fair.c 211.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
288

289 290 291
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
292 293 294 295 296 297 298 299 300 301 302 303
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305
		}
306 307

		cfs_rq->on_list = 1;
308
		/* We should have no load, but we need to update last_decay. */
309
		update_cfs_rq_blocked_load(cfs_rq, 0);
310 311 312 313 314 315 316 317 318 319 320
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
321 322 323 324 325
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
326
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
327 328 329
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
330
		return se->cfs_rq;
P
Peter Zijlstra 已提交
331

P
Peter Zijlstra 已提交
332
	return NULL;
P
Peter Zijlstra 已提交
333 334 335 336 337 338 339
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

340 341 342 343 344 345 346 347 348 349 350 351 352
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
353 354
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

372 373 374 375 376 377
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
378

379 380 381
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
382 383 384 385
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
386 387
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
388

P
Peter Zijlstra 已提交
389
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390
{
P
Peter Zijlstra 已提交
391
	return &task_rq(p)->cfs;
392 393
}

P
Peter Zijlstra 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

408 409 410 411 412 413 414 415
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
416 417 418 419 420 421 422 423
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

424 425 426 427 428
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
429 430
#endif	/* CONFIG_FAIR_GROUP_SCHED */

431
static __always_inline
432
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 434 435 436 437

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

438
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439
{
440
	s64 delta = (s64)(vruntime - max_vruntime);
441
	if (delta > 0)
442
		max_vruntime = vruntime;
443

444
	return max_vruntime;
445 446
}

447
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
448 449 450 451 452 453 454 455
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

456 457 458 459 460 461
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

462 463 464 465 466 467 468 469 470 471 472 473
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
474
		if (!cfs_rq->curr)
475 476 477 478 479
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

480
	/* ensure we never gain time by being placed backwards. */
481
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 483 484 485
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
486 487
}

488 489 490
/*
 * Enqueue an entity into the rb-tree:
 */
491
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
508
		if (entity_before(se, entry)) {
509 510 511 512 513 514 515 516 517 518 519
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
520
	if (leftmost)
I
Ingo Molnar 已提交
521
		cfs_rq->rb_leftmost = &se->run_node;
522 523 524 525 526

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

527
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528
{
P
Peter Zijlstra 已提交
529 530 531 532 533 534
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
535

536 537 538
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

539
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540
{
541 542 543 544 545 546
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
547 548
}

549 550 551 552 553 554 555 556 557 558 559
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
560
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561
{
562
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563

564 565
	if (!last)
		return NULL;
566 567

	return rb_entry(last, struct sched_entity, run_node);
568 569
}

570 571 572 573
/**************************************************************
 * Scheduling class statistics methods:
 */

574
int sched_proc_update_handler(struct ctl_table *table, int write,
575
		void __user *buffer, size_t *lenp,
576 577
		loff_t *ppos)
{
578
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579
	int factor = get_update_sysctl_factor();
580 581 582 583 584 585 586

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

587 588 589 590 591 592 593
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

594 595 596
	return 0;
}
#endif
597

598
/*
599
 * delta /= w
600
 */
601
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602
{
603
	if (unlikely(se->load.weight != NICE_0_LOAD))
604
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 606 607 608

	return delta;
}

609 610 611
/*
 * The idea is to set a period in which each task runs once.
 *
612
 * When there are too many tasks (sched_nr_latency) we have to stretch
613 614 615 616
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
617 618 619
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
620
	unsigned long nr_latency = sched_nr_latency;
621 622

	if (unlikely(nr_running > nr_latency)) {
623
		period = sysctl_sched_min_granularity;
624 625 626 627 628 629
		period *= nr_running;
	}

	return period;
}

630 631 632 633
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
634
 * s = p*P[w/rw]
635
 */
P
Peter Zijlstra 已提交
636
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637
{
M
Mike Galbraith 已提交
638
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639

M
Mike Galbraith 已提交
640
	for_each_sched_entity(se) {
L
Lin Ming 已提交
641
		struct load_weight *load;
642
		struct load_weight lw;
L
Lin Ming 已提交
643 644 645

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
646

M
Mike Galbraith 已提交
647
		if (unlikely(!se->on_rq)) {
648
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
649 650 651 652

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
653
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
654 655
	}
	return slice;
656 657
}

658
/*
A
Andrei Epure 已提交
659
 * We calculate the vruntime slice of a to-be-inserted task.
660
 *
661
 * vs = s/w
662
 */
663
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
664
{
665
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 667
}

668
#ifdef CONFIG_SMP
669
static int select_idle_sibling(struct task_struct *p, int cpu);
670 671
static unsigned long task_h_load(struct task_struct *p);

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

691
/*
692
 * Update the current task's runtime statistics.
693
 */
694
static void update_curr(struct cfs_rq *cfs_rq)
695
{
696
	struct sched_entity *curr = cfs_rq->curr;
697
	u64 now = rq_clock_task(rq_of(cfs_rq));
698
	u64 delta_exec;
699 700 701 702

	if (unlikely(!curr))
		return;

703 704
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
705
		return;
706

I
Ingo Molnar 已提交
707
	curr->exec_start = now;
708

709 710 711 712 713 714 715 716 717
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

718 719 720
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

721
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722
		cpuacct_charge(curtask, delta_exec);
723
		account_group_exec_runtime(curtask, delta_exec);
724
	}
725 726

	account_cfs_rq_runtime(cfs_rq, delta_exec);
727 728 729
}

static inline void
730
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
731
{
732
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
733 734 735 736 737
}

/*
 * Task is being enqueued - update stats:
 */
738
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 740 741 742 743
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
744
	if (se != cfs_rq->curr)
745
		update_stats_wait_start(cfs_rq, se);
746 747 748
}

static void
749
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
750
{
751
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
752
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
753 754
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
755
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
756 757 758
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
759
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 761
	}
#endif
762
	schedstat_set(se->statistics.wait_start, 0);
763 764 765
}

static inline void
766
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
767 768 769 770 771
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
772
	if (se != cfs_rq->curr)
773
		update_stats_wait_end(cfs_rq, se);
774 775 776 777 778 779
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
780
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 782 783 784
{
	/*
	 * We are starting a new run period:
	 */
785
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
786 787 788 789 790 791
}

/**************************************************
 * Scheduling class queueing methods:
 */

792 793
#ifdef CONFIG_NUMA_BALANCING
/*
794 795 796
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
797
 */
798 799
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
800 801 802

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
803

804 805 806
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
831
	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
832 833 834
	unsigned int scan, floor;
	unsigned int windows = 1;

835 836
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

853 854 855 856 857 858 859 860 861 862 863 864
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

865 866 867 868 869
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
870
	pid_t gid;
871 872 873
	struct list_head task_list;

	struct rcu_head rcu;
874
	nodemask_t active_nodes;
875
	unsigned long total_faults;
876 877 878 879 880
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
881
	unsigned long *faults_cpu;
882
	unsigned long faults[0];
883 884
};

885 886 887 888 889 890 891 892 893
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

894 895 896 897 898
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

899 900 901 902 903 904 905
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
906
{
907
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
908 909 910 911
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
912
	if (!p->numa_faults)
913 914
		return 0;

915 916
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
917 918
}

919 920 921 922 923
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

924 925
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
926 927
}

928 929
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
930 931
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
932 933
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

999 1000 1001 1002 1003 1004
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1005 1006
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1007
{
1008
	unsigned long faults, total_faults;
1009

1010
	if (!p->numa_faults)
1011 1012 1013 1014 1015 1016 1017
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1018
	faults = task_faults(p, nid);
1019 1020
	faults += score_nearby_nodes(p, nid, dist, true);

1021
	return 1000 * faults / total_faults;
1022 1023
}

1024 1025
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1026
{
1027 1028 1029 1030 1031 1032 1033 1034
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1035 1036
		return 0;

1037
	faults = group_faults(p, nid);
1038 1039
	faults += score_nearby_nodes(p, nid, dist, false);

1040
	return 1000 * faults / total_faults;
1041 1042
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1106
static unsigned long weighted_cpuload(const int cpu);
1107 1108
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1109
static unsigned long capacity_of(int cpu);
1110 1111
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1112
/* Cached statistics for all CPUs within a node */
1113
struct numa_stats {
1114
	unsigned long nr_running;
1115
	unsigned long load;
1116 1117

	/* Total compute capacity of CPUs on a node */
1118
	unsigned long compute_capacity;
1119 1120

	/* Approximate capacity in terms of runnable tasks on a node */
1121
	unsigned long task_capacity;
1122
	int has_free_capacity;
1123
};
1124

1125 1126 1127 1128 1129
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1130 1131
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1132 1133 1134 1135 1136 1137 1138

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1139
		ns->compute_capacity += capacity_of(cpu);
1140 1141

		cpus++;
1142 1143
	}

1144 1145 1146 1147 1148
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1149 1150
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1151 1152 1153 1154
	 */
	if (!cpus)
		return;

1155 1156 1157 1158 1159 1160
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1161
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1162 1163
}

1164 1165
struct task_numa_env {
	struct task_struct *p;
1166

1167 1168
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1169

1170
	struct numa_stats src_stats, dst_stats;
1171

1172
	int imbalance_pct;
1173
	int dist;
1174 1175 1176

	struct task_struct *best_task;
	long best_imp;
1177 1178 1179
	int best_cpu;
};

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1193
static bool load_too_imbalanced(long src_load, long dst_load,
1194 1195 1196
				struct task_numa_env *env)
{
	long imb, old_imb;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	long orig_src_load, orig_dst_load;
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1209 1210 1211 1212 1213 1214

	/* We care about the slope of the imbalance, not the direction. */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	/* Is the difference below the threshold? */
1215 1216
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1217 1218 1219 1220 1221 1222 1223
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
	 * Compare it with the old imbalance.
	 */
1224 1225 1226
	orig_src_load = env->src_stats.load;
	orig_dst_load = env->dst_stats.load;

1227 1228 1229
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);

1230 1231
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;
1232 1233

	/* Would this change make things worse? */
1234
	return (imb > old_imb);
1235 1236
}

1237 1238 1239 1240 1241 1242
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1243 1244
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1245 1246 1247 1248
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1249
	long src_load, dst_load;
1250
	long load;
1251
	long imp = env->p->numa_group ? groupimp : taskimp;
1252
	long moveimp = imp;
1253
	int dist = env->dist;
1254 1255

	rcu_read_lock();
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

	raw_spin_lock_irq(&dst_rq->lock);
	cur = dst_rq->curr;
	/*
	 * No need to move the exiting task, and this ensures that ->curr
	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
	 * is safe under RCU read lock.
	 * Note that rcu_read_lock() itself can't protect from the final
	 * put_task_struct() after the last schedule().
	 */
	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1267
		cur = NULL;
1268
	raw_spin_unlock_irq(&dst_rq->lock);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1282 1283
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1284
		 * in any group then look only at task weights.
1285
		 */
1286
		if (cur->numa_group == env->p->numa_group) {
1287 1288
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1289 1290 1291 1292 1293 1294
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1295
		} else {
1296 1297 1298 1299 1300 1301
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1302 1303
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1304
			else
1305 1306
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1307
		}
1308 1309
	}

1310
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1311 1312 1313 1314
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1315
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1316
		    !env->dst_stats.has_free_capacity)
1317 1318 1319 1320 1321 1322
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1323 1324
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1325 1326 1327 1328 1329 1330
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1331 1332 1333
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1334

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1352
	if (cur) {
1353 1354 1355
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1356 1357
	}

1358
	if (load_too_imbalanced(src_load, dst_load, env))
1359 1360
		goto unlock;

1361 1362 1363 1364 1365 1366 1367
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1368 1369 1370 1371 1372 1373
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1374 1375
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1376 1377 1378 1379 1380 1381 1382 1383 1384
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1385
		task_numa_compare(env, taskimp, groupimp);
1386 1387 1388
	}
}

1389 1390 1391 1392
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1393

1394
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1395
		.src_nid = task_node(p),
1396 1397 1398 1399 1400 1401

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1402 1403
	};
	struct sched_domain *sd;
1404
	unsigned long taskweight, groupweight;
1405
	int nid, ret, dist;
1406
	long taskimp, groupimp;
1407

1408
	/*
1409 1410 1411 1412 1413 1414
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1415 1416
	 */
	rcu_read_lock();
1417
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1418 1419
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1420 1421
	rcu_read_unlock();

1422 1423 1424 1425 1426 1427 1428
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1429
		p->numa_preferred_nid = task_node(p);
1430 1431 1432
		return -EINVAL;
	}

1433
	env.dst_nid = p->numa_preferred_nid;
1434 1435 1436 1437 1438 1439
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1440
	update_numa_stats(&env.dst_stats, env.dst_nid);
1441

1442 1443
	/* Try to find a spot on the preferred nid. */
	task_numa_find_cpu(&env, taskimp, groupimp);
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
	if (env.best_cpu == -1 || (p->numa_group &&
			nodes_weight(p->numa_group->active_nodes) > 1)) {
1454 1455 1456
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1457

1458
			dist = node_distance(env.src_nid, env.dst_nid);
1459 1460 1461 1462 1463
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1464

1465
			/* Only consider nodes where both task and groups benefit */
1466 1467
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1468
			if (taskimp < 0 && groupimp < 0)
1469 1470
				continue;

1471
			env.dist = dist;
1472 1473
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1474
			task_numa_find_cpu(&env, taskimp, groupimp);
1475 1476 1477
		}
	}

1478 1479 1480 1481 1482 1483 1484 1485
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1499

1500 1501 1502 1503 1504 1505
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1506
	if (env.best_task == NULL) {
1507 1508 1509
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1510 1511 1512 1513
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1514 1515
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1516 1517
	put_task_struct(env.best_task);
	return ret;
1518 1519
}

1520 1521 1522
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1523 1524
	unsigned long interval = HZ;

1525
	/* This task has no NUMA fault statistics yet */
1526
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1527 1528
		return;

1529
	/* Periodically retry migrating the task to the preferred node */
1530 1531
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1532 1533

	/* Success if task is already running on preferred CPU */
1534
	if (task_node(p) == p->numa_preferred_nid)
1535 1536 1537
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1538
	task_numa_migrate(p);
1539 1540
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1573 1574 1575
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1576 1577 1578
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1579 1580
 */
#define NUMA_PERIOD_SLOTS 10
1581
#define NUMA_PERIOD_THRESHOLD 7
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1638
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1639 1640 1641 1642 1643 1644 1645 1646
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
		nodemask_t max_group;
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
		nodes = max_group;
	}
	return nid;
}

1761 1762
static void task_numa_placement(struct task_struct *p)
{
1763 1764
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1765
	unsigned long fault_types[2] = { 0, 0 };
1766 1767
	unsigned long total_faults;
	u64 runtime, period;
1768
	spinlock_t *group_lock = NULL;
1769

1770
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1771 1772 1773
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1774
	p->numa_scan_period_max = task_scan_max(p);
1775

1776 1777 1778 1779
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1780 1781 1782
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1783
		spin_lock_irq(group_lock);
1784 1785
	}

1786 1787
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1788 1789
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1790
		unsigned long faults = 0, group_faults = 0;
1791
		int priv;
1792

1793
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1794
			long diff, f_diff, f_weight;
1795

1796 1797 1798 1799
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1800

1801
			/* Decay existing window, copy faults since last scan */
1802 1803 1804
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1805

1806 1807 1808 1809 1810 1811 1812 1813
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1814
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1815
				   (total_faults + 1);
1816 1817
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1818

1819 1820 1821
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1822
			p->total_numa_faults += diff;
1823
			if (p->numa_group) {
1824 1825 1826 1827 1828 1829 1830 1831 1832
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1833
				p->numa_group->total_faults += diff;
1834
				group_faults += p->numa_group->faults[mem_idx];
1835
			}
1836 1837
		}

1838 1839 1840 1841
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1842 1843 1844 1845 1846 1847 1848

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1849 1850
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1851
	if (p->numa_group) {
1852
		update_numa_active_node_mask(p->numa_group);
1853
		spin_unlock_irq(group_lock);
1854
		max_nid = preferred_group_nid(p, max_group_nid);
1855 1856
	}

1857 1858 1859 1860 1861 1862 1863
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1864
	}
1865 1866
}

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1878 1879
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1880 1881 1882 1883 1884 1885 1886 1887 1888
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1889
				    4*nr_node_ids*sizeof(unsigned long);
1890 1891 1892 1893 1894 1895 1896 1897

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1898
		grp->gid = p->pid;
1899
		/* Second half of the array tracks nids where faults happen */
1900 1901
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1902

1903 1904
		node_set(task_node(current), grp->active_nodes);

1905
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1906
			grp->faults[i] = p->numa_faults[i];
1907

1908
		grp->total_faults = p->total_numa_faults;
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1919
		goto no_join;
1920 1921 1922

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1923
		goto no_join;
1924 1925 1926

	my_grp = p->numa_group;
	if (grp == my_grp)
1927
		goto no_join;
1928 1929 1930 1931 1932 1933

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1934
		goto no_join;
1935 1936 1937 1938 1939

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1940
		goto no_join;
1941

1942 1943 1944 1945 1946 1947 1948
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1949

1950 1951 1952
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1953
	if (join && !get_numa_group(grp))
1954
		goto no_join;
1955 1956 1957 1958 1959 1960

	rcu_read_unlock();

	if (!join)
		return;

1961 1962
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
1963

1964
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1965 1966
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
1967
	}
1968 1969
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1970 1971 1972 1973 1974 1975

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
1976
	spin_unlock_irq(&grp->lock);
1977 1978 1979 1980

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1981 1982 1983 1984 1985
	return;

no_join:
	rcu_read_unlock();
	return;
1986 1987 1988 1989 1990
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
1991
	void *numa_faults = p->numa_faults;
1992 1993
	unsigned long flags;
	int i;
1994 1995

	if (grp) {
1996
		spin_lock_irqsave(&grp->lock, flags);
1997
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1998
			grp->faults[i] -= p->numa_faults[i];
1999
		grp->total_faults -= p->total_numa_faults;
2000

2001 2002
		list_del(&p->numa_entry);
		grp->nr_tasks--;
2003
		spin_unlock_irqrestore(&grp->lock, flags);
2004
		RCU_INIT_POINTER(p->numa_group, NULL);
2005 2006 2007
		put_numa_group(grp);
	}

2008
	p->numa_faults = NULL;
2009
	kfree(numa_faults);
2010 2011
}

2012 2013 2014
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2015
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2016 2017
{
	struct task_struct *p = current;
2018
	bool migrated = flags & TNF_MIGRATED;
2019
	int cpu_node = task_node(current);
2020
	int local = !!(flags & TNF_FAULT_LOCAL);
2021
	int priv;
2022

2023
	if (!numabalancing_enabled)
2024 2025
		return;

2026 2027 2028 2029
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2030
	/* Allocate buffer to track faults on a per-node basis */
2031 2032
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2033
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2034

2035 2036
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2037
			return;
2038

2039
		p->total_numa_faults = 0;
2040
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2041
	}
2042

2043 2044 2045 2046 2047 2048 2049 2050
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2051
		if (!priv && !(flags & TNF_NO_GROUP))
2052
			task_numa_group(p, last_cpupid, flags, &priv);
2053 2054
	}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

2066
	task_numa_placement(p);
2067

2068 2069 2070 2071 2072
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2073 2074
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2075 2076 2077
	if (migrated)
		p->numa_pages_migrated += pages;

2078 2079
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2080
	p->numa_faults_locality[local] += pages;
2081 2082
}

2083 2084 2085 2086 2087 2088
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

2089 2090 2091 2092 2093 2094 2095 2096 2097
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2098
	struct vm_area_struct *vma;
2099
	unsigned long start, end;
2100
	unsigned long nr_pte_updates = 0;
2101
	long pages;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2117
	if (!mm->numa_next_scan) {
2118 2119
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2120 2121
	}

2122 2123 2124 2125 2126 2127 2128
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2129 2130 2131 2132
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2133

2134
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2135 2136 2137
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2138 2139 2140 2141 2142 2143
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2144 2145 2146 2147 2148
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
2149

2150
	down_read(&mm->mmap_sem);
2151
	vma = find_vma(mm, start);
2152 2153
	if (!vma) {
		reset_ptenuma_scan(p);
2154
		start = 0;
2155 2156
		vma = mm->mmap;
	}
2157
	for (; vma; vma = vma->vm_next) {
2158
		if (!vma_migratable(vma) || !vma_policy_mof(vma))
2159 2160
			continue;

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2171 2172 2173 2174 2175 2176
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2177

2178 2179 2180 2181
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2182 2183 2184 2185 2186 2187 2188 2189 2190
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2191

2192 2193 2194
			start = end;
			if (pages <= 0)
				goto out;
2195 2196

			cond_resched();
2197
		} while (end != vma->vm_end);
2198
	}
2199

2200
out:
2201
	/*
P
Peter Zijlstra 已提交
2202 2203 2204 2205
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2206 2207
	 */
	if (vma)
2208
		mm->numa_scan_offset = start;
2209 2210 2211
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
2238
		if (!curr->node_stamp)
2239
			curr->numa_scan_period = task_scan_min(curr);
2240
		curr->node_stamp += period;
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2252 2253 2254 2255 2256 2257 2258 2259

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2260 2261
#endif /* CONFIG_NUMA_BALANCING */

2262 2263 2264 2265
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2266
	if (!parent_entity(se))
2267
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2268
#ifdef CONFIG_SMP
2269 2270 2271 2272 2273 2274
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2275
#endif
2276 2277 2278 2279 2280 2281 2282
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2283
	if (!parent_entity(se))
2284
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2285 2286
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2287
		list_del_init(&se->group_node);
2288
	}
2289 2290 2291
	cfs_rq->nr_running--;
}

2292 2293
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2294 2295 2296 2297 2298 2299 2300 2301 2302
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2303
	tg_weight = atomic_long_read(&tg->load_avg);
2304
	tg_weight -= cfs_rq->tg_load_contrib;
2305 2306 2307 2308 2309
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2310
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2311
{
2312
	long tg_weight, load, shares;
2313

2314
	tg_weight = calc_tg_weight(tg, cfs_rq);
2315
	load = cfs_rq->load.weight;
2316 2317

	shares = (tg->shares * load);
2318 2319
	if (tg_weight)
		shares /= tg_weight;
2320 2321 2322 2323 2324 2325 2326 2327 2328

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2329
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2330 2331 2332 2333
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2334 2335 2336
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2337 2338 2339 2340
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2341
		account_entity_dequeue(cfs_rq, se);
2342
	}
P
Peter Zijlstra 已提交
2343 2344 2345 2346 2347 2348 2349

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2350 2351
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2352
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2353 2354 2355
{
	struct task_group *tg;
	struct sched_entity *se;
2356
	long shares;
P
Peter Zijlstra 已提交
2357 2358 2359

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2360
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2361
		return;
2362 2363 2364 2365
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2366
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2367 2368 2369 2370

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2371
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2372 2373 2374 2375
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2376
#ifdef CONFIG_SMP
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2405 2406 2407 2408 2409 2410
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2423 2424
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2425 2426 2427 2428 2429 2430
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2431 2432
	}

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2498 2499
	u64 delta, periods;
	u32 runnable_contrib;
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2563
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2564
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2565 2566 2567 2568 2569 2570
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2571
		return 0;
2572 2573 2574

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2575 2576

	return decays;
2577 2578
}

2579 2580 2581 2582 2583
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2584
	long tg_contrib;
2585 2586 2587 2588

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2589 2590 2591
	if (!tg_contrib)
		return;

2592 2593
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2594 2595 2596
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2597

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2609
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2610 2611 2612 2613 2614 2615 2616 2617 2618
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2619 2620 2621 2622
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2623 2624
	int runnable_avg;

2625 2626 2627
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2628 2629
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2659
}
2660 2661 2662 2663 2664 2665

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2666
#else /* CONFIG_FAIR_GROUP_SCHED */
2667 2668
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2669 2670
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2671
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2672
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2673
#endif /* CONFIG_FAIR_GROUP_SCHED */
2674

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2685 2686 2687 2688 2689
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2690 2691 2692
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2693
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2694 2695
		__update_group_entity_contrib(se);
	}
2696 2697 2698 2699

	return se->avg.load_avg_contrib - old_contrib;
}

2700 2701 2702 2703 2704 2705 2706 2707 2708
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2709 2710
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2711
/* Update a sched_entity's runnable average */
2712 2713
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2714
{
2715 2716
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2717
	u64 now;
2718

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2729 2730 2731
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2732 2733 2734 2735

	if (!update_cfs_rq)
		return;

2736 2737
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2738 2739 2740 2741 2742 2743 2744 2745
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2746
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2747
{
2748
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2749 2750 2751
	u64 decays;

	decays = now - cfs_rq->last_decay;
2752
	if (!decays && !force_update)
2753 2754
		return;

2755 2756 2757
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2758 2759
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2760

2761 2762 2763 2764 2765 2766
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2767 2768

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2769
}
2770

2771 2772
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2773 2774
						  struct sched_entity *se,
						  int wakeup)
2775
{
2776 2777 2778 2779
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2780 2781 2782 2783
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2784 2785
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2786
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2802 2803
		wakeup = 0;
	} else {
2804
		__synchronize_entity_decay(se);
2805 2806
	}

2807 2808
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2809
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2810 2811
		update_entity_load_avg(se, 0);
	}
2812

2813
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2814 2815
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2816 2817
}

2818 2819 2820 2821 2822
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2823
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2824 2825
						  struct sched_entity *se,
						  int sleep)
2826
{
2827
	update_entity_load_avg(se, 1);
2828 2829
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2830

2831
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2832 2833 2834 2835
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2836
}
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2858 2859
static int idle_balance(struct rq *this_rq);

2860 2861
#else /* CONFIG_SMP */

2862 2863
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2864
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2865
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2866 2867
					   struct sched_entity *se,
					   int wakeup) {}
2868
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2869 2870
					   struct sched_entity *se,
					   int sleep) {}
2871 2872
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2873 2874 2875 2876 2877 2878

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2879
#endif /* CONFIG_SMP */
2880

2881
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2882 2883
{
#ifdef CONFIG_SCHEDSTATS
2884 2885 2886 2887 2888
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2889
	if (se->statistics.sleep_start) {
2890
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2891 2892 2893 2894

		if ((s64)delta < 0)
			delta = 0;

2895 2896
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2897

2898
		se->statistics.sleep_start = 0;
2899
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2900

2901
		if (tsk) {
2902
			account_scheduler_latency(tsk, delta >> 10, 1);
2903 2904
			trace_sched_stat_sleep(tsk, delta);
		}
2905
	}
2906
	if (se->statistics.block_start) {
2907
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2908 2909 2910 2911

		if ((s64)delta < 0)
			delta = 0;

2912 2913
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2914

2915
		se->statistics.block_start = 0;
2916
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2917

2918
		if (tsk) {
2919
			if (tsk->in_iowait) {
2920 2921
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2922
				trace_sched_stat_iowait(tsk, delta);
2923 2924
			}

2925 2926
			trace_sched_stat_blocked(tsk, delta);

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2938
		}
2939 2940 2941 2942
	}
#endif
}

P
Peter Zijlstra 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2956 2957 2958
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2959
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2960

2961 2962 2963 2964 2965 2966
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2967
	if (initial && sched_feat(START_DEBIT))
2968
		vruntime += sched_vslice(cfs_rq, se);
2969

2970
	/* sleeps up to a single latency don't count. */
2971
	if (!initial) {
2972
		unsigned long thresh = sysctl_sched_latency;
2973

2974 2975 2976 2977 2978 2979
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2980

2981
		vruntime -= thresh;
2982 2983
	}

2984
	/* ensure we never gain time by being placed backwards. */
2985
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2986 2987
}

2988 2989
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2990
static void
2991
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2992
{
2993 2994
	/*
	 * Update the normalized vruntime before updating min_vruntime
2995
	 * through calling update_curr().
2996
	 */
2997
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2998 2999
		se->vruntime += cfs_rq->min_vruntime;

3000
	/*
3001
	 * Update run-time statistics of the 'current'.
3002
	 */
3003
	update_curr(cfs_rq);
3004
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3005 3006
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3007

3008
	if (flags & ENQUEUE_WAKEUP) {
3009
		place_entity(cfs_rq, se, 0);
3010
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3011
	}
3012

3013
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
3014
	check_spread(cfs_rq, se);
3015 3016
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3017
	se->on_rq = 1;
3018

3019
	if (cfs_rq->nr_running == 1) {
3020
		list_add_leaf_cfs_rq(cfs_rq);
3021 3022
		check_enqueue_throttle(cfs_rq);
	}
3023 3024
}

3025
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3026
{
3027 3028
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3029
		if (cfs_rq->last != se)
3030
			break;
3031 3032

		cfs_rq->last = NULL;
3033 3034
	}
}
P
Peter Zijlstra 已提交
3035

3036 3037 3038 3039
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3040
		if (cfs_rq->next != se)
3041
			break;
3042 3043

		cfs_rq->next = NULL;
3044
	}
P
Peter Zijlstra 已提交
3045 3046
}

3047 3048 3049 3050
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3051
		if (cfs_rq->skip != se)
3052
			break;
3053 3054

		cfs_rq->skip = NULL;
3055 3056 3057
	}
}

P
Peter Zijlstra 已提交
3058 3059
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3060 3061 3062 3063 3064
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3065 3066 3067

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3068 3069
}

3070
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3071

3072
static void
3073
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3074
{
3075 3076 3077 3078
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3079
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3080

3081
	update_stats_dequeue(cfs_rq, se);
3082
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
3083
#ifdef CONFIG_SCHEDSTATS
3084 3085 3086 3087
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
3088
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3089
			if (tsk->state & TASK_UNINTERRUPTIBLE)
3090
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3091
		}
3092
#endif
P
Peter Zijlstra 已提交
3093 3094
	}

P
Peter Zijlstra 已提交
3095
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3096

3097
	if (se != cfs_rq->curr)
3098
		__dequeue_entity(cfs_rq, se);
3099
	se->on_rq = 0;
3100
	account_entity_dequeue(cfs_rq, se);
3101 3102 3103 3104 3105 3106

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3107
	if (!(flags & DEQUEUE_SLEEP))
3108
		se->vruntime -= cfs_rq->min_vruntime;
3109

3110 3111 3112
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3113
	update_min_vruntime(cfs_rq);
3114
	update_cfs_shares(cfs_rq);
3115 3116 3117 3118 3119
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3120
static void
I
Ingo Molnar 已提交
3121
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3122
{
3123
	unsigned long ideal_runtime, delta_exec;
3124 3125
	struct sched_entity *se;
	s64 delta;
3126

P
Peter Zijlstra 已提交
3127
	ideal_runtime = sched_slice(cfs_rq, curr);
3128
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3129
	if (delta_exec > ideal_runtime) {
3130
		resched_curr(rq_of(cfs_rq));
3131 3132 3133 3134 3135
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3147 3148
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3149

3150 3151
	if (delta < 0)
		return;
3152

3153
	if (delta > ideal_runtime)
3154
		resched_curr(rq_of(cfs_rq));
3155 3156
}

3157
static void
3158
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3159
{
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

3171
	update_stats_curr_start(cfs_rq, se);
3172
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3173 3174 3175 3176 3177 3178
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3179
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3180
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3181 3182 3183
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3184
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3185 3186
}

3187 3188 3189
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3190 3191 3192 3193 3194 3195 3196
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3197 3198
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3199
{
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3211

3212 3213 3214 3215 3216
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3227 3228 3229
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3230

3231 3232 3233 3234 3235 3236
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3237 3238 3239 3240 3241 3242
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3243
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3244 3245

	return se;
3246 3247
}

3248
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3249

3250
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3251 3252 3253 3254 3255 3256
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3257
		update_curr(cfs_rq);
3258

3259 3260 3261
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3262
	check_spread(cfs_rq, prev);
3263
	if (prev->on_rq) {
3264
		update_stats_wait_start(cfs_rq, prev);
3265 3266
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3267
		/* in !on_rq case, update occurred at dequeue */
3268
		update_entity_load_avg(prev, 1);
3269
	}
3270
	cfs_rq->curr = NULL;
3271 3272
}

P
Peter Zijlstra 已提交
3273 3274
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3275 3276
{
	/*
3277
	 * Update run-time statistics of the 'current'.
3278
	 */
3279
	update_curr(cfs_rq);
3280

3281 3282 3283
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3284
	update_entity_load_avg(curr, 1);
3285
	update_cfs_rq_blocked_load(cfs_rq, 1);
3286
	update_cfs_shares(cfs_rq);
3287

P
Peter Zijlstra 已提交
3288 3289 3290 3291 3292
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3293
	if (queued) {
3294
		resched_curr(rq_of(cfs_rq));
3295 3296
		return;
	}
P
Peter Zijlstra 已提交
3297 3298 3299 3300 3301 3302 3303 3304
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3305
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3306
		check_preempt_tick(cfs_rq, curr);
3307 3308
}

3309 3310 3311 3312 3313 3314

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3315 3316

#ifdef HAVE_JUMP_LABEL
3317
static struct static_key __cfs_bandwidth_used;
3318 3319 3320

static inline bool cfs_bandwidth_used(void)
{
3321
	return static_key_false(&__cfs_bandwidth_used);
3322 3323
}

3324
void cfs_bandwidth_usage_inc(void)
3325
{
3326 3327 3328 3329 3330 3331
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3332 3333 3334 3335 3336 3337 3338
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3339 3340
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3341 3342
#endif /* HAVE_JUMP_LABEL */

3343 3344 3345 3346 3347 3348 3349 3350
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3351 3352 3353 3354 3355 3356

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3357 3358 3359 3360 3361 3362 3363
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3364
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3376 3377 3378 3379 3380
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3381 3382 3383 3384 3385 3386
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3387
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3388 3389
}

3390 3391
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3392 3393 3394
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3395
	u64 amount = 0, min_amount, expires;
3396 3397 3398 3399 3400 3401 3402

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3403
	else {
P
Paul Turner 已提交
3404 3405 3406 3407 3408 3409 3410 3411
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3412
			__start_cfs_bandwidth(cfs_b, false);
P
Paul Turner 已提交
3413
		}
3414 3415 3416 3417 3418 3419

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3420
	}
P
Paul Turner 已提交
3421
	expires = cfs_b->runtime_expires;
3422 3423 3424
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3425 3426 3427 3428 3429 3430 3431
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3432 3433

	return cfs_rq->runtime_remaining > 0;
3434 3435
}

P
Paul Turner 已提交
3436 3437 3438 3439 3440
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3441
{
P
Paul Turner 已提交
3442 3443 3444
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3445
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3446 3447
		return;

P
Paul Turner 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3457 3458 3459
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3460 3461
	 */

3462
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3463 3464 3465 3466 3467 3468 3469 3470
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3471
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3472 3473
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3474
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3475 3476 3477
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3478 3479
		return;

3480 3481 3482 3483 3484
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3485
		resched_curr(rq_of(cfs_rq));
3486 3487
}

3488
static __always_inline
3489
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3490
{
3491
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3492 3493 3494 3495 3496
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3497 3498
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3499
	return cfs_bandwidth_used() && cfs_rq->throttled;
3500 3501
}

3502 3503 3504
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3505
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3534
		/* adjust cfs_rq_clock_task() */
3535
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3536
					     cfs_rq->throttled_clock_task;
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3548 3549
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3550
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3551 3552 3553 3554 3555
	cfs_rq->throttle_count++;

	return 0;
}

3556
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3557 3558 3559 3560 3561 3562 3563 3564
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3565
	/* freeze hierarchy runnable averages while throttled */
3566 3567 3568
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3586
		sub_nr_running(rq, task_delta);
3587 3588

	cfs_rq->throttled = 1;
3589
	cfs_rq->throttled_clock = rq_clock(rq);
3590
	raw_spin_lock(&cfs_b->lock);
3591 3592 3593 3594 3595
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3596
	if (!cfs_b->timer_active)
3597
		__start_cfs_bandwidth(cfs_b, false);
3598 3599 3600
	raw_spin_unlock(&cfs_b->lock);
}

3601
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3602 3603 3604 3605 3606 3607 3608
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3609
	se = cfs_rq->tg->se[cpu_of(rq)];
3610 3611

	cfs_rq->throttled = 0;
3612 3613 3614

	update_rq_clock(rq);

3615
	raw_spin_lock(&cfs_b->lock);
3616
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3617 3618 3619
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3620 3621 3622
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3641
		add_nr_running(rq, task_delta);
3642 3643 3644

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3645
		resched_curr(rq);
3646 3647 3648 3649 3650 3651
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3652 3653
	u64 runtime;
	u64 starting_runtime = remaining;
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3684
	return starting_runtime - remaining;
3685 3686
}

3687 3688 3689 3690 3691 3692 3693 3694
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3695
	u64 runtime, runtime_expires;
3696
	int throttled;
3697 3698 3699

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3700
		goto out_deactivate;
3701

3702
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3703
	cfs_b->nr_periods += overrun;
3704

3705 3706 3707 3708 3709 3710
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3711

3712 3713 3714 3715 3716 3717 3718
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3719 3720
	__refill_cfs_bandwidth_runtime(cfs_b);

3721 3722 3723
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3724
		return 0;
3725 3726
	}

3727 3728 3729
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3730 3731 3732
	runtime_expires = cfs_b->runtime_expires;

	/*
3733 3734 3735 3736 3737
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3738
	 */
3739 3740
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3741 3742 3743 3744 3745 3746 3747
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3748 3749

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3750
	}
3751

3752 3753 3754 3755 3756 3757 3758
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3759

3760 3761 3762 3763 3764
	return 0;

out_deactivate:
	cfs_b->timer_active = 0;
	return 1;
3765
}
3766

3767 3768 3769 3770 3771 3772 3773
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3774 3775 3776 3777 3778 3779 3780
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3837 3838 3839
	if (!cfs_bandwidth_used())
		return;

3840
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3856 3857 3858
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3859
		return;
3860
	}
3861

3862
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3863
		runtime = cfs_b->runtime;
3864

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3875
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3876 3877 3878
	raw_spin_unlock(&cfs_b->lock);
}

3879 3880 3881 3882 3883 3884 3885
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3886 3887 3888
	if (!cfs_bandwidth_used())
		return;

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3904
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3905
{
3906
	if (!cfs_bandwidth_used())
3907
		return false;
3908

3909
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3910
		return false;
3911 3912 3913 3914 3915 3916

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3917
		return true;
3918 3919

	throttle_cfs_rq(cfs_rq);
3920
	return true;
3921
}
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

3940
	raw_spin_lock(&cfs_b->lock);
3941 3942 3943 3944 3945 3946 3947 3948 3949
	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
3950
	raw_spin_unlock(&cfs_b->lock);
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
3976
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3977 3978 3979 3980 3981 3982 3983
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3984 3985 3986
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3987
		raw_spin_unlock(&cfs_b->lock);
3988
		cpu_relax();
3989 3990
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
3991
		if (!force && cfs_b->timer_active)
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4018
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4030
		cfs_rq->runtime_remaining = 1;
4031 4032 4033 4034 4035 4036
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4037 4038 4039 4040 4041 4042
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4043 4044
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4045
	return rq_clock_task(rq_of(cfs_rq));
4046 4047
}

4048
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4049
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4050
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4051
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4052 4053 4054 4055 4056

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4068 4069 4070 4071 4072

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4073 4074
#endif

4075 4076 4077 4078 4079
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4080
static inline void update_runtime_enabled(struct rq *rq) {}
4081
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4082 4083 4084

#endif /* CONFIG_CFS_BANDWIDTH */

4085 4086 4087 4088
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4089 4090 4091 4092 4093 4094 4095 4096
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4097
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4098 4099 4100 4101 4102 4103
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4104
				resched_curr(rq);
P
Peter Zijlstra 已提交
4105 4106
			return;
		}
4107
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4108 4109
	}
}
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4120
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4121 4122 4123 4124 4125
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4126
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4127 4128 4129 4130
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4131 4132 4133 4134

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4135 4136
#endif

4137 4138 4139 4140 4141
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4142
static void
4143
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4144 4145
{
	struct cfs_rq *cfs_rq;
4146
	struct sched_entity *se = &p->se;
4147 4148

	for_each_sched_entity(se) {
4149
		if (se->on_rq)
4150 4151
			break;
		cfs_rq = cfs_rq_of(se);
4152
		enqueue_entity(cfs_rq, se, flags);
4153 4154 4155 4156 4157 4158 4159 4160 4161

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4162
		cfs_rq->h_nr_running++;
4163

4164
		flags = ENQUEUE_WAKEUP;
4165
	}
P
Peter Zijlstra 已提交
4166

P
Peter Zijlstra 已提交
4167
	for_each_sched_entity(se) {
4168
		cfs_rq = cfs_rq_of(se);
4169
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4170

4171 4172 4173
		if (cfs_rq_throttled(cfs_rq))
			break;

4174
		update_cfs_shares(cfs_rq);
4175
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
4176 4177
	}

4178 4179
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
4180
		add_nr_running(rq, 1);
4181
	}
4182
	hrtick_update(rq);
4183 4184
}

4185 4186
static void set_next_buddy(struct sched_entity *se);

4187 4188 4189 4190 4191
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4192
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4193 4194
{
	struct cfs_rq *cfs_rq;
4195
	struct sched_entity *se = &p->se;
4196
	int task_sleep = flags & DEQUEUE_SLEEP;
4197 4198 4199

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4200
		dequeue_entity(cfs_rq, se, flags);
4201 4202 4203 4204 4205 4206 4207 4208 4209

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4210
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4211

4212
		/* Don't dequeue parent if it has other entities besides us */
4213 4214 4215 4216 4217 4218 4219
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4220 4221 4222

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4223
			break;
4224
		}
4225
		flags |= DEQUEUE_SLEEP;
4226
	}
P
Peter Zijlstra 已提交
4227

P
Peter Zijlstra 已提交
4228
	for_each_sched_entity(se) {
4229
		cfs_rq = cfs_rq_of(se);
4230
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4231

4232 4233 4234
		if (cfs_rq_throttled(cfs_rq))
			break;

4235
		update_cfs_shares(cfs_rq);
4236
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
4237 4238
	}

4239
	if (!se) {
4240
		sub_nr_running(rq, 1);
4241 4242
		update_rq_runnable_avg(rq, 1);
	}
4243
	hrtick_update(rq);
4244 4245
}

4246
#ifdef CONFIG_SMP
4247 4248 4249
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
4250
	return cpu_rq(cpu)->cfs.runnable_load_avg;
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4286
static unsigned long capacity_of(int cpu)
4287
{
4288
	return cpu_rq(cpu)->cpu_capacity;
4289 4290 4291 4292 4293
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4294
	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4295
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4296 4297

	if (nr_running)
4298
		return load_avg / nr_running;
4299 4300 4301 4302

	return 0;
}

4303 4304 4305 4306 4307 4308 4309
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4310
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4311
		current->wakee_flips >>= 1;
4312 4313 4314 4315 4316 4317 4318 4319
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4320

4321
static void task_waking_fair(struct task_struct *p)
4322 4323 4324
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4325 4326 4327 4328
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4329

4330 4331 4332 4333 4334 4335 4336 4337
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4338

4339
	se->vruntime -= min_vruntime;
4340
	record_wakee(p);
4341 4342
}

4343
#ifdef CONFIG_FAIR_GROUP_SCHED
4344 4345 4346 4347 4348 4349
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4393
 */
P
Peter Zijlstra 已提交
4394
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4395
{
P
Peter Zijlstra 已提交
4396
	struct sched_entity *se = tg->se[cpu];
4397

4398
	if (!tg->parent)	/* the trivial, non-cgroup case */
4399 4400
		return wl;

P
Peter Zijlstra 已提交
4401
	for_each_sched_entity(se) {
4402
		long w, W;
P
Peter Zijlstra 已提交
4403

4404
		tg = se->my_q->tg;
4405

4406 4407 4408 4409
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4410

4411 4412 4413 4414
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4415

4416 4417 4418 4419 4420
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
4421 4422
		else
			wl = tg->shares;
4423

4424 4425 4426 4427 4428
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4429 4430
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4431 4432 4433 4434

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4435
		wl -= se->load.weight;
4436 4437 4438 4439 4440 4441 4442 4443

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4444 4445
		wg = 0;
	}
4446

P
Peter Zijlstra 已提交
4447
	return wl;
4448 4449
}
#else
P
Peter Zijlstra 已提交
4450

4451
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4452
{
4453
	return wl;
4454
}
P
Peter Zijlstra 已提交
4455

4456 4457
#endif

4458 4459
static int wake_wide(struct task_struct *p)
{
4460
	int factor = this_cpu_read(sd_llc_size);
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4480
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4481
{
4482
	s64 this_load, load;
4483
	s64 this_eff_load, prev_eff_load;
4484 4485
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4486
	unsigned long weight;
4487
	int balanced;
4488

4489 4490 4491 4492 4493 4494 4495
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4496 4497 4498 4499 4500
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4501

4502 4503 4504 4505 4506
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4507 4508 4509 4510
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4511
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4512 4513
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4514

4515 4516
	tg = task_group(p);
	weight = p->se.load.weight;
4517

4518 4519
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4520 4521 4522
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4523 4524 4525 4526
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4527 4528
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
4529

4530 4531
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4532

4533
	if (this_load > 0) {
4534 4535 4536 4537
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4538
	}
4539

4540
	balanced = this_eff_load <= prev_eff_load;
4541

4542
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4543

4544 4545
	if (!balanced)
		return 0;
4546

4547 4548 4549 4550
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4551 4552
}

4553 4554 4555 4556 4557
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4558
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4559
		  int this_cpu, int sd_flag)
4560
{
4561
	struct sched_group *idlest = NULL, *group = sd->groups;
4562
	unsigned long min_load = ULONG_MAX, this_load = 0;
4563
	int load_idx = sd->forkexec_idx;
4564
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4565

4566 4567 4568
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4569 4570 4571 4572
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4573

4574 4575
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4576
					tsk_cpus_allowed(p)))
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4595
		/* Adjust by relative CPU capacity of the group */
4596
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
4618 4619 4620 4621
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
4622 4623 4624
	int i;

	/* Traverse only the allowed CPUs */
4625
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
4648
		} else if (shallowest_idle_cpu == -1) {
4649 4650 4651 4652 4653
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
4654 4655 4656
		}
	}

4657
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4658
}
4659

4660 4661 4662
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4663
static int select_idle_sibling(struct task_struct *p, int target)
4664
{
4665
	struct sched_domain *sd;
4666
	struct sched_group *sg;
4667
	int i = task_cpu(p);
4668

4669 4670
	if (idle_cpu(target))
		return target;
4671 4672

	/*
4673
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4674
	 */
4675 4676
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4677 4678

	/*
4679
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4680
	 */
4681
	sd = rcu_dereference(per_cpu(sd_llc, target));
4682
	for_each_lower_domain(sd) {
4683 4684 4685 4686 4687 4688 4689
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4690
				if (i == target || !idle_cpu(i))
4691 4692
					goto next;
			}
4693

4694 4695 4696 4697 4698 4699 4700 4701
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4702 4703 4704
	return target;
}

4705
/*
4706 4707 4708
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4709
 *
4710 4711
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4712
 *
4713
 * Returns the target cpu number.
4714 4715 4716
 *
 * preempt must be disabled.
 */
4717
static int
4718
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4719
{
4720
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4721 4722
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4723
	int want_affine = 0;
4724
	int sync = wake_flags & WF_SYNC;
4725

4726
	if (p->nr_cpus_allowed == 1)
4727 4728
		return prev_cpu;

4729 4730
	if (sd_flag & SD_BALANCE_WAKE)
		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4731

4732
	rcu_read_lock();
4733
	for_each_domain(cpu, tmp) {
4734 4735 4736
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4737
		/*
4738 4739
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4740
		 */
4741 4742 4743
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4744
			break;
4745
		}
4746

4747
		if (tmp->flags & sd_flag)
4748 4749 4750
			sd = tmp;
	}

4751 4752
	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
		prev_cpu = cpu;
4753

4754
	if (sd_flag & SD_BALANCE_WAKE) {
4755 4756
		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4757
	}
4758

4759 4760
	while (sd) {
		struct sched_group *group;
4761
		int weight;
4762

4763
		if (!(sd->flags & sd_flag)) {
4764 4765 4766
			sd = sd->child;
			continue;
		}
4767

4768
		group = find_idlest_group(sd, p, cpu, sd_flag);
4769 4770 4771 4772
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4773

4774
		new_cpu = find_idlest_cpu(group, p, cpu);
4775 4776 4777 4778
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4779
		}
4780 4781 4782

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4783
		weight = sd->span_weight;
4784 4785
		sd = NULL;
		for_each_domain(cpu, tmp) {
4786
			if (weight <= tmp->span_weight)
4787
				break;
4788
			if (tmp->flags & sd_flag)
4789 4790 4791
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4792
	}
4793 4794
unlock:
	rcu_read_unlock();
4795

4796
	return new_cpu;
4797
}
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4819 4820
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4821
	}
4822 4823 4824

	/* We have migrated, no longer consider this task hot */
	se->exec_start = 0;
4825
}
4826 4827
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4828 4829
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4830 4831 4832 4833
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4834 4835
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4836 4837 4838 4839 4840 4841 4842 4843 4844
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4845
	 */
4846
	return calc_delta_fair(gran, se);
4847 4848
}

4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4871
	gran = wakeup_gran(curr, se);
4872 4873 4874 4875 4876 4877
	if (vdiff > gran)
		return 1;

	return 0;
}

4878 4879
static void set_last_buddy(struct sched_entity *se)
{
4880 4881 4882 4883 4884
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4885 4886 4887 4888
}

static void set_next_buddy(struct sched_entity *se)
{
4889 4890 4891 4892 4893
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4894 4895
}

4896 4897
static void set_skip_buddy(struct sched_entity *se)
{
4898 4899
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4900 4901
}

4902 4903 4904
/*
 * Preempt the current task with a newly woken task if needed:
 */
4905
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4906 4907
{
	struct task_struct *curr = rq->curr;
4908
	struct sched_entity *se = &curr->se, *pse = &p->se;
4909
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4910
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4911
	int next_buddy_marked = 0;
4912

I
Ingo Molnar 已提交
4913 4914 4915
	if (unlikely(se == pse))
		return;

4916
	/*
4917
	 * This is possible from callers such as attach_tasks(), in which we
4918 4919 4920 4921 4922 4923 4924
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4925
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4926
		set_next_buddy(pse);
4927 4928
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4929

4930 4931 4932
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4933 4934 4935 4936 4937 4938
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4939 4940 4941 4942
	 */
	if (test_tsk_need_resched(curr))
		return;

4943 4944 4945 4946 4947
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4948
	/*
4949 4950
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4951
	 */
4952
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4953
		return;
4954

4955
	find_matching_se(&se, &pse);
4956
	update_curr(cfs_rq_of(se));
4957
	BUG_ON(!pse);
4958 4959 4960 4961 4962 4963 4964
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4965
		goto preempt;
4966
	}
4967

4968
	return;
4969

4970
preempt:
4971
	resched_curr(rq);
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4986 4987
}

4988 4989
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4990 4991 4992
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
4993
	struct task_struct *p;
4994
	int new_tasks;
4995

4996
again:
4997 4998
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
4999
		goto idle;
5000

5001
	if (prev->sched_class != &fair_sched_class)
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5073

5074
	if (!cfs_rq->nr_running)
5075
		goto idle;
5076

5077
	put_prev_task(rq, prev);
5078

5079
	do {
5080
		se = pick_next_entity(cfs_rq, NULL);
5081
		set_next_entity(cfs_rq, se);
5082 5083 5084
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5085
	p = task_of(se);
5086

5087 5088
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5089 5090

	return p;
5091 5092

idle:
5093
	new_tasks = idle_balance(rq);
5094 5095 5096 5097 5098
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5099
	if (new_tasks < 0)
5100 5101
		return RETRY_TASK;

5102
	if (new_tasks > 0)
5103 5104 5105
		goto again;

	return NULL;
5106 5107 5108 5109 5110
}

/*
 * Account for a descheduled task:
 */
5111
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5112 5113 5114 5115 5116 5117
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5118
		put_prev_entity(cfs_rq, se);
5119 5120 5121
	}
}

5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5147 5148 5149 5150 5151 5152
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
5153 5154 5155 5156 5157
	}

	set_skip_buddy(se);
}

5158 5159 5160 5161
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5162 5163
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5174
#ifdef CONFIG_SMP
5175
/**************************************************
P
Peter Zijlstra 已提交
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5199
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5200 5201 5202 5203 5204 5205
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5206
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5292

5293 5294
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5295 5296
enum fbq_type { regular, remote, all };

5297
#define LBF_ALL_PINNED	0x01
5298
#define LBF_NEED_BREAK	0x02
5299 5300
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5301 5302 5303 5304 5305

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5306
	int			src_cpu;
5307 5308 5309 5310

	int			dst_cpu;
	struct rq		*dst_rq;

5311 5312
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5313
	enum cpu_idle_type	idle;
5314
	long			imbalance;
5315 5316 5317
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5318
	unsigned int		flags;
5319 5320 5321 5322

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5323 5324

	enum fbq_type		fbq_type;
5325
	struct list_head	tasks;
5326 5327
};

5328 5329 5330
/*
 * Is this task likely cache-hot:
 */
5331
static int task_hot(struct task_struct *p, struct lb_env *env)
5332 5333 5334
{
	s64 delta;

5335 5336
	lockdep_assert_held(&env->src_rq->lock);

5337 5338 5339 5340 5341 5342 5343 5344 5345
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5346
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5347 5348 5349 5350 5351 5352 5353 5354 5355
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5356
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5357 5358 5359 5360

	return delta < (s64)sysctl_sched_migration_cost;
}

5361 5362 5363 5364
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
5365
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5366 5367
	int src_nid, dst_nid;

5368
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5369 5370 5371 5372 5373 5374 5375
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5376
	if (src_nid == dst_nid)
5377 5378
		return false;

5379 5380 5381 5382
	if (numa_group) {
		/* Task is already in the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return false;
5383

5384 5385 5386
		/* Task is moving into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return true;
5387

5388 5389 5390 5391 5392
		return group_faults(p, dst_nid) > group_faults(p, src_nid);
	}

	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5393 5394
		return true;

5395
	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5396
}
5397 5398 5399 5400


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
5401
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5402 5403 5404 5405 5406
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5407
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5408 5409 5410 5411 5412
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5413
	if (src_nid == dst_nid)
5414 5415
		return false;

5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
	if (numa_group) {
		/* Task is moving within/into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return false;

		/* Task is moving out of the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return true;

		return group_faults(p, dst_nid) < group_faults(p, src_nid);
	}

5428 5429 5430 5431
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5432
	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5433 5434
}

5435 5436 5437 5438 5439 5440
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5441 5442 5443 5444 5445 5446

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5447 5448
#endif

5449 5450 5451 5452
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5453
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5454 5455
{
	int tsk_cache_hot = 0;
5456 5457 5458

	lockdep_assert_held(&env->src_rq->lock);

5459 5460
	/*
	 * We do not migrate tasks that are:
5461
	 * 1) throttled_lb_pair, or
5462
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5463 5464
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5465
	 */
5466 5467 5468
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5469
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5470
		int cpu;
5471

5472
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5473

5474 5475
		env->flags |= LBF_SOME_PINNED;

5476 5477 5478 5479 5480 5481 5482 5483
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5484
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5485 5486
			return 0;

5487 5488 5489
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5490
				env->flags |= LBF_DST_PINNED;
5491 5492 5493
				env->new_dst_cpu = cpu;
				break;
			}
5494
		}
5495

5496 5497
		return 0;
	}
5498 5499

	/* Record that we found atleast one task that could run on dst_cpu */
5500
	env->flags &= ~LBF_ALL_PINNED;
5501

5502
	if (task_running(env->src_rq, p)) {
5503
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5504 5505 5506 5507 5508
		return 0;
	}

	/*
	 * Aggressive migration if:
5509 5510 5511
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5512
	 */
5513
	tsk_cache_hot = task_hot(p, env);
5514 5515
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5516

5517 5518
	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5519 5520 5521 5522
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5523 5524 5525
		return 1;
	}

Z
Zhang Hang 已提交
5526 5527
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5528 5529
}

5530
/*
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	deactivate_task(env->src_rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, env->dst_cpu);
}

5542
/*
5543
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5544 5545
 * part of active balancing operations within "domain".
 *
5546
 * Returns a task if successful and NULL otherwise.
5547
 */
5548
static struct task_struct *detach_one_task(struct lb_env *env)
5549 5550 5551
{
	struct task_struct *p, *n;

5552 5553
	lockdep_assert_held(&env->src_rq->lock);

5554 5555 5556
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5557

5558
		detach_task(p, env);
5559

5560
		/*
5561
		 * Right now, this is only the second place where
5562
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5563
		 * so we can safely collect stats here rather than
5564
		 * inside detach_tasks().
5565 5566
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5567
		return p;
5568
	}
5569
	return NULL;
5570 5571
}

5572 5573
static const unsigned int sched_nr_migrate_break = 32;

5574
/*
5575 5576
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
5577
 *
5578
 * Returns number of detached tasks if successful and 0 otherwise.
5579
 */
5580
static int detach_tasks(struct lb_env *env)
5581
{
5582 5583
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5584
	unsigned long load;
5585 5586 5587
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
5588

5589
	if (env->imbalance <= 0)
5590
		return 0;
5591

5592 5593
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5594

5595 5596
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5597
		if (env->loop > env->loop_max)
5598
			break;
5599 5600

		/* take a breather every nr_migrate tasks */
5601
		if (env->loop > env->loop_break) {
5602
			env->loop_break += sched_nr_migrate_break;
5603
			env->flags |= LBF_NEED_BREAK;
5604
			break;
5605
		}
5606

5607
		if (!can_migrate_task(p, env))
5608 5609 5610
			goto next;

		load = task_h_load(p);
5611

5612
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5613 5614
			goto next;

5615
		if ((load / 2) > env->imbalance)
5616
			goto next;
5617

5618 5619 5620 5621
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
5622
		env->imbalance -= load;
5623 5624

#ifdef CONFIG_PREEMPT
5625 5626
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
5627
		 * kernels will stop after the first task is detached to minimize
5628 5629
		 * the critical section.
		 */
5630
		if (env->idle == CPU_NEWLY_IDLE)
5631
			break;
5632 5633
#endif

5634 5635 5636 5637
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5638
		if (env->imbalance <= 0)
5639
			break;
5640 5641 5642

		continue;
next:
5643
		list_move_tail(&p->se.group_node, tasks);
5644
	}
5645

5646
	/*
5647 5648 5649
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
5650
	 */
5651
	schedstat_add(env->sd, lb_gained[env->idle], detached);
5652

5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	p->on_rq = TASK_ON_RQ_QUEUED;
	activate_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
5694

5695 5696 5697 5698
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
5699 5700
}

P
Peter Zijlstra 已提交
5701
#ifdef CONFIG_FAIR_GROUP_SCHED
5702 5703 5704
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5705
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5706
{
5707 5708
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5709

5710 5711 5712
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5713

5714
	update_cfs_rq_blocked_load(cfs_rq, 1);
5715

5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5730
		struct rq *rq = rq_of(cfs_rq);
5731 5732
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5733 5734
}

5735
static void update_blocked_averages(int cpu)
5736 5737
{
	struct rq *rq = cpu_rq(cpu);
5738 5739
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5740

5741 5742
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5743 5744 5745 5746
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5747
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5748 5749 5750 5751 5752 5753
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5754
	}
5755 5756

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5757 5758
}

5759
/*
5760
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5761 5762 5763
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5764
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5765
{
5766 5767
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5768
	unsigned long now = jiffies;
5769
	unsigned long load;
5770

5771
	if (cfs_rq->last_h_load_update == now)
5772 5773
		return;

5774 5775 5776 5777 5778 5779 5780
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5781

5782
	if (!se) {
5783
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5795 5796
}

5797
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5798
{
5799
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5800

5801
	update_cfs_rq_h_load(cfs_rq);
5802 5803
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5804 5805
}
#else
5806
static inline void update_blocked_averages(int cpu)
5807 5808 5809
{
}

5810
static unsigned long task_h_load(struct task_struct *p)
5811
{
5812
	return p->se.avg.load_avg_contrib;
5813
}
P
Peter Zijlstra 已提交
5814
#endif
5815 5816

/********** Helpers for find_busiest_group ************************/
5817 5818 5819 5820 5821 5822 5823

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

5824 5825 5826 5827 5828 5829 5830
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5831
	unsigned long load_per_task;
5832
	unsigned long group_capacity;
5833
	unsigned int sum_nr_running; /* Nr tasks running in the group */
5834
	unsigned int group_capacity_factor;
5835 5836
	unsigned int idle_cpus;
	unsigned int group_weight;
5837
	enum group_type group_type;
5838
	int group_has_free_capacity;
5839 5840 5841 5842
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5843 5844
};

J
Joonsoo Kim 已提交
5845 5846 5847 5848 5849 5850 5851 5852
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
5853
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
5854 5855 5856
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5857
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5858 5859
};

5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
5872
		.total_capacity = 0UL,
5873 5874
		.busiest_stat = {
			.avg_load = 0UL,
5875 5876
			.sum_nr_running = 0,
			.group_type = group_other,
5877 5878 5879 5880
		},
	};
}

5881 5882 5883
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5884
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5885 5886
 *
 * Return: The load index.
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5909
static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5910
{
5911
	return SCHED_CAPACITY_SCALE;
5912 5913
}

5914
unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5915
{
5916
	return default_scale_capacity(sd, cpu);
5917 5918
}

5919
static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5920
{
5921 5922
	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
		return sd->smt_gain / sd->span_weight;
5923

5924
	return SCHED_CAPACITY_SCALE;
5925 5926
}

5927
unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5928
{
5929
	return default_scale_cpu_capacity(sd, cpu);
5930 5931
}

5932
static unsigned long scale_rt_capacity(int cpu)
5933 5934
{
	struct rq *rq = cpu_rq(cpu);
5935
	u64 total, available, age_stamp, avg;
5936
	s64 delta;
5937

5938 5939 5940 5941 5942 5943 5944
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5945 5946 5947 5948 5949
	delta = rq_clock(rq) - age_stamp;
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
5950

5951
	if (unlikely(total < avg)) {
5952
		/* Ensures that capacity won't end up being negative */
5953 5954
		available = 0;
	} else {
5955
		available = total - avg;
5956
	}
5957

5958 5959
	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
		total = SCHED_CAPACITY_SCALE;
5960

5961
	total >>= SCHED_CAPACITY_SHIFT;
5962 5963 5964 5965

	return div_u64(available, total);
}

5966
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5967
{
5968
	unsigned long capacity = SCHED_CAPACITY_SCALE;
5969 5970
	struct sched_group *sdg = sd->groups;

5971 5972 5973 5974
	if (sched_feat(ARCH_CAPACITY))
		capacity *= arch_scale_cpu_capacity(sd, cpu);
	else
		capacity *= default_scale_cpu_capacity(sd, cpu);
5975

5976
	capacity >>= SCHED_CAPACITY_SHIFT;
5977

5978
	sdg->sgc->capacity_orig = capacity;
5979

5980
	if (sched_feat(ARCH_CAPACITY))
5981
		capacity *= arch_scale_freq_capacity(sd, cpu);
5982
	else
5983
		capacity *= default_scale_capacity(sd, cpu);
5984

5985
	capacity >>= SCHED_CAPACITY_SHIFT;
5986

5987
	capacity *= scale_rt_capacity(cpu);
5988
	capacity >>= SCHED_CAPACITY_SHIFT;
5989

5990 5991
	if (!capacity)
		capacity = 1;
5992

5993 5994
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
5995 5996
}

5997
void update_group_capacity(struct sched_domain *sd, int cpu)
5998 5999 6000
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6001
	unsigned long capacity, capacity_orig;
6002 6003 6004 6005
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6006
	sdg->sgc->next_update = jiffies + interval;
6007 6008

	if (!child) {
6009
		update_cpu_capacity(sd, cpu);
6010 6011 6012
		return;
	}

6013
	capacity_orig = capacity = 0;
6014

P
Peter Zijlstra 已提交
6015 6016 6017 6018 6019 6020
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6021
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6022
			struct sched_group_capacity *sgc;
6023
			struct rq *rq = cpu_rq(cpu);
6024

6025
			/*
6026
			 * build_sched_domains() -> init_sched_groups_capacity()
6027 6028 6029
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6030 6031
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6032
			 *
6033
			 * This avoids capacity/capacity_orig from being 0 and
6034 6035
			 * causing divide-by-zero issues on boot.
			 *
6036
			 * Runtime updates will correct capacity_orig.
6037 6038
			 */
			if (unlikely(!rq->sd)) {
6039 6040
				capacity_orig += capacity_of(cpu);
				capacity += capacity_of(cpu);
6041 6042
				continue;
			}
6043

6044 6045 6046
			sgc = rq->sd->groups->sgc;
			capacity_orig += sgc->capacity_orig;
			capacity += sgc->capacity;
6047
		}
P
Peter Zijlstra 已提交
6048 6049 6050 6051 6052 6053 6054 6055
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6056 6057
			capacity_orig += group->sgc->capacity_orig;
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6058 6059 6060
			group = group->next;
		} while (group != child->groups);
	}
6061

6062 6063
	sdg->sgc->capacity_orig = capacity_orig;
	sdg->sgc->capacity = capacity;
6064 6065
}

6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
6077
	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6078
	 */
6079
	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6080 6081 6082
		return 0;

	/*
6083
	 * If ~90% of the cpu_capacity is still there, we're good.
6084
	 */
6085
	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6086 6087 6088 6089 6090
		return 1;

	return 0;
}

6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6107 6108
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6109 6110
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6111
 * update_sd_pick_busiest(). And calculate_imbalance() and
6112
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6113 6114 6115 6116 6117 6118 6119
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6120
static inline int sg_imbalanced(struct sched_group *group)
6121
{
6122
	return group->sgc->imbalance;
6123 6124
}

6125
/*
6126
 * Compute the group capacity factor.
6127
 *
6128
 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6129
 * first dividing out the smt factor and computing the actual number of cores
6130
 * and limit unit capacity with that.
6131
 */
6132
static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6133
{
6134
	unsigned int capacity_factor, smt, cpus;
6135
	unsigned int capacity, capacity_orig;
6136

6137 6138
	capacity = group->sgc->capacity;
	capacity_orig = group->sgc->capacity_orig;
6139
	cpus = group->group_weight;
6140

6141
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6142
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6143
	capacity_factor = cpus / smt; /* cores */
6144

6145
	capacity_factor = min_t(unsigned,
6146
		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6147 6148
	if (!capacity_factor)
		capacity_factor = fix_small_capacity(env->sd, group);
6149

6150
	return capacity_factor;
6151 6152
}

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
static enum group_type
group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->group_capacity_factor)
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6165 6166
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6167
 * @env: The load balancing environment.
6168 6169 6170 6171
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6172
 * @overload: Indicate more than one runnable task for any CPU.
6173
 */
6174 6175
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6176 6177
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6178
{
6179
	unsigned long load;
6180
	int i;
6181

6182 6183
	memset(sgs, 0, sizeof(*sgs));

6184
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6185 6186 6187
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6188
		if (local_group)
6189
			load = target_load(i, load_idx);
6190
		else
6191 6192 6193
			load = source_load(i, load_idx);

		sgs->group_load += load;
6194
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6195 6196 6197 6198

		if (rq->nr_running > 1)
			*overload = true;

6199 6200 6201 6202
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6203
		sgs->sum_weighted_load += weighted_cpuload(i);
6204 6205
		if (idle_cpu(i))
			sgs->idle_cpus++;
6206 6207
	}

6208 6209
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6210
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6211

6212
	if (sgs->sum_nr_running)
6213
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6214

6215
	sgs->group_weight = group->group_weight;
6216
	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6217
	sgs->group_type = group_classify(group, sgs);
6218

6219
	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6220
		sgs->group_has_free_capacity = 1;
6221 6222
}

6223 6224
/**
 * update_sd_pick_busiest - return 1 on busiest group
6225
 * @env: The load balancing environment.
6226 6227
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6228
 * @sgs: sched_group statistics
6229 6230 6231
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6232 6233 6234
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6235
 */
6236
static bool update_sd_pick_busiest(struct lb_env *env,
6237 6238
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6239
				   struct sg_lb_stats *sgs)
6240
{
6241
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6242

6243
	if (sgs->group_type > busiest->group_type)
6244 6245
		return true;

6246 6247 6248 6249 6250 6251 6252 6253
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6254 6255 6256 6257 6258 6259 6260
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6261
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6302
/**
6303
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6304
 * @env: The load balancing environment.
6305 6306
 * @sds: variable to hold the statistics for this sched_domain.
 */
6307
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6308
{
6309 6310
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6311
	struct sg_lb_stats tmp_sgs;
6312
	int load_idx, prefer_sibling = 0;
6313
	bool overload = false;
6314 6315 6316 6317

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6318
	load_idx = get_sd_load_idx(env->sd, env->idle);
6319 6320

	do {
J
Joonsoo Kim 已提交
6321
		struct sg_lb_stats *sgs = &tmp_sgs;
6322 6323
		int local_group;

6324
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6325 6326 6327
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6328 6329

			if (env->idle != CPU_NEWLY_IDLE ||
6330 6331
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6332
		}
6333

6334 6335
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6336

6337 6338 6339
		if (local_group)
			goto next_group;

6340 6341
		/*
		 * In case the child domain prefers tasks go to siblings
6342
		 * first, lower the sg capacity factor to one so that we'll try
6343 6344
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6345
		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6346 6347 6348
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
6349
		 */
6350
		if (prefer_sibling && sds->local &&
6351
		    sds->local_stat.group_has_free_capacity)
6352
			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6353

6354
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6355
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6356
			sds->busiest_stat = *sgs;
6357 6358
		}

6359 6360 6361
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6362
		sds->total_capacity += sgs->group_capacity;
6363

6364
		sg = sg->next;
6365
	} while (sg != env->sd->groups);
6366 6367 6368

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6369 6370 6371 6372 6373 6374 6375

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6395
 * Return: 1 when packing is required and a task should be moved to
6396 6397
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6398
 * @env: The load balancing environment.
6399 6400
 * @sds: Statistics of the sched_domain which is to be packed
 */
6401
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6402 6403 6404
{
	int busiest_cpu;

6405
	if (!(env->sd->flags & SD_ASYM_PACKING))
6406 6407 6408 6409 6410 6411
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6412
	if (env->dst_cpu > busiest_cpu)
6413 6414
		return 0;

6415
	env->imbalance = DIV_ROUND_CLOSEST(
6416
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6417
		SCHED_CAPACITY_SCALE);
6418

6419
	return 1;
6420 6421 6422 6423 6424 6425
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6426
 * @env: The load balancing environment.
6427 6428
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6429 6430
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6431
{
6432
	unsigned long tmp, capa_now = 0, capa_move = 0;
6433
	unsigned int imbn = 2;
6434
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6435
	struct sg_lb_stats *local, *busiest;
6436

J
Joonsoo Kim 已提交
6437 6438
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6439

J
Joonsoo Kim 已提交
6440 6441 6442 6443
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6444

J
Joonsoo Kim 已提交
6445
	scaled_busy_load_per_task =
6446
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6447
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6448

6449 6450
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6451
		env->imbalance = busiest->load_per_task;
6452 6453 6454 6455 6456
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6457
	 * however we may be able to increase total CPU capacity used by
6458 6459 6460
	 * moving them.
	 */

6461
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6462
			min(busiest->load_per_task, busiest->avg_load);
6463
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6464
			min(local->load_per_task, local->avg_load);
6465
	capa_now /= SCHED_CAPACITY_SCALE;
6466 6467

	/* Amount of load we'd subtract */
6468
	if (busiest->avg_load > scaled_busy_load_per_task) {
6469
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6470
			    min(busiest->load_per_task,
6471
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6472
	}
6473 6474

	/* Amount of load we'd add */
6475
	if (busiest->avg_load * busiest->group_capacity <
6476
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6477 6478
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6479
	} else {
6480
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6481
		      local->group_capacity;
J
Joonsoo Kim 已提交
6482
	}
6483
	capa_move += local->group_capacity *
6484
		    min(local->load_per_task, local->avg_load + tmp);
6485
	capa_move /= SCHED_CAPACITY_SCALE;
6486 6487

	/* Move if we gain throughput */
6488
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6489
		env->imbalance = busiest->load_per_task;
6490 6491 6492 6493 6494
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6495
 * @env: load balance environment
6496 6497
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6498
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6499
{
6500
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6501 6502 6503 6504
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6505

6506
	if (busiest->group_type == group_imbalanced) {
6507 6508 6509 6510
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6511 6512
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6513 6514
	}

6515 6516 6517
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6518
	 * its cpu_capacity, while calculating max_load..)
6519
	 */
6520 6521
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6522 6523
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6524 6525
	}

6526 6527 6528 6529 6530
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
J
Joonsoo Kim 已提交
6531
		load_above_capacity =
6532
			(busiest->sum_nr_running - busiest->group_capacity_factor);
6533

6534
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6535
		load_above_capacity /= busiest->group_capacity;
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6546
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6547 6548

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6549
	env->imbalance = min(
6550 6551
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6552
	) / SCHED_CAPACITY_SCALE;
6553 6554 6555

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6556
	 * there is no guarantee that any tasks will be moved so we'll have
6557 6558 6559
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6560
	if (env->imbalance < busiest->load_per_task)
6561
		return fix_small_imbalance(env, sds);
6562
}
6563

6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6576
 * @env: The load balancing environment.
6577
 *
6578
 * Return:	- The busiest group if imbalance exists.
6579 6580 6581 6582
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6583
static struct sched_group *find_busiest_group(struct lb_env *env)
6584
{
J
Joonsoo Kim 已提交
6585
	struct sg_lb_stats *local, *busiest;
6586 6587
	struct sd_lb_stats sds;

6588
	init_sd_lb_stats(&sds);
6589 6590 6591 6592 6593

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6594
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6595 6596
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6597

6598 6599
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6600 6601
		return sds.busiest;

6602
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6603
	if (!sds.busiest || busiest->sum_nr_running == 0)
6604 6605
		goto out_balanced;

6606 6607
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6608

P
Peter Zijlstra 已提交
6609 6610
	/*
	 * If the busiest group is imbalanced the below checks don't
6611
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6612 6613
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6614
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6615 6616
		goto force_balance;

6617
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6618 6619
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
	    !busiest->group_has_free_capacity)
6620 6621
		goto force_balance;

6622
	/*
6623
	 * If the local group is busier than the selected busiest group
6624 6625
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6626
	if (local->avg_load >= busiest->avg_load)
6627 6628
		goto out_balanced;

6629 6630 6631 6632
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6633
	if (local->avg_load >= sds.avg_load)
6634 6635
		goto out_balanced;

6636
	if (env->idle == CPU_IDLE) {
6637
		/*
6638 6639 6640 6641 6642
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
6643
		 */
6644 6645
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6646
			goto out_balanced;
6647 6648 6649 6650 6651
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6652 6653
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6654
			goto out_balanced;
6655
	}
6656

6657
force_balance:
6658
	/* Looks like there is an imbalance. Compute it */
6659
	calculate_imbalance(env, &sds);
6660 6661 6662
	return sds.busiest;

out_balanced:
6663
	env->imbalance = 0;
6664 6665 6666 6667 6668 6669
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6670
static struct rq *find_busiest_queue(struct lb_env *env,
6671
				     struct sched_group *group)
6672 6673
{
	struct rq *busiest = NULL, *rq;
6674
	unsigned long busiest_load = 0, busiest_capacity = 1;
6675 6676
	int i;

6677
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6678
		unsigned long capacity, capacity_factor, wl;
6679 6680 6681 6682
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6683

6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6706
		capacity = capacity_of(i);
6707
		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6708 6709
		if (!capacity_factor)
			capacity_factor = fix_small_capacity(env->sd, group);
6710

6711
		wl = weighted_cpuload(i);
6712

6713 6714
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6715
		 * which is not scaled with the cpu capacity.
6716
		 */
6717
		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6718 6719
			continue;

6720 6721
		/*
		 * For the load comparisons with the other cpu's, consider
6722 6723 6724
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6725
		 *
6726
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6727
		 * multiplication to rid ourselves of the division works out
6728 6729
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6730
		 */
6731
		if (wl * busiest_capacity > busiest_load * capacity) {
6732
			busiest_load = wl;
6733
			busiest_capacity = capacity;
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6748
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6749

6750
static int need_active_balance(struct lb_env *env)
6751
{
6752 6753 6754
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6755 6756 6757 6758 6759 6760

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6761
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6762
			return 1;
6763 6764 6765 6766 6767
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6768 6769
static int active_load_balance_cpu_stop(void *data);

6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6801
	return balance_cpu == env->dst_cpu;
6802 6803
}

6804 6805 6806 6807 6808 6809
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6810
			int *continue_balancing)
6811
{
6812
	int ld_moved, cur_ld_moved, active_balance = 0;
6813
	struct sched_domain *sd_parent = sd->parent;
6814 6815 6816
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6817
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6818

6819 6820
	struct lb_env env = {
		.sd		= sd,
6821 6822
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6823
		.dst_grpmask    = sched_group_cpus(sd->groups),
6824
		.idle		= idle,
6825
		.loop_break	= sched_nr_migrate_break,
6826
		.cpus		= cpus,
6827
		.fbq_type	= all,
6828
		.tasks		= LIST_HEAD_INIT(env.tasks),
6829 6830
	};

6831 6832 6833 6834
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6835
	if (idle == CPU_NEWLY_IDLE)
6836 6837
		env.dst_grpmask = NULL;

6838 6839 6840 6841 6842
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6843 6844
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6845
		goto out_balanced;
6846
	}
6847

6848
	group = find_busiest_group(&env);
6849 6850 6851 6852 6853
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6854
	busiest = find_busiest_queue(&env, group);
6855 6856 6857 6858 6859
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6860
	BUG_ON(busiest == env.dst_rq);
6861

6862
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6863 6864 6865 6866 6867 6868 6869 6870 6871

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6872
		env.flags |= LBF_ALL_PINNED;
6873 6874 6875
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6876

6877
more_balance:
6878
		raw_spin_lock_irqsave(&busiest->lock, flags);
6879 6880 6881 6882 6883

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
6884
		cur_ld_moved = detach_tasks(&env);
6885 6886

		/*
6887 6888 6889 6890 6891
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
6892
		 */
6893 6894 6895 6896 6897 6898 6899 6900

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

6901
		local_irq_restore(flags);
6902

6903 6904 6905 6906 6907
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6927
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6928

6929 6930 6931
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6932
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6933
			env.dst_cpu	 = env.new_dst_cpu;
6934
			env.flags	&= ~LBF_DST_PINNED;
6935 6936
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6937

6938 6939 6940 6941 6942 6943
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6944

6945 6946 6947 6948
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
6949
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6950

6951
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6952 6953 6954
				*group_imbalance = 1;
		}

6955
		/* All tasks on this runqueue were pinned by CPU affinity */
6956
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6957
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6958 6959 6960
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6961
				goto redo;
6962
			}
6963
			goto out_all_pinned;
6964 6965 6966 6967 6968
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6969 6970 6971 6972 6973 6974 6975 6976
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6977

6978
		if (need_active_balance(&env)) {
6979 6980
			raw_spin_lock_irqsave(&busiest->lock, flags);

6981 6982 6983
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6984 6985
			 */
			if (!cpumask_test_cpu(this_cpu,
6986
					tsk_cpus_allowed(busiest->curr))) {
6987 6988
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6989
				env.flags |= LBF_ALL_PINNED;
6990 6991 6992
				goto out_one_pinned;
			}

6993 6994 6995 6996 6997
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6998 6999 7000 7001 7002 7003
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7004

7005
			if (active_balance) {
7006 7007 7008
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7009
			}
7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7028
		 * detach_tasks).
7029 7030 7031 7032 7033 7034 7035 7036
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7054 7055 7056 7057 7058 7059
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7060
	if (((env.flags & LBF_ALL_PINNED) &&
7061
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7062 7063 7064
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7065
	ld_moved = 0;
7066 7067 7068 7069
out:
	return ld_moved;
}

7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7097 7098 7099 7100
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7101
static int idle_balance(struct rq *this_rq)
7102
{
7103 7104
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7105 7106
	struct sched_domain *sd;
	int pulled_task = 0;
7107
	u64 curr_cost = 0;
7108

7109
	idle_enter_fair(this_rq);
7110

7111 7112 7113 7114 7115 7116
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7117 7118
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7119 7120 7121 7122 7123 7124
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7125
		goto out;
7126
	}
7127

7128 7129 7130 7131 7132
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

7133
	update_blocked_averages(this_cpu);
7134
	rcu_read_lock();
7135
	for_each_domain(this_cpu, sd) {
7136
		int continue_balancing = 1;
7137
		u64 t0, domain_cost;
7138 7139 7140 7141

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7142 7143
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7144
			break;
7145
		}
7146

7147
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7148 7149
			t0 = sched_clock_cpu(this_cpu);

7150
			pulled_task = load_balance(this_cpu, this_rq,
7151 7152
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7153 7154 7155 7156 7157 7158

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7159
		}
7160

7161
		update_next_balance(sd, 0, &next_balance);
7162 7163 7164 7165 7166 7167

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7168 7169
			break;
	}
7170
	rcu_read_unlock();
7171 7172 7173

	raw_spin_lock(&this_rq->lock);

7174 7175 7176
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7177
	/*
7178 7179 7180
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7181
	 */
7182
	if (this_rq->cfs.h_nr_running && !pulled_task)
7183
		pulled_task = 1;
7184

7185 7186 7187
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7188
		this_rq->next_balance = next_balance;
7189

7190
	/* Is there a task of a high priority class? */
7191
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7192 7193 7194 7195
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
7196
		this_rq->idle_stamp = 0;
7197
	}
7198

7199
	return pulled_task;
7200 7201 7202
}

/*
7203 7204 7205 7206
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7207
 */
7208
static int active_load_balance_cpu_stop(void *data)
7209
{
7210 7211
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7212
	int target_cpu = busiest_rq->push_cpu;
7213
	struct rq *target_rq = cpu_rq(target_cpu);
7214
	struct sched_domain *sd;
7215
	struct task_struct *p = NULL;
7216 7217 7218 7219 7220 7221 7222

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7223 7224 7225

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7226
		goto out_unlock;
7227 7228 7229 7230 7231 7232 7233 7234 7235

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7236
	rcu_read_lock();
7237 7238 7239 7240 7241 7242 7243
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7244 7245
		struct lb_env env = {
			.sd		= sd,
7246 7247 7248 7249
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7250 7251 7252
			.idle		= CPU_IDLE,
		};

7253 7254
		schedstat_inc(sd, alb_count);

7255 7256
		p = detach_one_task(&env);
		if (p)
7257 7258 7259 7260
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7261
	rcu_read_unlock();
7262 7263
out_unlock:
	busiest_rq->active_balance = 0;
7264 7265 7266 7267 7268 7269 7270
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7271
	return 0;
7272 7273
}

7274 7275 7276 7277 7278
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7279
#ifdef CONFIG_NO_HZ_COMMON
7280 7281 7282 7283 7284 7285
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7286
static struct {
7287
	cpumask_var_t idle_cpus_mask;
7288
	atomic_t nr_cpus;
7289 7290
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7291

7292
static inline int find_new_ilb(void)
7293
{
7294
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7295

7296 7297 7298 7299
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7300 7301
}

7302 7303 7304 7305 7306
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7307
static void nohz_balancer_kick(void)
7308 7309 7310 7311 7312
{
	int ilb_cpu;

	nohz.next_balance++;

7313
	ilb_cpu = find_new_ilb();
7314

7315 7316
	if (ilb_cpu >= nr_cpu_ids)
		return;
7317

7318
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7319 7320 7321 7322 7323 7324 7325 7326
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7327 7328 7329
	return;
}

7330
static inline void nohz_balance_exit_idle(int cpu)
7331 7332
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7333 7334 7335 7336 7337 7338 7339
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7340 7341 7342 7343
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7344 7345 7346
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7347
	int cpu = smp_processor_id();
7348 7349

	rcu_read_lock();
7350
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7351 7352 7353 7354 7355

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7356
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7357
unlock:
7358 7359 7360 7361 7362 7363
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7364
	int cpu = smp_processor_id();
7365 7366

	rcu_read_lock();
7367
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7368 7369 7370 7371 7372

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7373
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7374
unlock:
7375 7376 7377
	rcu_read_unlock();
}

7378
/*
7379
 * This routine will record that the cpu is going idle with tick stopped.
7380
 * This info will be used in performing idle load balancing in the future.
7381
 */
7382
void nohz_balance_enter_idle(int cpu)
7383
{
7384 7385 7386 7387 7388 7389
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7390 7391
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7392

7393 7394 7395 7396 7397 7398
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7399 7400 7401
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7402
}
7403

7404
static int sched_ilb_notifier(struct notifier_block *nfb,
7405 7406 7407 7408
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7409
		nohz_balance_exit_idle(smp_processor_id());
7410 7411 7412 7413 7414
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7415 7416 7417 7418
#endif

static DEFINE_SPINLOCK(balancing);

7419 7420 7421 7422
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7423
void update_max_interval(void)
7424 7425 7426 7427
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7428 7429 7430 7431
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7432
 * Balancing parameters are set up in init_sched_domains.
7433
 */
7434
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7435
{
7436
	int continue_balancing = 1;
7437
	int cpu = rq->cpu;
7438
	unsigned long interval;
7439
	struct sched_domain *sd;
7440 7441 7442
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7443 7444
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7445

7446
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7447

7448
	rcu_read_lock();
7449
	for_each_domain(cpu, sd) {
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7462 7463 7464
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7476
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7477 7478 7479 7480 7481 7482 7483 7484

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7485
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7486
				/*
7487
				 * The LBF_DST_PINNED logic could have changed
7488 7489
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7490
				 */
7491
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7492 7493
			}
			sd->last_balance = jiffies;
7494
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7495 7496 7497 7498 7499 7500 7501 7502
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7503 7504
	}
	if (need_decay) {
7505
		/*
7506 7507
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7508
		 */
7509 7510
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7511
	}
7512
	rcu_read_unlock();
7513 7514 7515 7516 7517 7518 7519 7520 7521 7522

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7523
#ifdef CONFIG_NO_HZ_COMMON
7524
/*
7525
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7526 7527
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7528
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7529
{
7530
	int this_cpu = this_rq->cpu;
7531 7532 7533
	struct rq *rq;
	int balance_cpu;

7534 7535 7536
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7537 7538

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7539
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7540 7541 7542 7543 7544 7545 7546
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7547
		if (need_resched())
7548 7549
			break;

V
Vincent Guittot 已提交
7550 7551
		rq = cpu_rq(balance_cpu);

7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7563 7564 7565 7566 7567

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7568 7569
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7570 7571 7572
}

/*
7573 7574 7575 7576
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7577
 *     busy cpu's exceeding the group's capacity.
7578 7579
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7580
 */
7581
static inline int nohz_kick_needed(struct rq *rq)
7582 7583
{
	unsigned long now = jiffies;
7584
	struct sched_domain *sd;
7585
	struct sched_group_capacity *sgc;
7586
	int nr_busy, cpu = rq->cpu;
7587

7588
	if (unlikely(rq->idle_balance))
7589 7590
		return 0;

7591 7592 7593 7594
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7595
	set_cpu_sd_state_busy();
7596
	nohz_balance_exit_idle(cpu);
7597 7598 7599 7600 7601 7602 7603

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7604 7605

	if (time_before(now, nohz.next_balance))
7606 7607
		return 0;

7608 7609
	if (rq->nr_running >= 2)
		goto need_kick;
7610

7611
	rcu_read_lock();
7612
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7613

7614
	if (sd) {
7615 7616
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7617

7618
		if (nr_busy > 1)
7619
			goto need_kick_unlock;
7620
	}
7621 7622 7623 7624 7625 7626 7627

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7628
	rcu_read_unlock();
7629
	return 0;
7630 7631 7632

need_kick_unlock:
	rcu_read_unlock();
7633 7634
need_kick:
	return 1;
7635 7636
}
#else
7637
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7638 7639 7640 7641 7642 7643
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7644 7645
static void run_rebalance_domains(struct softirq_action *h)
{
7646
	struct rq *this_rq = this_rq();
7647
	enum cpu_idle_type idle = this_rq->idle_balance ?
7648 7649
						CPU_IDLE : CPU_NOT_IDLE;

7650
	rebalance_domains(this_rq, idle);
7651 7652

	/*
7653
	 * If this cpu has a pending nohz_balance_kick, then do the
7654 7655 7656
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7657
	nohz_idle_balance(this_rq, idle);
7658 7659 7660 7661 7662
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7663
void trigger_load_balance(struct rq *rq)
7664 7665
{
	/* Don't need to rebalance while attached to NULL domain */
7666 7667 7668 7669
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7670
		raise_softirq(SCHED_SOFTIRQ);
7671
#ifdef CONFIG_NO_HZ_COMMON
7672
	if (nohz_kick_needed(rq))
7673
		nohz_balancer_kick();
7674
#endif
7675 7676
}

7677 7678 7679
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7680 7681

	update_runtime_enabled(rq);
7682 7683 7684 7685 7686
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7687 7688 7689

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7690 7691
}

7692
#endif /* CONFIG_SMP */
7693

7694 7695 7696
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7697
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7698 7699 7700 7701 7702 7703
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7704
		entity_tick(cfs_rq, se, queued);
7705
	}
7706

7707
	if (numabalancing_enabled)
7708
		task_tick_numa(rq, curr);
7709

7710
	update_rq_runnable_avg(rq, 1);
7711 7712 7713
}

/*
P
Peter Zijlstra 已提交
7714 7715 7716
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7717
 */
P
Peter Zijlstra 已提交
7718
static void task_fork_fair(struct task_struct *p)
7719
{
7720 7721
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7722
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7723 7724 7725
	struct rq *rq = this_rq();
	unsigned long flags;

7726
	raw_spin_lock_irqsave(&rq->lock, flags);
7727

7728 7729
	update_rq_clock(rq);

7730 7731 7732
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7733 7734 7735 7736 7737 7738 7739 7740 7741
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7742

7743
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7744

7745 7746
	if (curr)
		se->vruntime = curr->vruntime;
7747
	place_entity(cfs_rq, se, 1);
7748

P
Peter Zijlstra 已提交
7749
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7750
		/*
7751 7752 7753
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7754
		swap(curr->vruntime, se->vruntime);
7755
		resched_curr(rq);
7756
	}
7757

7758 7759
	se->vruntime -= cfs_rq->min_vruntime;

7760
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7761 7762
}

7763 7764 7765 7766
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7767 7768
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7769
{
7770
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7771 7772
		return;

7773 7774 7775 7776 7777
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7778
	if (rq->curr == p) {
7779
		if (p->prio > oldprio)
7780
			resched_curr(rq);
7781
	} else
7782
		check_preempt_curr(rq, p, 0);
7783 7784
}

P
Peter Zijlstra 已提交
7785 7786 7787 7788 7789 7790
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7791
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7792 7793 7794
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7795 7796
	 * If it's queued, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !queued, then only when
P
Peter Zijlstra 已提交
7797 7798
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7799
	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7800 7801 7802 7803 7804 7805 7806
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7807

7808
#ifdef CONFIG_SMP
7809 7810 7811 7812 7813
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7814 7815 7816
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7817 7818
	}
#endif
P
Peter Zijlstra 已提交
7819 7820
}

7821 7822 7823
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7824
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7825
{
7826
#ifdef CONFIG_FAIR_GROUP_SCHED
7827
	struct sched_entity *se = &p->se;
7828 7829 7830 7831 7832 7833
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
7834
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7835 7836
		return;

7837 7838 7839 7840 7841
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7842
	if (rq->curr == p)
7843
		resched_curr(rq);
7844
	else
7845
		check_preempt_curr(rq, p, 0);
7846 7847
}

7848 7849 7850 7851 7852 7853 7854 7855 7856
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7857 7858 7859 7860 7861 7862 7863
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7864 7865
}

7866 7867 7868 7869 7870 7871 7872
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7873
#ifdef CONFIG_SMP
7874
	atomic64_set(&cfs_rq->decay_counter, 1);
7875
	atomic_long_set(&cfs_rq->removed_load, 0);
7876
#endif
7877 7878
}

P
Peter Zijlstra 已提交
7879
#ifdef CONFIG_FAIR_GROUP_SCHED
7880
static void task_move_group_fair(struct task_struct *p, int queued)
P
Peter Zijlstra 已提交
7881
{
P
Peter Zijlstra 已提交
7882
	struct sched_entity *se = &p->se;
7883
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7884

7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7898
	/*
7899
	 * When !queued, vruntime of the task has usually NOT been normalized.
7900 7901 7902 7903
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7904 7905
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7906 7907 7908 7909
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
7910 7911
	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
		queued = 1;
7912

7913
	if (!queued)
P
Peter Zijlstra 已提交
7914
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7915
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7916
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7917
	if (!queued) {
P
Peter Zijlstra 已提交
7918 7919
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7920 7921 7922 7923 7924 7925
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7926 7927
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7928 7929
#endif
	}
P
Peter Zijlstra 已提交
7930
}
7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8023
	if (!parent) {
8024
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8025 8026
		se->depth = 0;
	} else {
8027
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8028 8029
		se->depth = parent->depth + 1;
	}
8030 8031

	se->my_q = cfs_rq;
8032 8033
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8064 8065 8066

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8067
		for_each_sched_entity(se)
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8089

8090
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8091 8092 8093 8094 8095 8096 8097 8098 8099
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8100
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8101 8102 8103 8104

	return rr_interval;
}

8105 8106 8107
/*
 * All the scheduling class methods:
 */
8108
const struct sched_class fair_sched_class = {
8109
	.next			= &idle_sched_class,
8110 8111 8112
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8113
	.yield_to_task		= yield_to_task_fair,
8114

I
Ingo Molnar 已提交
8115
	.check_preempt_curr	= check_preempt_wakeup,
8116 8117 8118 8119

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8120
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8121
	.select_task_rq		= select_task_rq_fair,
8122
	.migrate_task_rq	= migrate_task_rq_fair,
8123

8124 8125
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8126 8127

	.task_waking		= task_waking_fair,
8128
#endif
8129

8130
	.set_curr_task          = set_curr_task_fair,
8131
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8132
	.task_fork		= task_fork_fair,
8133 8134

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8135
	.switched_from		= switched_from_fair,
8136
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8137

8138 8139
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
8140
#ifdef CONFIG_FAIR_GROUP_SCHED
8141
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8142
#endif
8143 8144 8145
};

#ifdef CONFIG_SCHED_DEBUG
8146
void print_cfs_stats(struct seq_file *m, int cpu)
8147 8148 8149
{
	struct cfs_rq *cfs_rq;

8150
	rcu_read_lock();
8151
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8152
		print_cfs_rq(m, cpu, cfs_rq);
8153
	rcu_read_unlock();
8154 8155
}
#endif
8156 8157 8158 8159 8160 8161

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8162
#ifdef CONFIG_NO_HZ_COMMON
8163
	nohz.next_balance = jiffies;
8164
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8165
	cpu_notifier(sched_ilb_notifier, 0);
8166 8167 8168 8169
#endif
#endif /* SMP */

}