 0;
1142

1143
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1144
	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1145
		return 2;
1146 1147

	/*
1148 1149 1150
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1151 1152 1153 1154
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1155
	debugf0("Data width is not 128 bits - need more decoding\n");
1156

1157 1158 1159 1160 1161
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1162 1163
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1164

1165 1166 1167 1168 1169 1170
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1171 1172
	}

1173 1174 1175
	if (channels > 2)
		channels = 2;

1176
	amd64_info("MCT channel count: %d\n", channels);
1177 1178 1179 1180

	return channels;
}

1181
static int ddr3_cs_size(unsigned i, bool dct_width)
1182
{
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1209 1210

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1211
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1212
	else
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);
1223

1224
	return ddr3_cs_size(cs_mode, false);
1225 1226
}

1227
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1228 1229
{

1230 1231 1232
	if (boot_cpu_data.x86 == 0xf)
		return;

1233 1234 1235
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1236

1237 1238
		debugf0("  DCTs operate in %s mode.\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1239 1240 1241 1242 1243

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

1244
		debugf0("  data interleave for ECC: %s, "
1245 1246 1247 1248
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

1249 1250
		debugf0("  channel interleave: %s, "
			"interleave bits selector: 0x%x\n",
1251
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1252 1253 1254
			dct_sel_interleave_addr(pvt));
	}

1255
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1256 1257
}

1258
/*
1259
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1260 1261
 * Interleaving Modes.
 */
1262
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1263
				bool hi_range_sel, u8 intlv_en)
1264
{
1265
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1266 1267

	if (dct_ganging_enabled(pvt))
1268
		return 0;
1269

1270 1271
	if (hi_range_sel)
		return dct_sel_high;
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1295 1296 1297 1298

	return 0;
}

1299
/* Convert the sys_addr to the normalized DCT address */
1300
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1301 1302
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1303 1304
{
	u64 chan_off;
1305 1306 1307
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1323
		    dhar_valid(pvt) &&
1324
		    (sys_addr >= BIT_64(32)))
1325
			chan_off = hole_off;
1326 1327 1328
		else
			chan_off = dct_sel_base_off;
	} else {
1329 1330 1331 1332 1333 1334 1335 1336 1337
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1338
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1339
			chan_off = hole_off;
1340
		else
1341
			chan_off = dram_base;
1342 1343
	}

1344
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1345 1346 1347 1348 1349 1350
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1351
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1352
{
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1376
static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1377 1378 1379
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1380
	u64 cs_base, cs_mask;
1381 1382 1383
	int cs_found = -EINVAL;
	int csrow;

1384
	mci = mcis[nid];
1385 1386 1387 1388 1389
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1390
	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1391

1392 1393
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1394 1395
			continue;

1396
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1397

1398 1399
		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			csrow, cs_base, cs_mask);
1400

1401
		cs_mask = ~cs_mask;
1402

1403 1404 1405
		debugf1("    (InputAddr & ~CSMask)=0x%llx "
			"(CSBase & ~CSMask)=0x%llx\n",
			(in_addr & cs_mask), (cs_base & cs_mask));
1406

1407 1408
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1409 1410 1411 1412 1413 1414 1415 1416

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1417 1418 1419 1420 1421
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1422
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

	if (boot_cpu_data.x86 == 0x10) {
		/* only revC3 and revE have that feature */
		if (boot_cpu_data.x86_model < 4 ||
		    (boot_cpu_data.x86_model < 0xa &&
		     boot_cpu_data.x86_mask < 3))
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1453
/* For a given @dram_range, check if @sys_addr falls within it. */
1454
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1455 1456
				  u64 sys_addr, int *nid, int *chan_sel)
{
1457
	int cs_found = -EINVAL;
1458
	u64 chan_addr;
1459
	u32 dct_sel_base;
1460
	u8 channel;
1461
	bool high_range = false;
1462

1463
	u8 node_id    = dram_dst_node(pvt, range);
1464
	u8 intlv_en   = dram_intlv_en(pvt, range);
1465
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1466

1467 1468
	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		range, sys_addr, get_dram_limit(pvt, range));
1469

1470 1471 1472 1473 1474 1475 1476 1477
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1478
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1479 1480
		return -EINVAL;

1481
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1492
		high_range = true;
1493

1494
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1495

1496
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1497
					  high_range, dct_sel_base);
1498

1499 1500 1501 1502
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1503

1504
	/* remove channel interleave */
1505 1506 1507
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1522 1523
	}

1524
	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1525

1526
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1527 1528 1529 1530 1531 1532 1533 1534

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

1535
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1536 1537
				       int *node, int *chan_sel)
{
1538 1539
	int cs_found = -EINVAL;
	unsigned range;
1540

1541
	for (range = 0; range < DRAM_RANGES; range++) {
1542

1543
		if (!dram_rw(pvt, range))
1544 1545
			continue;

1546 1547
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1548

1549
			cs_found = f1x_match_to_this_node(pvt, range,
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1560 1561
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1562
 *
1563 1564
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1565
 */
1566
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1567
				     u16 syndrome)
1568 1569 1570 1571 1572
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;

1573
	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1574

1575 1576 1577 1578 1579 1580
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1581

1582 1583 1584 1585 1586
	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1587
	if (dct_ganging_enabled(pvt))
1588
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1589

1590 1591 1592 1593
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1594
		/*
1595
		 * Channel unknown, report all channels on this CSROW as failed.
1596
		 */
1597
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1598
			edac_mc_handle_ce(mci, page, offset, syndrome,
1599
					  csrow, chan, EDAC_MOD_STR);
1600 1601 1602
}

/*
1603
 * debug routine to display the memory sizes of all logical DIMMs and its
1604
 * CSROWs
1605
 */
1606
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1607
{
1608
	int dimm, size0, size1, factor = 0;
1609 1610
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1611

1612
	if (boot_cpu_data.x86 == 0xf) {
1613
		if (pvt->dclr0 & WIDTH_128)
1614 1615
			factor = 1;

1616
		/* K8 families < revF not supported yet */
1617
	       if (pvt->ext_model < K8_REV_F)
1618 1619 1620 1621 1622
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1623
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1624 1625
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1626

1627
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1628

1629 1630
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1631 1632 1633 1634
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1635
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1636 1637
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1638 1639

		size1 = 0;
1640
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1641 1642
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1643

1644 1645 1646
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1647 1648 1649
	}
}

1650 1651
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1652
		.ctl_name = "K8",
1653 1654
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1655
		.ops = {
1656 1657 1658
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1659
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1660 1661 1662
		}
	},
	[F10_CPUS] = {
1663
		.ctl_name = "F10h",
1664 1665
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1666
		.ops = {
1667
			.early_channel_count	= f1x_early_channel_count,
1668
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1669
			.dbam_to_cs		= f10_dbam_to_chip_select,
1670 1671 1672 1673 1674
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1675 1676
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1677
		.ops = {
1678
			.early_channel_count	= f1x_early_channel_count,
1679
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1680
			.dbam_to_cs		= f15_dbam_to_chip_select,
1681
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1703
/*
1704 1705 1706
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1707
 *
1708
 * Algorithm courtesy of Ross LaFetra from AMD.
1709
 */
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1747 1748
};

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

1771 1772
static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
			   unsigned v_dim)
1773
{
1774 1775 1776 1777
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
1778 1779
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1792

1793 1794 1795
					if (!s)
						return err_sym;
				}
1796

1797 1798 1799 1800
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1801 1802 1803 1804 1805
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1849 1850
	int err_sym = -1;

1851
	if (pvt->ecc_sym_sz == 8)
1852 1853
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
1854 1855
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
1856 1857
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
1858
					  pvt->ecc_sym_sz);
1859
	else {
1860
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1861
		return err_sym;
1862
	}
1863

1864
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1865 1866
}

1867 1868 1869 1870
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
1871
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1872 1873
{
	struct amd64_pvt *pvt = mci->pvt_info;
1874
	u64 sys_addr;
1875
	u16 syndrome;
1876 1877

	/* Ensure that the Error Address is VALID */
1878
	if (!(m->status & MCI_STATUS_ADDRV)) {
1879
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1880 1881 1882 1883
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1884
	sys_addr = get_error_address(m);
1885
	syndrome = extract_syndrome(m->status);
1886

1887
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1888

1889
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1890 1891 1892
}

/* Handle any Un-correctable Errors (UEs) */
1893
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1894
{
1895
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1896
	int csrow;
1897
	u64 sys_addr;
1898 1899 1900 1901
	u32 page, offset;

	log_mci = mci;

1902
	if (!(m->status & MCI_STATUS_ADDRV)) {
1903
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1904 1905 1906 1907
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1908
	sys_addr = get_error_address(m);
1909 1910 1911 1912 1913

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1914
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1915
	if (!src_mci) {
1916 1917
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1918 1919 1920 1921 1922 1923
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1924
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1925
	if (csrow < 0) {
1926 1927
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1928 1929
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1930
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1931 1932 1933 1934
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1935
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1936
					    struct mce *m)
1937
{
1938 1939 1940
	u16 ec = EC(m->status);
	u8 xec = XEC(m->status, 0x1f);
	u8 ecc_type = (m->status >> 45) & 0x3;
1941

1942
	/* Bail early out if this was an 'observed' error */
1943
	if (PP(ec) == NBSL_PP_OBS)
1944
		return;
1945

1946 1947
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1948 1949
		return;

1950
	if (ecc_type == 2)
1951
		amd64_handle_ce(mci, m);
1952
	else if (ecc_type == 1)
1953
		amd64_handle_ue(mci, m);
1954 1955
}

1956
void amd64_decode_bus_error(int node_id, struct mce *m)
1957
{
1958
	__amd64_decode_bus_error(mcis[node_id], m);
1959 1960
}

1961
/*
1962
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1963
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1964
 */
1965
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1966 1967
{
	/* Reserve the ADDRESS MAP Device */
1968 1969
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
1970 1971 1972
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
1973
		return -ENODEV;
1974 1975 1976
	}

	/* Reserve the MISC Device */
1977 1978 1979 1980
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
1981

1982 1983 1984
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
1985

1986
		return -ENODEV;
1987
	}
1988 1989 1990
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
1991 1992 1993 1994

	return 0;
}

1995
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1996
{
1997 1998
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
1999 2000 2001 2002 2003 2004
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2005
static void read_mc_regs(struct amd64_pvt *pvt)
2006
{
2007
	struct cpuinfo_x86 *c = &boot_cpu_data;
2008
	u64 msr_val;
2009
	u32 tmp;
2010
	unsigned range;
2011 2012 2013 2014 2015

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2016 2017
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2018 2019 2020 2021

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2022 2023
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2024 2025 2026
	} else
		debugf0("  TOP_MEM2 disabled.\n");

2027
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2028

2029
	read_dram_ctl_register(pvt);
2030

2031 2032
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2033

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
2052 2053
	}

2054
	read_dct_base_mask(pvt);
2055

2056
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2057
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2058

2059
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2060

2061 2062
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2063

2064
	if (!dct_ganging_enabled(pvt)) {
2065 2066
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2067
	}
2068

2069 2070 2071
	pvt->ecc_sym_sz = 4;

	if (c->x86 >= 0x10) {
2072
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2073
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2074

2075 2076 2077 2078
		/* F10h, revD and later can do x8 ECC too */
		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
2079
	dump_misc_regs(pvt);
2080 2081 2082 2083 2084 2085
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2086
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2116
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2117
{
2118
	u32 cs_mode, nr_pages;
2119 2120 2121 2122 2123 2124 2125 2126

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2127
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2128

2129
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2130 2131 2132 2133 2134 2135 2136

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2137
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2148
static int init_csrows(struct mem_ctl_info *mci)
2149 2150
{
	struct csrow_info *csrow;
2151
	struct amd64_pvt *pvt = mci->pvt_info;
2152
	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2153
	u32 val;
2154
	int i, empty = 1;
2155

2156
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2157

2158
	pvt->nbcfg = val;
2159

2160 2161
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
2162
		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2163

2164
	for_each_chip_select(i, 0, pvt) {
2165 2166
		csrow = &mci->csrows[i];

2167
		if (!csrow_enabled(i, 0, pvt)) {
2168 2169 2170 2171 2172 2173 2174 2175 2176
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
2177
		csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2178 2179 2180 2181 2182
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2183 2184 2185

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
		csrow->page_mask = ~mask;
2186 2187
		/* 8 bytes of resolution */

2188
		csrow->mtype = amd64_determine_memory_type(pvt, i);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2204
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2205
			csrow->edac_mode =
2206
			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2207 2208 2209 2210 2211 2212 2213
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2214

2215
/* get all cores on this DCT */
2216
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2217 2218 2219 2220 2221 2222 2223 2224 2225
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2226
static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2227 2228
{
	cpumask_var_t mask;
2229
	int cpu, nbe;
2230 2231 2232
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2233
		amd64_warn("%s: Error allocating mask\n", __func__);
2234 2235 2236 2237 2238 2239 2240 2241
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2242
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2243
		nbe = reg->l & MSR_MCGCTL_NBE;
2244 2245

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2246
			cpu, reg->q,
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2259
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2260 2261
{
	cpumask_var_t cmask;
2262
	int cpu;
2263 2264

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2265
		amd64_warn("%s: error allocating mask\n", __func__);
2266 2267 2268
		return false;
	}

2269
	get_cpus_on_this_dct_cpumask(cmask, nid);
2270 2271 2272 2273 2274

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2275 2276
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2277
		if (on) {
2278
			if (reg->l & MSR_MCGCTL_NBE)
2279
				s->flags.nb_mce_enable = 1;
2280

2281
			reg->l |= MSR_MCGCTL_NBE;
2282 2283
		} else {
			/*
2284
			 * Turn off NB MCE reporting only when it was off before
2285
			 */
2286
			if (!s->flags.nb_mce_enable)
2287
				reg->l &= ~MSR_MCGCTL_NBE;
2288 2289 2290 2291 2292 2293 2294 2295 2296
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2297 2298
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2299
{
2300
	bool ret = true;
B
Borislav Petkov 已提交
2301
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2302

2303 2304 2305 2306 2307
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2308
	amd64_read_pci_cfg(F3, NBCTL, &value);
2309

2310 2311
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2312 2313

	value |= mask;
B
Borislav Petkov 已提交
2314
	amd64_write_pci_cfg(F3, NBCTL, value);
2315

2316
	amd64_read_pci_cfg(F3, NBCFG, &value);
2317

2318 2319
	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2320

2321
	if (!(value & NBCFG_ECC_ENABLE)) {
2322
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2323

2324
		s->flags.nb_ecc_prev = 0;
2325

2326
		/* Attempt to turn on DRAM ECC Enable */
2327 2328
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2329

2330
		amd64_read_pci_cfg(F3, NBCFG, &value);
2331

2332
		if (!(value & NBCFG_ECC_ENABLE)) {
2333 2334
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2335
			ret = false;
2336
		} else {
2337
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2338
		}
2339
	} else {
2340
		s->flags.nb_ecc_prev = 1;
2341
	}
2342

2343 2344
	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2345

2346
	return ret;
2347 2348
}

2349 2350
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2351
{
B
Borislav Petkov 已提交
2352 2353
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2354

2355
	if (!s->nbctl_valid)
2356 2357
		return;

B
Borislav Petkov 已提交
2358
	amd64_read_pci_cfg(F3, NBCTL, &value);
2359
	value &= ~mask;
2360
	value |= s->old_nbctl;
2361

B
Borislav Petkov 已提交
2362
	amd64_write_pci_cfg(F3, NBCTL, value);
2363

2364 2365
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2366 2367 2368
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2369 2370 2371
	}

	/* restore the NB Enable MCGCTL bit */
2372
	if (toggle_ecc_err_reporting(s, nid, OFF))
2373
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2374 2375 2376
}

/*
2377 2378 2379 2380
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2381
 */
2382 2383 2384 2385 2386
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2387

2388
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2389 2390
{
	u32 value;
2391
	u8 ecc_en = 0;
2392
	bool nb_mce_en = false;
2393

2394
	amd64_read_pci_cfg(F3, NBCFG, &value);
2395

2396
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2397
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2398

2399
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2400
	if (!nb_mce_en)
2401 2402 2403
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2404

2405 2406 2407 2408 2409
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2410 2411
}

2412 2413 2414 2415 2416 2417
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2418
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2419 2420 2421 2422 2423 2424
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2425 2426 2427
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2428 2429 2430 2431 2432 2433

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2434 2435
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2436 2437 2438 2439 2440 2441
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2442
	if (pvt->nbcap & NBCAP_SECDED)
2443 2444
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2445
	if (pvt->nbcap & NBCAP_CHIPKILL)
2446 2447 2448 2449 2450
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2451
	mci->ctl_name		= fam->ctl_name;
2452
	mci->dev_name		= pci_name(pvt->F2);
2453 2454 2455 2456 2457 2458 2459
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2460 2461 2462 2463
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2464
{
2465 2466 2467 2468
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2469
	case 0xf:
2470
		fam_type		= &amd64_family_types[K8_CPUS];
2471
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2472
		break;
2473

2474
	case 0x10:
2475
		fam_type		= &amd64_family_types[F10_CPUS];
2476
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2477 2478 2479 2480 2481
		break;

	case 0x15:
		fam_type		= &amd64_family_types[F15_CPUS];
		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2482 2483 2484
		break;

	default:
2485
		amd64_err("Unsupported family!\n");
2486
		return NULL;
2487
	}
2488

2489 2490
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2491
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2492
		     (fam == 0xf ?
2493 2494 2495
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2496
	return fam_type;
2497 2498
}

2499
static int amd64_init_one_instance(struct pci_dev *F2)
2500 2501
{
	struct amd64_pvt *pvt = NULL;
2502
	struct amd64_family_type *fam_type = NULL;
2503
	struct mem_ctl_info *mci = NULL;
2504
	int err = 0, ret;
2505
	u8 nid = get_node_id(F2);
2506 2507 2508 2509

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2510
		goto err_ret;
2511

2512
	pvt->mc_node_id	= nid;
2513
	pvt->F2 = F2;
2514

2515
	ret = -EINVAL;
2516 2517
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2518 2519
		goto err_free;

2520
	ret = -ENODEV;
2521
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2522 2523 2524
	if (err)
		goto err_free;

2525
	read_mc_regs(pvt);
2526 2527 2528 2529

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2530
	 * tables in the 'mci' structure.
2531
	 */
2532
	ret = -EINVAL;
2533 2534
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2535
		goto err_siblings;
2536 2537

	ret = -ENOMEM;
2538
	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2539
	if (!mci)
2540
		goto err_siblings;
2541 2542

	mci->pvt_info = pvt;
2543
	mci->dev = &pvt->F2->dev;
2544

2545
	setup_mci_misc_attrs(mci, fam_type);
2546 2547

	if (init_csrows(mci))
2548 2549
		mci->edac_cap = EDAC_FLAG_NONE;

2550
	set_mc_sysfs_attrs(mci);
2551 2552 2553 2554 2555 2556 2557

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2558 2559 2560 2561 2562 2563
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2564 2565 2566 2567
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2568 2569 2570 2571 2572
	return 0;

err_add_mc:
	edac_mc_free(mci);

2573 2574
err_siblings:
	free_mc_sibling_devs(pvt);
2575

2576 2577
err_free:
	kfree(pvt);
2578

2579
err_ret:
2580 2581 2582
	return ret;
}

2583
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2584
					     const struct pci_device_id *mc_type)
2585
{
2586
	u8 nid = get_node_id(pdev);
2587
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2588
	struct ecc_settings *s;
2589
	int ret = 0;
2590 2591

	ret = pci_enable_device(pdev);
2592 2593 2594 2595
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2596

2597 2598 2599
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2600
		goto err_out;
2601 2602 2603

	ecc_stngs[nid] = s;

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2617
	if (ret < 0) {
2618
		amd64_err("Error probing instance: %d\n", nid);
2619 2620
		restore_ecc_error_reporting(s, nid, F3);
	}
2621 2622

	return ret;
2623 2624 2625 2626 2627 2628 2629

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2630 2631 2632 2633 2634 2635
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2636 2637 2638
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2639 2640 2641 2642 2643 2644 2645 2646

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2647
	restore_ecc_error_reporting(s, nid, F3);
2648

2649
	free_mc_sibling_devs(pvt);
2650

2651 2652 2653 2654
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2655 2656
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2657

2658
	/* Free the EDAC CORE resources */
2659
	mci->pvt_info = NULL;
2660
	mcis[nid] = NULL;
2661 2662

	kfree(pvt);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2688 2689 2690 2691 2692 2693 2694 2695 2696
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},

2697 2698 2699 2700 2701 2702
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2703
	.probe		= amd64_probe_one_instance,
2704 2705 2706 2707
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2708
static void setup_pci_device(void)
2709 2710 2711 2712 2713 2714 2715
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2716
	mci = mcis[0];
2717 2718 2719 2720
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2721
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2735
	int err = -ENODEV;
2736

2737
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2738 2739 2740

	opstate_init();

2741
	if (amd_cache_northbridges() < 0)
2742
		goto err_ret;
2743

2744
	err = -ENOMEM;
2745 2746
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2747
	if (!(mcis && ecc_stngs))
2748
		goto err_free;
2749

2750
	msrs = msrs_alloc();
2751
	if (!msrs)
2752
		goto err_free;
2753

2754 2755
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2756
		goto err_pci;
2757

2758
	err = -ENODEV;
2759 2760
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2761

2762 2763
	setup_pci_device();
	return 0;
2764

2765
err_no_instances:
2766
	pci_unregister_driver(&amd64_pci_driver);
2767

2768 2769 2770
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2771

2772 2773 2774 2775 2776 2777 2778
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2779
err_ret:
2780 2781 2782 2783 2784 2785 2786 2787 2788
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2789

2790 2791 2792
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2793 2794 2795
	kfree(mcis);
	mcis = NULL;

2796 2797
	msrs_free(msrs);
	msrs = NULL;
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");