amd64_edac.c 73.1 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27
/*
28 29
 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
 * later.
30
 */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static int ddr2_dbam_revCG[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2]		= 128,
			   [3]		= 256,
			   [4]		= 512,
			   [5]		= 1024,
			   [6]		= 2048,
};

static int ddr2_dbam_revD[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2 ... 3]	= 128,
			   [4]		= 256,
			   [5]		= 512,
			   [6]		= 256,
			   [7]		= 512,
			   [8 ... 9]	= 1024,
			   [10]		= 2048,
};

static int ddr2_dbam[] = { [0]		= 128,
			   [1]		= 256,
			   [2 ... 4]	= 512,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
			   [11]		= 8192,
};

static int ddr3_dbam[] = { [0]		= -1,
			   [1]		= 256,
			   [2]		= 512,
			   [3 ... 4]	= -1,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
69
			   [11]		= 8192,
70 71 72 73 74 75 76 77 78 79
};

/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */

80 81 82 83 84

struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u32 reg = 0;
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
201
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
217
		if (scrubrates[i].scrubval < min_rate)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);

234 235 236
	if (scrubval)
		return scrubrates[i].bandwidth;

237 238 239
	return 0;
}

240
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
241 242 243
{
	struct amd64_pvt *pvt = mci->pvt_info;

244
	return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
245 246
}

247
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
248 249 250
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
251
	int i, retval = -EINVAL;
252

253
	amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
254 255 256

	scrubval = scrubval & 0x001F;

257
	amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
258

259
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
260
		if (scrubrates[i].scrubval == scrubval) {
261
			retval = scrubrates[i].bandwidth;
262 263 264
			break;
		}
	}
265
	return retval;
266 267
}

268 269 270
/* Map from a CSROW entry to the mask entry that operates on it */
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
{
271
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
272 273 274
		return csrow;
	else
		return csrow >> 1;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
}

/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsb0[csrow];
	else
		return pvt->dcsb1[csrow];
}

/*
 * Return the 'mask' address the i'th CS entry. This function is needed because
 * there number of DCSM registers on Rev E and prior vs Rev F and later is
 * different.
 */
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
	else
		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
}

/*
300 301
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
302
 */
303
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
304
{
305
	u64 addr;
306 307 308 309 310 311 312 313 314

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

315 316
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
	int node_id;
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
343
	intlv_en = dram_intlv_en(pvt, 0);
344 345

	if (intlv_en == 0) {
346
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
347
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
348
				goto found;
349
		}
350
		goto err_no_match;
351 352
	}

353 354 355
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
356
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
357 358 359 360 361 362
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
363
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
364 365
			break;	/* intlv_sel field matches */

366
		if (++node_id >= DRAM_RANGES)
367 368 369 370 371
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
372 373 374
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
375 376 377 378 379 380 381 382 383 384 385 386
		return NULL;
	}

found:
	return edac_mc_find(node_id);

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

/*
 * Extract the DRAM CS base address from selected csrow register.
 */
static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
{
	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
				pvt->dcs_shift;
}

/*
 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
 */
static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
{
	u64 dcsm_bits, other_bits;
	u64 mask;

	/* Extract bits from DRAM CS Mask. */
	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;

	other_bits = pvt->dcsm_mask;
	other_bits = ~(other_bits << pvt->dcs_shift);

	/*
	 * The extracted bits from DCSM belong in the spaces represented by
	 * the cleared bits in other_bits.
	 */
	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;

	return mask;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

	/*
	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
	 * base/mask register pair, test the condition shown near the start of
	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
	 */
437
	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

		/* This DRAM chip select is disabled on this node */
		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
			continue;

		base = base_from_dct_base(pvt, csrow);
		mask = ~mask_from_dct_mask(pvt, csrow);

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}

	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
484
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
485 486 487 488 489
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

490 491 492
	/* valid for Fam10h and above */
	if (boot_cpu_data.x86 >= 0x10 &&
	    (pvt->dhar & DRAM_MEM_HOIST_VALID) == 0) {
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

	if ((pvt->dhar & DHAR_VALID) == 0) {
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

521
	base = dhar_base(pvt);
522 523 524 525 526

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
527
		*hole_offset = f10_dhar_offset(pvt);
528
	else
529
		*hole_offset = k8_dhar_offset(pvt);
530 531 532 533 534 535 536 537 538

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
570
	struct amd64_pvt *pvt = mci->pvt_info;
571 572 573
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

574
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
638
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
	    (dram_addr & 0xfff);

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int node_id, intlv_shift;
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
	BUG_ON((node_id < 0) || (node_id > 7));

690
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
691 692 693 694 695 696 697 698 699 700 701

	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
	    (input_addr & 0xfff);

702
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
719
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

737
	base     = get_dram_base(pvt, pvt->mc_node_id);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
782
	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

	base = base_from_dct_base(pvt, csrow);
	mask = mask_from_dct_mask(pvt, csrow);

	*input_addr_min = base & ~mask;
	*input_addr_max = base | mask | pvt->dcs_mask_notused;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
814 815
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
816 817
	return csrow;
}
818

819
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
820

821 822 823 824 825
static u16 extract_syndrome(struct err_regs *err)
{
	return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
}

826 827 828 829 830 831 832
/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
	int bit;
833
	enum dev_type edac_cap = EDAC_FLAG_NONE;
834

835
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
836 837 838
		? 19
		: 17;

839
	if (pvt->dclr0 & BIT(bit))
840 841 842 843 844 845
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


846
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
847

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

	debugf1("  DCT 128bit mode width: %s\n",
		(dclr & BIT(11)) ?  "128b" : "64b");

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

869
/* Display and decode various NB registers for debug purposes. */
870
static void dump_misc_regs(struct amd64_pvt *pvt)
871
{
872 873 874 875
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
876

877 878 879 880 881
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
		(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
882

883
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
884

885 886
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
887 888 889
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
890

891 892
	debugf1("  DramHoleValid: %s\n",
		(pvt->dhar & DHAR_VALID) ? "yes" : "no");
893

894 895
	amd64_debug_display_dimm_sizes(0, pvt);

896
	/* everything below this point is Fam10h and above */
897
	if (boot_cpu_data.x86 == 0xf)
898
		return;
899 900

	amd64_debug_display_dimm_sizes(1, pvt);
901

902
	amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
903

904
	/* Only if NOT ganged does dclr1 have valid info */
905 906
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
907 908 909 910
}

static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
{
911 912
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
	amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
913 914
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/*
 * NOTE: CPU Revision Dependent code: Rev E and Rev F
 *
 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
 * set the shift factor for the DCSB and DCSM values.
 *
 * ->dcs_mask_notused, RevE:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of section
 * 3.5.4 (p. 84).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
 * gaps.
 *
 * ->dcs_mask_notused, RevF and later:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of NPT section
 * 4.5.4 (p. 87).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [36:27] and [21:13].
 *
 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
 * which are all bits in the above-mentioned gaps.
 */
static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
{
946

947
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
948 949 950 951 952 953 954
		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_E_DCS_SHIFT;
		pvt->cs_count		= 8;
		pvt->num_dcsm		= 8;
	} else {
955 956 957 958
		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
959 960
		pvt->cs_count		= 8;
		pvt->num_dcsm		= 4;
961 962 963 964 965 966
	}
}

/*
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
 */
967
static void read_dct_base_mask(struct amd64_pvt *pvt)
968
{
969
	int cs, reg;
970 971 972

	amd64_set_dct_base_and_mask(pvt);

973
	for (cs = 0; cs < pvt->cs_count; cs++) {
974
		reg = K8_DCSB0 + (cs * 4);
975 976

		if (!amd64_read_dct_pci_cfg(pvt, reg, &pvt->dcsb0[cs]))
977 978 979
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsb0[cs], reg);

980
		if (!dct_ganging_enabled(pvt)) {
981
			reg = F10_DCSB1 + (cs * 4);
982 983

			if (!amd64_read_dct_pci_cfg(pvt, reg, &pvt->dcsb1[cs]))
984 985 986 987 988 989
				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsb1[cs], reg);
		}
	}

	for (cs = 0; cs < pvt->num_dcsm; cs++) {
990
		reg = K8_DCSM0 + (cs * 4);
991 992

		if (!amd64_read_dct_pci_cfg(pvt, reg, &pvt->dcsm0[cs]))
993 994 995
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsm0[cs], reg);

996
		if (!dct_ganging_enabled(pvt)) {
997
			reg = F10_DCSM1 + (cs * 4);
998 999

			if (!amd64_read_dct_pci_cfg(pvt, reg, &pvt->dcsm1[cs]))
1000 1001
				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsm1[cs], reg);
1002
		}
1003 1004 1005
	}
}

1006
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
1007 1008 1009
{
	enum mem_type type;

1010
	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1011 1012 1013 1014
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1015 1016 1017 1018
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

1019
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
1020 1021 1022 1023

	return type;
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
 * and the later RevF memory controllers (DDR vs DDR2)
 *
 * Return:
 *      number of memory channels in operation
 * Pass back:
 *      contents of the DCL0_LOW register
 */
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
	int flag, err = 0;

1037
	err = amd64_read_dct_pci_cfg(pvt, F10_DCLR_0, &pvt->dclr0);
1038 1039 1040
	if (err)
		return err;

1041
	if (pvt->ext_model >= K8_REV_F)
1042 1043
		/* RevF (NPT) and later */
		flag = pvt->dclr0 & F10_WIDTH_128;
1044
	else
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

/* extract the ERROR ADDRESS for the K8 CPUs */
static u64 k8_get_error_address(struct mem_ctl_info *mci,
1056
				struct err_regs *info)
1057 1058 1059 1060 1061
{
	return (((u64) (info->nbeah & 0xff)) << 32) +
			(info->nbeal & ~0x03);
}

1062
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1063
{
1064
	u32 off = range << 3;
1065

1066 1067
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1068

1069 1070
	if (boot_cpu_data.x86 == 0xf)
		return;
1071

1072 1073
	if (!dram_rw(pvt, range))
		return;
1074

1075 1076
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1077 1078 1079
}

static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1080
				    struct err_regs *err_info, u64 sys_addr)
1081 1082 1083 1084
{
	struct mem_ctl_info *src_mci;
	int channel, csrow;
	u32 page, offset;
1085
	u16 syndrome;
1086

1087
	syndrome = extract_syndrome(err_info);
1088 1089

	/* CHIPKILL enabled */
1090
	if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
1091
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1092 1093 1094 1095 1096 1097
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1098 1099
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1112
		channel = ((sys_addr & BIT(3)) != 0);
1113 1114 1115 1116 1117 1118
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1119
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1120
	if (!src_mci) {
1121
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1122
			     (unsigned long)sys_addr);
1123 1124 1125 1126
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1127 1128
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1129 1130 1131
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1132
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1133 1134 1135 1136 1137 1138

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1139
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1140
{
1141
	int *dbam_map;
1142

1143 1144 1145 1146 1147 1148
	if (pvt->ext_model >= K8_REV_F)
		dbam_map = ddr2_dbam;
	else if (pvt->ext_model >= K8_REV_D)
		dbam_map = ddr2_dbam_revD;
	else
		dbam_map = ddr2_dbam_revCG;
1149

1150
	return dbam_map[cs_mode];
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
static int f10_early_channel_count(struct amd64_pvt *pvt)
{
1163
	int dbams[] = { DBAM0, DBAM1 };
1164
	int i, j, channels = 0;
1165 1166 1167 1168 1169 1170 1171 1172 1173
	u32 dbam;

	/* If we are in 128 bit mode, then we are using 2 channels */
	if (pvt->dclr0 & F10_WIDTH_128) {
		channels = 2;
		return channels;
	}

	/*
1174 1175 1176
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1177 1178 1179 1180
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1181
	debugf0("Data width is not 128 bits - need more decoding\n");
1182

1183 1184 1185 1186 1187
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1188
	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1189
		if (amd64_read_dct_pci_cfg(pvt, dbams[i], &dbam))
1190 1191
			goto err_reg;

1192 1193 1194 1195 1196 1197
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1198 1199
	}

1200 1201 1202
	if (channels > 2)
		channels = 2;

1203
	amd64_info("MCT channel count: %d\n", channels);
1204 1205 1206 1207 1208 1209 1210 1211

	return channels;

err_reg:
	return -1;

}

1212
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1213
{
1214 1215 1216 1217 1218 1219 1220 1221
	int *dbam_map;

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
		dbam_map = ddr3_dbam;
	else
		dbam_map = ddr2_dbam;

	return dbam_map[cs_mode];
1222 1223 1224
}

static u64 f10_get_error_address(struct mem_ctl_info *mci,
1225
			struct err_regs *info)
1226 1227 1228 1229 1230
{
	return (((u64) (info->nbeah & 0xffff)) << 32) +
			(info->nbeal & ~0x01);
}

1231 1232 1233
static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{

1234 1235 1236
	if (!amd64_read_dct_pci_cfg(pvt, F10_DCTL_SEL_LOW, &pvt->dct_sel_low)) {
		debugf0("F2x110 (DCTL Sel. Low): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_low, dct_sel_baseaddr(pvt));
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

		debugf0("  DCT mode: %s, All DCTs on: %s\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
			(dct_dram_enabled(pvt) ? "yes"   : "no"));

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

		debugf0("  DCT data interleave for ECC: %s, "
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

		debugf0("  DCT channel interleave: %s, "
			"DCT interleave bits selector: 0x%x\n",
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1254 1255 1256
			dct_sel_interleave_addr(pvt));
	}

1257
	amd64_read_dct_pci_cfg(pvt, F10_DCTL_SEL_HIGH, &pvt->dct_sel_hi);
1258 1259
}

1260 1261 1262 1263
/*
 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
 * Interleaving Modes.
 */
1264 1265 1266
static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				int hi_range_sel, u32 intlv_en)
{
1267
	u32 cs, temp, dct_sel_high = (pvt->dct_sel_low >> 1) & 1;
1268 1269 1270 1271 1272 1273

	if (dct_ganging_enabled(pvt))
		cs = 0;
	else if (hi_range_sel)
		cs = dct_sel_high;
	else if (dct_interleave_enabled(pvt)) {
1274 1275 1276
		/*
		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
		 */
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		if (dct_sel_interleave_addr(pvt) == 0)
			cs = sys_addr >> 6 & 1;
		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			if (dct_sel_interleave_addr(pvt) & 1)
				cs = (sys_addr >> 9 & 1) ^ temp;
			else
				cs = (sys_addr >> 6 & 1) ^ temp;
		} else if (intlv_en & 4)
			cs = sys_addr >> 15 & 1;
		else if (intlv_en & 2)
			cs = sys_addr >> 14 & 1;
		else if (intlv_en & 1)
			cs = sys_addr >> 13 & 1;
		else
			cs = sys_addr >> 12 & 1;
	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
		cs = ~dct_sel_high & 1;
	else
		cs = 0;

	return cs;
}

static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
{
	if (intlv_en == 1)
		return 1;
	else if (intlv_en == 3)
		return 2;
	else if (intlv_en == 7)
		return 3;

	return 0;
}

1314 1315
/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1316 1317
						 u32 dct_sel_base_addr,
						 u64 dct_sel_base_off,
1318
						 u32 hole_valid, u64 hole_off,
1319 1320 1321 1322 1323
						 u64 dram_base)
{
	u64 chan_off;

	if (hi_range_sel) {
1324
		if (!(dct_sel_base_addr & 0xFFFF0000) &&
1325
		   hole_valid && (sys_addr >= 0x100000000ULL))
1326
			chan_off = hole_off;
1327 1328 1329
		else
			chan_off = dct_sel_base_off;
	} else {
1330
		if (hole_valid && (sys_addr >= 0x100000000ULL))
1331
			chan_off = hole_off;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		else
			chan_off = dram_base & 0xFFFFF8000000ULL;
	}

	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
			(chan_off & 0x0000FFFFFF800000ULL);
}

/* Hack for the time being - Can we get this from BIOS?? */
#define	CH0SPARE_RANK	0
#define	CH1SPARE_RANK	1

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
static inline int f10_process_possible_spare(int csrow,
				u32 cs, struct amd64_pvt *pvt)
{
	u32 swap_done;
	u32 bad_dram_cs;

	/* Depending on channel, isolate respective SPARING info */
	if (cs) {
		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH1SPARE_RANK;
	} else {
		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH0SPARE_RANK;
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	u32 cs_base, cs_mask;
	int cs_found = -EINVAL;
	int csrow;

1385
	mci = mcis[nid];
1386 1387 1388 1389 1390 1391 1392
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);

1393
	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

		cs_base = amd64_get_dct_base(pvt, cs, csrow);
		if (!(cs_base & K8_DCSB_CS_ENABLE))
			continue;

		/*
		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
		 * of the actual address.
		 */
		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;

		/*
		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
		 */
		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);

		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
				csrow, cs_base, cs_mask);

		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;

		debugf1("              Final CSMask=0x%x\n", cs_mask);
		debugf1("    (InputAddr & ~CSMask)=0x%x "
				"(CSBase & ~CSMask)=0x%x\n",
				(in_addr & ~cs_mask), (cs_base & ~cs_mask));

		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
			cs_found = f10_process_possible_spare(csrow, cs, pvt);

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1432
/* For a given @dram_range, check if @sys_addr falls within it. */
1433
static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
1434 1435
				  u64 sys_addr, int *nid, int *chan_sel)
{
1436
	int cs_found = -EINVAL, high_range = 0;
1437 1438
	u32 intlv_shift;
	u64 hole_off;
1439
	u32 hole_valid, tmp, dct_sel_base, channel;
1440
	u64 chan_addr, dct_sel_base_off;
1441

1442 1443 1444 1445
	u8 node_id    = dram_dst_node(pvt, range);
	u32 intlv_en  = dram_intlv_en(pvt, range);
	u32 intlv_sel = dram_intlv_sel(pvt, range);
	u64 dram_base = get_dram_base(pvt, range);
1446

1447 1448
	debugf1("(range %d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
		range, dram_base, sys_addr, get_dram_limit(pvt, range));
1449 1450 1451 1452 1453

	/*
	 * This assumes that one node's DHAR is the same as all the other
	 * nodes' DHAR.
	 */
1454 1455
	hole_off = f10_dhar_offset(pvt);
	hole_valid = (pvt->dhar & DHAR_VALID);
1456
	dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1457

1458
	debugf1("   HoleOffset=0x%016llx  HoleValid=%d IntlvSel=0x%x\n",
1459 1460
			hole_off, hole_valid, intlv_sel);

1461
	if (intlv_en &&
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
		return -EINVAL;

	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
		high_range = 1;

	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);

	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
					     dct_sel_base_off, hole_valid,
					     hole_off, dram_base);

	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);

	/* remove Node ID (in case of memory interleaving) */
	tmp = chan_addr & 0xFC0;

	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;

	/* remove channel interleave and hash */
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
		if (dct_sel_interleave_addr(pvt) != 1)
			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
		else {
			tmp = chan_addr & 0xFC0;
			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
					| tmp;
		}
	}

	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
		chan_addr, (u32)(chan_addr >> 8));

	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
				       int *node, int *chan_sel)
{
1517
	int range, cs_found = -EINVAL;
1518

1519
	for (range = 0; range < DRAM_RANGES; range++) {
1520

1521
		if (!dram_rw(pvt, range))
1522 1523
			continue;

1524 1525
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1526

1527
			cs_found = f10_match_to_this_node(pvt, range,
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1538 1539
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1540
 *
1541 1542
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1543 1544
 */
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1545
				     struct err_regs *err_info,
1546 1547 1548 1549 1550
				     u64 sys_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;
1551
	u16 syndrome;
1552 1553 1554

	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);

1555 1556 1557 1558 1559 1560
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1561

1562
	syndrome = extract_syndrome(err_info);
1563 1564 1565 1566 1567 1568

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1569
	if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
1570
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1571

1572 1573 1574 1575
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1576
		/*
1577
		 * Channel unknown, report all channels on this CSROW as failed.
1578
		 */
1579
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1580
			edac_mc_handle_ce(mci, page, offset, syndrome,
1581
					  csrow, chan, EDAC_MOD_STR);
1582 1583 1584
}

/*
1585
 * debug routine to display the memory sizes of all logical DIMMs and its
1586 1587
 * CSROWs as well
 */
1588
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1589
{
1590
	int dimm, size0, size1, factor = 0;
1591 1592 1593
	u32 dbam;
	u32 *dcsb;

1594
	if (boot_cpu_data.x86 == 0xf) {
1595 1596 1597
		if (pvt->dclr0 & F10_WIDTH_128)
			factor = 1;

1598
		/* K8 families < revF not supported yet */
1599
	       if (pvt->ext_model < K8_REV_F)
1600 1601 1602 1603 1604
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1605 1606
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dcsb1 : pvt->dcsb0;
1607

1608
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1609

1610 1611
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1612 1613 1614 1615 1616
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1617
			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1618 1619 1620

		size1 = 0;
		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1621
			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1622

1623 1624 1625
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1626 1627 1628
	}
}

1629 1630
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1631
		.ctl_name = "K8",
1632 1633
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1634
		.ops = {
1635 1636 1637 1638
			.early_channel_count	= k8_early_channel_count,
			.get_error_address	= k8_get_error_address,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1639
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1640 1641 1642
		}
	},
	[F10_CPUS] = {
1643
		.ctl_name = "F10h",
1644 1645
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1646
		.ops = {
1647 1648 1649 1650 1651
			.early_channel_count	= f10_early_channel_count,
			.get_error_address	= f10_get_error_address,
			.read_dram_ctl_register	= f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
			.dbam_to_cs		= f10_dbam_to_chip_select,
1652 1653 1654 1655 1656 1657 1658
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
		.ops = {
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1680
/*
1681 1682 1683
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1684
 *
1685
 * Algorithm courtesy of Ross LaFetra from AMD.
1686
 */
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1724 1725
};

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1749
			   int v_dim)
1750
{
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
		int v_idx =  err_sym * v_dim;
		int v_end = (err_sym + 1) * v_dim;

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1769

1770 1771 1772
					if (!s)
						return err_sym;
				}
1773

1774 1775 1776 1777
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1778 1779 1780 1781 1782
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	int err_sym = -1;

	if (pvt->syn_type == 8)
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
					  pvt->syn_type);
	else if (pvt->syn_type == 4)
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
					  pvt->syn_type);
	else {
1837
		amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1838
		return err_sym;
1839
	}
1840 1841

	return map_err_sym_to_channel(err_sym, pvt->syn_type);
1842 1843
}

1844 1845 1846 1847 1848
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
static void amd64_handle_ce(struct mem_ctl_info *mci,
1849
			    struct err_regs *info)
1850 1851
{
	struct amd64_pvt *pvt = mci->pvt_info;
1852
	u64 sys_addr;
1853 1854

	/* Ensure that the Error Address is VALID */
1855 1856
	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1857 1858 1859 1860
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1861
	sys_addr = pvt->ops->get_error_address(mci, info);
1862

1863
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1864

1865
	pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
1866 1867 1868 1869
}

/* Handle any Un-correctable Errors (UEs) */
static void amd64_handle_ue(struct mem_ctl_info *mci,
1870
			    struct err_regs *info)
1871
{
1872 1873
	struct amd64_pvt *pvt = mci->pvt_info;
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1874
	int csrow;
1875
	u64 sys_addr;
1876 1877 1878 1879
	u32 page, offset;

	log_mci = mci;

1880 1881
	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1882 1883 1884 1885
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1886
	sys_addr = pvt->ops->get_error_address(mci, info);
1887 1888 1889 1890 1891

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1892
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1893
	if (!src_mci) {
1894 1895
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1896 1897 1898 1899 1900 1901
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1902
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1903
	if (csrow < 0) {
1904 1905
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1906 1907
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1908
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1909 1910 1911 1912
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1913
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1914
					    struct err_regs *info)
1915
{
1916 1917
	u16 ec = EC(info->nbsl);
	u8 xec = XEC(info->nbsl, 0x1f);
B
Borislav Petkov 已提交
1918
	int ecc_type = (info->nbsh >> 13) & 0x3;
1919

1920 1921 1922
	/* Bail early out if this was an 'observed' error */
	if (PP(ec) == K8_NBSL_PP_OBS)
		return;
1923

1924 1925
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1926 1927
		return;

1928
	if (ecc_type == 2)
1929
		amd64_handle_ce(mci, info);
1930
	else if (ecc_type == 1)
1931 1932 1933
		amd64_handle_ue(mci, info);
}

1934
void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1935
{
1936
	struct mem_ctl_info *mci = mcis[node_id];
1937
	struct err_regs regs;
1938

1939 1940 1941 1942 1943 1944 1945
	regs.nbsl  = (u32) m->status;
	regs.nbsh  = (u32)(m->status >> 32);
	regs.nbeal = (u32) m->addr;
	regs.nbeah = (u32)(m->addr >> 32);
	regs.nbcfg = nbcfg;

	__amd64_decode_bus_error(mci, &regs);
1946 1947 1948 1949 1950

	/*
	 * Check the UE bit of the NB status high register, if set generate some
	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
	 * If it was a GART error, skip that process.
1951 1952
	 *
	 * FIXME: this should go somewhere else, if at all.
1953
	 */
1954
	if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
1955
		edac_mc_handle_ue_no_info(mci, "UE bit is set");
1956

1957 1958
}

1959
/*
1960
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1961
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1962
 */
1963
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1964 1965
{
	/* Reserve the ADDRESS MAP Device */
1966 1967
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
1968 1969 1970
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
1971
		return -ENODEV;
1972 1973 1974
	}

	/* Reserve the MISC Device */
1975 1976 1977 1978
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
1979

1980 1981 1982
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
1983

1984
		return -ENODEV;
1985
	}
1986 1987 1988
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
1989 1990 1991 1992

	return 0;
}

1993
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1994
{
1995 1996
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
1997 1998 1999 2000 2001 2002
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2003
static void read_mc_regs(struct amd64_pvt *pvt)
2004 2005
{
	u64 msr_val;
2006
	u32 tmp;
2007
	int range;
2008 2009 2010 2011 2012

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2013 2014
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2015 2016 2017 2018

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2019 2020
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2021 2022 2023
	} else
		debugf0("  TOP_MEM2 disabled.\n");

2024
	amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
2025 2026 2027 2028

	if (pvt->ops->read_dram_ctl_register)
		pvt->ops->read_dram_ctl_register(pvt);

2029 2030
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
2050 2051
	}

2052
	read_dct_base_mask(pvt);
2053

2054
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2055 2056
	amd64_read_dbam_reg(pvt);

2057
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2058

2059 2060
	amd64_read_dct_pci_cfg(pvt, F10_DCLR_0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, F10_DCHR_0, &pvt->dchr0);
2061

2062 2063 2064
	if (!dct_ganging_enabled(pvt)) {
		amd64_read_dct_pci_cfg(pvt, F10_DCLR_1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, F10_DCHR_1, &pvt->dchr1);
2065
	}
2066

2067 2068 2069
	if (boot_cpu_data.x86 >= 0x10)
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);

2070 2071 2072 2073 2074 2075 2076 2077
	if (boot_cpu_data.x86 == 0x10 &&
	    boot_cpu_data.x86_model > 7 &&
	    /* F3x180[EccSymbolSize]=1 => x8 symbols */
	    tmp & BIT(25))
		pvt->syn_type = 8;
	else
		pvt->syn_type = 4;

2078
	dump_misc_regs(pvt);
2079 2080 2081 2082 2083 2084
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2085
 *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
2117
	u32 cs_mode, nr_pages;
2118 2119 2120 2121 2122 2123 2124 2125

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2126
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2127

2128
	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2129 2130 2131 2132 2133 2134 2135

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2136
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2147
static int init_csrows(struct mem_ctl_info *mci)
2148 2149
{
	struct csrow_info *csrow;
2150
	struct amd64_pvt *pvt = mci->pvt_info;
2151
	u64 input_addr_min, input_addr_max, sys_addr;
2152
	u32 val;
2153
	int i, empty = 1;
2154

2155
	amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
2156

2157 2158
	pvt->nbcfg = val;
	pvt->ctl_error_info.nbcfg = val;
2159

2160 2161 2162
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
		!!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
2163

2164
	for (i = 0; i < pvt->cs_count; i++) {
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
		csrow = &mci->csrows[i];

		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
		/* 8 bytes of resolution */

2186
		csrow->mtype = amd64_determine_memory_type(pvt, i);
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
			csrow->edac_mode =
			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2212

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
	cpumask_var_t mask;
2227
	int cpu, nbe;
2228 2229 2230
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2231
		amd64_warn("%s: Error allocating mask\n", __func__);
2232 2233 2234 2235 2236 2237 2238 2239
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2240 2241
		struct msr *reg = per_cpu_ptr(msrs, cpu);
		nbe = reg->l & K8_MSR_MCGCTL_NBE;
2242 2243

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2244
			cpu, reg->q,
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2257
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2258 2259
{
	cpumask_var_t cmask;
2260
	int cpu;
2261 2262

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2263
		amd64_warn("%s: error allocating mask\n", __func__);
2264 2265 2266
		return false;
	}

2267
	get_cpus_on_this_dct_cpumask(cmask, nid);
2268 2269 2270 2271 2272

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2273 2274
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2275
		if (on) {
2276
			if (reg->l & K8_MSR_MCGCTL_NBE)
2277
				s->flags.nb_mce_enable = 1;
2278

2279
			reg->l |= K8_MSR_MCGCTL_NBE;
2280 2281
		} else {
			/*
2282
			 * Turn off NB MCE reporting only when it was off before
2283
			 */
2284
			if (!s->flags.nb_mce_enable)
2285
				reg->l &= ~K8_MSR_MCGCTL_NBE;
2286 2287 2288 2289 2290 2291 2292 2293 2294
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2295 2296
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2297
{
2298
	bool ret = true;
2299
	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2300

2301 2302 2303 2304 2305 2306
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

	amd64_read_pci_cfg(F3, K8_NBCTL, &value);
2307

2308 2309 2310
	/* turn on UECCEn and CECCEn bits */
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2311 2312

	value |= mask;
2313
	amd64_write_pci_cfg(F3, K8_NBCTL, value);
2314

2315
	amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2316

2317 2318 2319
	debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		nid, value,
		!!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
2320 2321

	if (!(value & K8_NBCFG_ECC_ENABLE)) {
2322
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2323

2324
		s->flags.nb_ecc_prev = 0;
2325

2326 2327
		/* Attempt to turn on DRAM ECC Enable */
		value |= K8_NBCFG_ECC_ENABLE;
2328
		amd64_write_pci_cfg(F3, K8_NBCFG, value);
2329

2330
		amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2331 2332

		if (!(value & K8_NBCFG_ECC_ENABLE)) {
2333 2334
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2335
			ret = false;
2336
		} else {
2337
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2338
		}
2339
	} else {
2340
		s->flags.nb_ecc_prev = 1;
2341
	}
2342

2343 2344 2345
	debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		nid, value,
		!!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
2346

2347
	return ret;
2348 2349
}

2350 2351
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2352
{
2353
	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2354

2355
	if (!s->nbctl_valid)
2356 2357
		return;

2358
	amd64_read_pci_cfg(F3, K8_NBCTL, &value);
2359
	value &= ~mask;
2360
	value |= s->old_nbctl;
2361

2362
	amd64_write_pci_cfg(F3, K8_NBCTL, value);
2363

2364 2365
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2366
		amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2367
		value &= ~K8_NBCFG_ECC_ENABLE;
2368
		amd64_write_pci_cfg(F3, K8_NBCFG, value);
2369 2370 2371
	}

	/* restore the NB Enable MCGCTL bit */
2372
	if (toggle_ecc_err_reporting(s, nid, OFF))
2373
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2374 2375 2376
}

/*
2377 2378 2379 2380
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2381
 */
2382 2383 2384 2385 2386
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2387

2388
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2389 2390
{
	u32 value;
2391
	u8 ecc_en = 0;
2392
	bool nb_mce_en = false;
2393

2394
	amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2395

2396 2397
	ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2398

2399
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2400
	if (!nb_mce_en)
2401 2402 2403
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2404

2405 2406 2407 2408 2409
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2410 2411
}

2412 2413 2414 2415 2416 2417
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2418
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2419 2420 2421 2422 2423 2424
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2425 2426 2427
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2428 2429 2430 2431 2432 2433

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2434
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

	if (pvt->nbcap & K8_NBCAP_SECDED)
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2450
	mci->ctl_name		= pvt->ctl_name;
2451
	mci->dev_name		= pci_name(pvt->F2);
2452 2453 2454 2455 2456 2457 2458
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2459 2460 2461 2462
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2463
{
2464 2465 2466 2467
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2468
	case 0xf:
2469
		fam_type		= &amd64_family_types[K8_CPUS];
2470
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2471 2472
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= K8_MIN_SCRUB_RATE_BITS;
2473 2474
		break;
	case 0x10:
2475
		fam_type		= &amd64_family_types[F10_CPUS];
2476
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2477 2478
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= F10_MIN_SCRUB_RATE_BITS;
2479 2480 2481
		break;

	default:
2482
		amd64_err("Unsupported family!\n");
2483
		return NULL;
2484
	}
2485

2486 2487
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2488
	amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2489
		     (fam == 0xf ?
2490 2491 2492
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2493
	return fam_type;
2494 2495
}

2496
static int amd64_init_one_instance(struct pci_dev *F2)
2497 2498
{
	struct amd64_pvt *pvt = NULL;
2499
	struct amd64_family_type *fam_type = NULL;
2500
	struct mem_ctl_info *mci = NULL;
2501
	int err = 0, ret;
2502
	u8 nid = get_node_id(F2);
2503 2504 2505 2506

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2507
		goto err_ret;
2508

2509
	pvt->mc_node_id	= nid;
2510
	pvt->F2 = F2;
2511

2512
	ret = -EINVAL;
2513 2514
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2515 2516
		goto err_free;

2517
	ret = -ENODEV;
2518
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2519 2520 2521
	if (err)
		goto err_free;

2522
	read_mc_regs(pvt);
2523 2524 2525 2526

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2527
	 * tables in the 'mci' structure.
2528
	 */
2529
	ret = -EINVAL;
2530 2531
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2532
		goto err_siblings;
2533 2534

	ret = -ENOMEM;
2535
	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
2536
	if (!mci)
2537
		goto err_siblings;
2538 2539

	mci->pvt_info = pvt;
2540
	mci->dev = &pvt->F2->dev;
2541

2542 2543 2544
	setup_mci_misc_attrs(mci);

	if (init_csrows(mci))
2545 2546
		mci->edac_cap = EDAC_FLAG_NONE;

2547
	set_mc_sysfs_attrs(mci);
2548 2549 2550 2551 2552 2553 2554

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2555 2556 2557 2558 2559 2560
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2561 2562 2563 2564
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2565 2566 2567 2568 2569
	return 0;

err_add_mc:
	edac_mc_free(mci);

2570 2571
err_siblings:
	free_mc_sibling_devs(pvt);
2572

2573 2574
err_free:
	kfree(pvt);
2575

2576
err_ret:
2577 2578 2579
	return ret;
}

2580
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2581
					     const struct pci_device_id *mc_type)
2582
{
2583
	u8 nid = get_node_id(pdev);
2584
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2585
	struct ecc_settings *s;
2586
	int ret = 0;
2587 2588

	ret = pci_enable_device(pdev);
2589 2590 2591 2592
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2593

2594 2595 2596
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2597
		goto err_out;
2598 2599 2600

	ecc_stngs[nid] = s;

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2614
	if (ret < 0) {
2615
		amd64_err("Error probing instance: %d\n", nid);
2616 2617
		restore_ecc_error_reporting(s, nid, F3);
	}
2618 2619

	return ret;
2620 2621 2622 2623 2624 2625 2626

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2627 2628 2629 2630 2631 2632
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2633 2634 2635
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2636 2637 2638 2639 2640 2641 2642 2643

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2644
	restore_ecc_error_reporting(s, nid, F3);
2645

2646
	free_mc_sibling_devs(pvt);
2647

2648 2649 2650 2651
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2652 2653
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2654

2655
	/* Free the EDAC CORE resources */
2656
	mci->pvt_info = NULL;
2657
	mcis[nid] = NULL;
2658 2659

	kfree(pvt);
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2691
	.probe		= amd64_probe_one_instance,
2692 2693 2694 2695
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2696
static void setup_pci_device(void)
2697 2698 2699 2700 2701 2702 2703
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2704
	mci = mcis[0];
2705 2706 2707 2708
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2709
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2723
	int err = -ENODEV;
2724 2725 2726 2727 2728

	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");

	opstate_init();

2729
	if (amd_cache_northbridges() < 0)
2730
		goto err_ret;
2731

2732
	err = -ENOMEM;
2733 2734
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2735
	if (!(mcis && ecc_stngs))
2736 2737
		goto err_ret;

2738
	msrs = msrs_alloc();
2739
	if (!msrs)
2740
		goto err_free;
2741

2742 2743
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2744
		goto err_pci;
2745

2746
	err = -ENODEV;
2747 2748
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2749

2750 2751
	setup_pci_device();
	return 0;
2752

2753
err_no_instances:
2754
	pci_unregister_driver(&amd64_pci_driver);
2755

2756 2757 2758
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2759

2760 2761 2762 2763 2764 2765 2766
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2767
err_ret:
2768 2769 2770 2771 2772 2773 2774 2775 2776
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2777

2778 2779 2780
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2781 2782 2783
	kfree(mcis);
	mcis = NULL;

2784 2785
	msrs_free(msrs);
	msrs = NULL;
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");