i915_gem.c 129.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/swap.h>
J
Jesse Barnes 已提交
35
#include <linux/pci.h>
36

37 38
#define I915_GEM_GPU_DOMAINS	(~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))

39 40 41 42 43 44 45 46 47
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 50 51
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 53 54
static int i915_gem_evict_something(struct drm_device *dev, int min_size);
static int i915_gem_evict_from_list(struct drm_device *dev,
				    struct list_head *head);
55 56 57
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
58

59 60 61
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

J
Jesse Barnes 已提交
62 63
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
64 65 66
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
67 68 69
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
70 71 72
		return -EINVAL;
	}

J
Jesse Barnes 已提交
73 74
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
75

J
Jesse Barnes 已提交
76 77 78 79
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
80

J
Jesse Barnes 已提交
81 82 83 84 85 86 87 88 89
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
90 91
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
92
	return ret;
93 94
}

95 96 97 98 99 100 101 102 103 104
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
105 106
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
107 108 109 110

	return 0;
}

111 112 113 114 115 116 117 118 119 120

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
121 122
	int ret;
	u32 handle;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
	obj = drm_gem_object_alloc(dev, args->size);
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_handle_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	if (ret)
		return ret;

	args->handle = handle;

	return 0;
}

144 145 146 147 148 149 150
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
151
	int unwritten;
152 153 154 155

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
156
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
157 158
	kunmap_atomic(vaddr, KM_USER0);

159 160 161 162
	if (unwritten)
		return -EFAULT;

	return 0;
163 164
}

165 166 167 168 169 170 171 172 173
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static inline int
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
	if (dst_vaddr == NULL)
		return -ENOMEM;

	src_vaddr = kmap_atomic(src_page, KM_USER1);
	if (src_vaddr == NULL) {
		kunmap_atomic(dst_vaddr, KM_USER0);
		return -ENOMEM;
	}

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

	kunmap_atomic(src_vaddr, KM_USER1);
	kunmap_atomic(dst_vaddr, KM_USER0);

	return 0;
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
static inline int
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

	gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
	if (gpu_vaddr == NULL)
		return -ENOMEM;

	cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
	if (cpu_vaddr == NULL) {
		kunmap_atomic(gpu_vaddr, KM_USER0);
		return -ENOMEM;
	}

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	kunmap_atomic(cpu_vaddr, KM_USER1);
	kunmap_atomic(gpu_vaddr, KM_USER0);

	return 0;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static inline gfp_t
i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
{
	return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
}

static inline void
i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
{
	mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
}

static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

	ret = i915_gem_object_get_pages(obj);

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;
		gfp_t gfp;

		ret = i915_gem_evict_something(dev, obj->size);
		if (ret)
			return ret;

		gfp = i915_gem_object_get_page_gfp_mask(obj);
		i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
		ret = i915_gem_object_get_pages(obj);
		i915_gem_object_set_page_gfp_mask (obj, gfp);
	}

	return ret;
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
386
	int do_bit17_swizzling;
387 388 389 390 391 392 393 394 395 396 397

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

398
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
399 400 401 402 403
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
404
				      num_pages, 1, 0, user_pages, NULL);
405 406 407 408 409 410
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

411 412
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

413 414
	mutex_lock(&dev->struct_mutex);

415 416
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

447 448 449 450 451 452 453 454 455 456 457 458 459 460
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    1);
		} else {
			ret = slow_shmem_copy(user_pages[data_page_index],
					      data_page_offset,
					      obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      page_length);
		}
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
478
	drm_free_large(user_pages);
479 480 481 482

	return ret;
}

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

512
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
513
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
514 515 516 517 518 519
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
520 521 522

	drm_gem_object_unreference(obj);

523
	return ret;
524 525
}

526 527
/* This is the fast write path which cannot handle
 * page faults in the source data
528
 */
529 530 531 532 533 534

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
535 536
{
	char *vaddr_atomic;
537
	unsigned long unwritten;
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
	io_mapping_unmap_atomic(vaddr_atomic);
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

static inline int
553 554 555 556
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
557
{
558
	char *src_vaddr, *dst_vaddr;
559 560
	unsigned long unwritten;

561 562 563 564 565 566 567
	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
	src_vaddr = kmap_atomic(user_page, KM_USER1);
	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
						      src_vaddr + user_offset,
						      length);
	kunmap_atomic(src_vaddr, KM_USER1);
	io_mapping_unmap_atomic(dst_vaddr);
568 569
	if (unwritten)
		return -EFAULT;
570 571 572
	return 0;
}

573 574 575 576 577 578 579
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
580
	unsigned long unwritten;
581 582 583 584

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
585
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
586 587
	kunmap_atomic(vaddr, KM_USER0);

588 589
	if (unwritten)
		return -EFAULT;
590 591 592
	return 0;
}

593 594 595 596
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
597
static int
598 599 600
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
601 602
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
603
	drm_i915_private_t *dev_priv = dev->dev_private;
604
	ssize_t remain;
605
	loff_t offset, page_base;
606
	char __user *user_data;
607 608
	int page_offset, page_length;
	int ret;
609 610 611 612 613 614 615 616 617 618 619 620 621

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
622
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
623 624 625 626 627 628 629 630 631
	if (ret)
		goto fail;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
632 633 634
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
635
		 */
636 637 638 639 640 641 642 643 644 645
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
646 647
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
648
		 */
649 650
		if (ret)
			goto fail;
651

652 653 654
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
655 656 657 658 659 660 661 662 663
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

664 665 666 667 668 669 670
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
671
static int
672 673 674
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
675
{
676 677 678 679 680 681 682 683 684
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
685
	int ret;
686 687 688 689 690 691 692 693 694 695 696 697
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

698
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
699 700 701 702 703 704 705 706 707 708 709
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
710 711

	mutex_lock(&dev->struct_mutex);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
					gtt_page_base, gtt_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
			goto out_unpin_object;

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
768
	drm_free_large(user_pages);
769 770 771 772

	return ret;
}

773 774 775 776
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
777
static int
778 779 780
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
781
{
782 783 784 785 786
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
787
	int ret;
788 789 790

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
791 792 793

	mutex_lock(&dev->struct_mutex);

794 795 796
	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;
797

798
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
861
	int do_bit17_swizzling;
862 863 864 865 866 867 868 869 870 871 872

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

873
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
874 875 876 877 878 879 880 881 882 883
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
884 885
	}

886 887
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

888 889
	mutex_lock(&dev->struct_mutex);

890 891
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
892 893 894 895 896 897 898
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
899
	offset = args->offset;
900
	obj_priv->dirty = 1;
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

922 923 924 925 926 927 928 929 930 931 932 933 934 935
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    0);
		} else {
			ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length);
		}
936 937 938 939 940 941
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
942 943
	}

944 945 946
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
947
	mutex_unlock(&dev->struct_mutex);
948 949 950
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
951
	drm_free_large(user_pages);
952

953
	return ret;
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
991 992 993
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
994 995 996 997 998 999
		 dev->gtt_total != 0) {
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
1000 1001
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1002 1003 1004 1005 1006 1007 1008
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

	drm_gem_object_unreference(obj);

	return ret;
}

/**
1021 1022
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1023 1024 1025 1026 1027
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1028
	struct drm_i915_private *dev_priv = dev->dev_private;
1029 1030
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1031
	struct drm_i915_gem_object *obj_priv;
1032 1033
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1034 1035 1036 1037 1038
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1039
	/* Only handle setting domains to types used by the CPU. */
1040
	if (write_domain & I915_GEM_GPU_DOMAINS)
1041 1042
		return -EINVAL;

1043
	if (read_domains & I915_GEM_GPU_DOMAINS)
1044 1045 1046 1047 1048 1049 1050 1051
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1052 1053 1054
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
1055
	obj_priv = obj->driver_private;
1056 1057

	mutex_lock(&dev->struct_mutex);
1058 1059 1060

	intel_mark_busy(dev, obj);

1061
#if WATCH_BUF
1062
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1063
		 obj, obj->size, read_domains, write_domain);
1064
#endif
1065 1066
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1067

1068 1069 1070 1071 1072 1073 1074 1075
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
			list_move_tail(&obj_priv->fence_list,
				       &dev_priv->mm.fence_list);
		}

1076 1077 1078 1079 1080 1081
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1082
	} else {
1083
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1084 1085
	}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

#if WATCH_BUF
1114
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1115 1116 1117 1118 1119
		 __func__, args->handle, obj, obj->size);
#endif
	obj_priv = obj->driver_private;

	/* Pinned buffers may be scanout, so flush the cache */
1120 1121 1122
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1194
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1195 1196 1197 1198 1199 1200 1201 1202

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1203
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1204 1205 1206 1207
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return VM_FAULT_SIGBUS;
		}
1208
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1209 1210 1211 1212 1213 1214

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return VM_FAULT_SIGBUS;
		}
1215 1216 1217
	}

	/* Need a new fence register? */
1218
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1219
		ret = i915_gem_object_get_fence_reg(obj);
1220 1221
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
1222
			return VM_FAULT_SIGBUS;
1223
		}
1224
	}
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);

	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	case -EFAULT:
1239
	case -EINVAL:
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		return VM_FAULT_SIGBUS;
	default:
		return VM_FAULT_NOPAGE;
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_map_list *list;
1264
	struct drm_local_map *map;
1265 1266 1267 1268
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1269
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1309
	kfree(list->map);
1310 1311 1312 1313

	return ret;
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
 * Preserve the reservation of the mmaping with the DRM core code, but
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1328
void
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1356
		kfree(list->map);
1357 1358 1359 1360 1361 1362
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);

	obj_priv = obj->driver_private;

	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1437 1438 1439
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1440
			return ret;
1441
		}
1442 1443 1444 1445 1446 1447 1448 1449 1450
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1451
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1452 1453 1454 1455 1456
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
J
Jesse Barnes 已提交
1457
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1458 1459 1460 1461 1462 1463 1464 1465
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1466
void
1467
i915_gem_object_put_pages(struct drm_gem_object *obj)
1468 1469 1470 1471 1472
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count = obj->size / PAGE_SIZE;
	int i;

1473
	BUG_ON(obj_priv->pages_refcount == 0);
1474

1475 1476
	if (--obj_priv->pages_refcount != 0)
		return;
1477

1478 1479 1480
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	if (obj_priv->madv == I915_MADV_DONTNEED)
	    obj_priv->dirty = 0;

	for (i = 0; i < page_count; i++) {
		if (obj_priv->pages[i] == NULL)
			break;

		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
		    mark_page_accessed(obj_priv->pages[i]);

		page_cache_release(obj_priv->pages[i]);
	}
1496 1497
	obj_priv->dirty = 0;

1498
	drm_free_large(obj_priv->pages);
1499
	obj_priv->pages = NULL;
1500 1501 1502
}

static void
1503
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1515
	spin_lock(&dev_priv->mm.active_list_lock);
1516 1517
	list_move_tail(&obj_priv->list,
		       &dev_priv->mm.active_list);
1518
	spin_unlock(&dev_priv->mm.active_list_lock);
1519
	obj_priv->last_rendering_seqno = seqno;
1520 1521
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1547
	obj_priv->last_rendering_seqno = 0;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

/**
 * Creates a new sequence number, emitting a write of it to the status page
 * plus an interrupt, which will trigger i915_user_interrupt_handler.
 *
 * Must be called with struct_lock held.
 *
 * Returned sequence numbers are nonzero on success.
 */
static uint32_t
1564 1565
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
		 uint32_t flush_domains)
1566 1567
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1568
	struct drm_i915_file_private *i915_file_priv = NULL;
1569 1570 1571 1572 1573
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;
	RING_LOCALS;

1574 1575 1576
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1577
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (request == NULL)
		return 0;

	/* Grab the seqno we're going to make this request be, and bump the
	 * next (skipping 0 so it can be the reserved no-seqno value).
	 */
	seqno = dev_priv->mm.next_gem_seqno;
	dev_priv->mm.next_gem_seqno++;
	if (dev_priv->mm.next_gem_seqno == 0)
		dev_priv->mm.next_gem_seqno++;

	BEGIN_LP_RING(4);
	OUT_RING(MI_STORE_DWORD_INDEX);
	OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	OUT_RING(seqno);

	OUT_RING(MI_USER_INTERRUPT);
	ADVANCE_LP_RING();

	DRM_DEBUG("%d\n", seqno);

	request->seqno = seqno;
	request->emitted_jiffies = jiffies;
	was_empty = list_empty(&dev_priv->mm.request_list);
	list_add_tail(&request->list, &dev_priv->mm.request_list);
1603 1604 1605 1606 1607 1608
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
	if (flush_domains != 0) {
		struct drm_i915_gem_object *obj_priv, *next;

		list_for_each_entry_safe(obj_priv, next,
					 &dev_priv->mm.flushing_list, list) {
			struct drm_gem_object *obj = obj_priv->obj;

			if ((obj->write_domain & flush_domains) ==
			    obj->write_domain) {
C
Chris Wilson 已提交
1622 1623
				uint32_t old_write_domain = obj->write_domain;

1624 1625
				obj->write_domain = 0;
				i915_gem_object_move_to_active(obj, seqno);
C
Chris Wilson 已提交
1626 1627 1628 1629

				trace_i915_gem_object_change_domain(obj,
								    obj->read_domains,
								    old_write_domain);
1630 1631 1632 1633 1634
			}
		}

	}

B
Ben Gamari 已提交
1635 1636 1637 1638 1639
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1640 1641 1642 1643 1644 1645 1646 1647 1648
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1649
static uint32_t
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
i915_retire_commands(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	uint32_t flush_domains = 0;
	RING_LOCALS;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
	BEGIN_LP_RING(2);
	OUT_RING(cmd);
	OUT_RING(0); /* noop */
	ADVANCE_LP_RING();
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1677 1678
	trace_i915_gem_request_retire(dev, request->seqno);

1679 1680 1681
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1682
	spin_lock(&dev_priv->mm.active_list_lock);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	while (!list_empty(&dev_priv->mm.active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&dev_priv->mm.active_list,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1697
			goto out;
1698

1699 1700 1701 1702 1703
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1704 1705
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1706 1707 1708 1709 1710 1711 1712 1713
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1714
			i915_gem_object_move_to_inactive(obj);
1715 1716 1717 1718
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1719
	}
1720 1721
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1722 1723 1724 1725 1726
}

/**
 * Returns true if seq1 is later than seq2.
 */
1727
bool
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
i915_get_gem_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1750 1751 1752
	if (!dev_priv->hw_status_page)
		return;

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	seqno = i915_get_gem_seqno(dev);

	while (!list_empty(&dev_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

		request = list_first_entry(&dev_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1765
		    atomic_read(&dev_priv->mm.wedged)) {
1766 1767 1768
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1769
			list_del(&request->client_list);
1770
			kfree(request);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		} else
			break;
	}
}

void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
	i915_gem_retire_requests(dev);
1788 1789
	if (!dev_priv->mm.suspended &&
	    !list_empty(&dev_priv->mm.request_list))
1790
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1791 1792 1793 1794 1795 1796 1797
	mutex_unlock(&dev->struct_mutex);
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1798
static int
1799 1800 1801
i915_wait_request(struct drm_device *dev, uint32_t seqno)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1802
	u32 ier;
1803 1804 1805 1806
	int ret = 0;

	BUG_ON(seqno == 0);

1807
	if (atomic_read(&dev_priv->mm.wedged))
1808 1809
		return -EIO;

1810
	if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1811 1812 1813 1814
		if (IS_IGDNG(dev))
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1815 1816 1817 1818 1819 1820 1821
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1822 1823
		trace_i915_gem_request_wait_begin(dev, seqno);

1824 1825 1826 1827 1828
		dev_priv->mm.waiting_gem_seqno = seqno;
		i915_user_irq_get(dev);
		ret = wait_event_interruptible(dev_priv->irq_queue,
					       i915_seqno_passed(i915_get_gem_seqno(dev),
								 seqno) ||
1829
					       atomic_read(&dev_priv->mm.wedged));
1830 1831
		i915_user_irq_put(dev);
		dev_priv->mm.waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1832 1833

		trace_i915_gem_request_wait_end(dev, seqno);
1834
	}
1835
	if (atomic_read(&dev_priv->mm.wedged))
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
			  __func__, ret, seqno, i915_get_gem_seqno(dev));

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
		i915_gem_retire_requests(dev);

	return ret;
}

static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd;
	RING_LOCALS;

#if WATCH_EXEC
	DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
		  invalidate_domains, flush_domains);
#endif
C
Chris Wilson 已提交
1866 1867
	trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
				     invalidate_domains, flush_domains);
1868 1869 1870 1871

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);

1872
	if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		/*
		 * read/write caches:
		 *
		 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
		 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
		 * also flushed at 2d versus 3d pipeline switches.
		 *
		 * read-only caches:
		 *
		 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
		 * MI_READ_FLUSH is set, and is always flushed on 965.
		 *
		 * I915_GEM_DOMAIN_COMMAND may not exist?
		 *
		 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
		 * invalidated when MI_EXE_FLUSH is set.
		 *
		 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
		 * invalidated with every MI_FLUSH.
		 *
		 * TLBs:
		 *
		 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
		 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
		 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
		 * are flushed at any MI_FLUSH.
		 */

		cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
		if ((invalidate_domains|flush_domains) &
		    I915_GEM_DOMAIN_RENDER)
			cmd &= ~MI_NO_WRITE_FLUSH;
		if (!IS_I965G(dev)) {
			/*
			 * On the 965, the sampler cache always gets flushed
			 * and this bit is reserved.
			 */
			if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
				cmd |= MI_READ_FLUSH;
		}
		if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
			cmd |= MI_EXE_FLUSH;

#if WATCH_EXEC
		DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
#endif
		BEGIN_LP_RING(2);
		OUT_RING(cmd);
		OUT_RING(0); /* noop */
		ADVANCE_LP_RING();
	}
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

1937 1938
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1939
	 */
1940
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
		ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1961
int
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1980 1981 1982 1983 1984 1985
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

1986 1987 1988 1989 1990 1991
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1992
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1993
	if (ret) {
1994 1995
		if (ret != -ERESTARTSYS)
			DRM_ERROR("set_domain failed: %d\n", ret);
1996 1997 1998
		return ret;
	}

1999 2000
	BUG_ON(obj_priv->active);

2001 2002 2003 2004 2005 2006
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2007
	i915_gem_object_put_pages(obj);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);

C
Chris Wilson 已提交
2021 2022
	trace_i915_gem_object_unbind(obj);

2023 2024 2025
	return 0;
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return !obj_priv->dirty || obj_priv->madv == I915_MADV_DONTNEED;
}

static struct drm_gem_object *
i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	struct drm_gem_object *best = NULL;
	struct drm_gem_object *first = NULL;

	/* Try to find the smallest clean object */
	list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
		struct drm_gem_object *obj = obj_priv->obj;
		if (obj->size >= min_size) {
			if (i915_gem_object_is_purgeable(obj_priv) &&
			    (!best || obj->size < best->size)) {
				best = obj;
				if (best->size == min_size)
					return best;
			}
			if (!first)
			    first = obj;
		}
	}

	return best ? best : first;
}

static int
i915_gem_evict_everything(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;
	int ret;
	bool lists_empty;

	DRM_INFO("GTT full, evicting everything: "
		 "%d objects [%d pinned], "
		 "%d object bytes [%d pinned], "
		 "%d/%d gtt bytes\n",
		 atomic_read(&dev->object_count),
		 atomic_read(&dev->pin_count),
		 atomic_read(&dev->object_memory),
		 atomic_read(&dev->pin_memory),
		 atomic_read(&dev->gtt_memory),
		 dev->gtt_total);

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->mm.active_list));
	spin_unlock(&dev_priv->mm.active_list_lock);

	if (lists_empty) {
		DRM_ERROR("GTT full, but lists empty!\n");
		return -ENOSPC;
	}

	/* Flush everything (on to the inactive lists) and evict */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
	if (seqno == 0)
		return -ENOMEM;

	ret = i915_wait_request(dev, seqno);
	if (ret)
		return ret;

	ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
	if (ret)
		return ret;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->mm.active_list));
	spin_unlock(&dev_priv->mm.active_list_lock);
	BUG_ON(!lists_empty);

	return 0;
}

2112
static int
2113
i915_gem_evict_something(struct drm_device *dev, int min_size)
2114 2115 2116
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
2117 2118
	int have_waited = 0;
	int ret;
2119 2120

	for (;;) {
2121 2122
		i915_gem_retire_requests(dev);

2123 2124 2125
		/* If there's an inactive buffer available now, grab it
		 * and be done.
		 */
2126 2127 2128 2129
		obj = i915_gem_find_inactive_object(dev, min_size);
		if (obj) {
			struct drm_i915_gem_object *obj_priv;

2130 2131 2132
#if WATCH_LRU
			DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
2133 2134
			obj_priv = obj->driver_private;
			BUG_ON(obj_priv->pin_count != 0);
2135 2136 2137
			BUG_ON(obj_priv->active);

			/* Wait on the rendering and unbind the buffer. */
2138
			return i915_gem_object_unbind(obj);
2139 2140
		}

2141 2142 2143
		if (have_waited)
			return 0;

2144
		/* If we didn't get anything, but the ring is still processing
2145 2146
		 * things, wait for the next to finish and hopefully leave us
		 * a buffer to evict.
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		 */
		if (!list_empty(&dev_priv->mm.request_list)) {
			struct drm_i915_gem_request *request;

			request = list_first_entry(&dev_priv->mm.request_list,
						   struct drm_i915_gem_request,
						   list);

			ret = i915_wait_request(dev, request->seqno);
			if (ret)
2157
				return ret;
2158

2159 2160
			have_waited = 1;
			continue;
2161 2162 2163 2164 2165 2166 2167 2168
		}

		/* If we didn't have anything on the request list but there
		 * are buffers awaiting a flush, emit one and try again.
		 * When we wait on it, those buffers waiting for that flush
		 * will get moved to inactive.
		 */
		if (!list_empty(&dev_priv->mm.flushing_list)) {
2169 2170 2171
			struct drm_i915_gem_object *obj_priv;
			uint32_t seqno;

2172 2173 2174 2175 2176 2177 2178 2179
			obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
						    struct drm_i915_gem_object,
						    list);
			obj = obj_priv->obj;

			i915_gem_flush(dev,
				       obj->write_domain,
				       obj->write_domain);
2180 2181 2182 2183 2184 2185 2186
			seqno = i915_add_request(dev, NULL, obj->write_domain);
			if (seqno == 0)
				return -ENOMEM;

			ret = i915_wait_request(dev, seqno);
			if (ret)
				return ret;
2187

2188
			have_waited = 1;
2189 2190 2191
			continue;
		}

2192 2193 2194
		/* If we didn't do any of the above, there's no single buffer
		 * large enough to swap out for the new one, so just evict
		 * everything and start again. (This should be rare.)
2195
		 */
2196 2197 2198 2199 2200 2201
		if (!list_empty (&dev_priv->mm.inactive_list)) {
			DRM_INFO("GTT full, evicting inactive buffers\n");
			return i915_gem_evict_from_list(dev,
							&dev_priv->mm.inactive_list);
		} else
			return i915_gem_evict_everything(dev);
2202 2203 2204
	}
}

2205
int
2206
i915_gem_object_get_pages(struct drm_gem_object *obj)
2207 2208 2209 2210 2211 2212 2213 2214
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;
	int ret;

2215
	if (obj_priv->pages_refcount++ != 0)
2216 2217 2218 2219 2220 2221
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2222
	BUG_ON(obj_priv->pages != NULL);
2223
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2224
	if (obj_priv->pages == NULL) {
2225
		DRM_ERROR("Failed to allocate page list\n");
2226
		obj_priv->pages_refcount--;
2227 2228 2229 2230 2231 2232 2233 2234 2235
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_mapping_page(mapping, i, NULL);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
2236
			i915_gem_object_put_pages(obj);
2237 2238
			return ret;
		}
2239
		obj_priv->pages[i] = page;
2240
	}
2241 2242 2243 2244

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2245 2246 2247
	return 0;
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
2275
	int tile_width;
2276
	uint32_t fence_reg, val;
2277 2278 2279 2280
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2281
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2282
		     __func__, obj_priv->gtt_offset, obj->size);
2283 2284 2285
		return;
	}

2286 2287 2288
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2289
	else
2290 2291 2292 2293 2294
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2295 2296 2297 2298 2299 2300 2301 2302

	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2303 2304 2305 2306 2307
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2319
	uint32_t fence_size_bits;
2320

2321
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2322
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2323
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2324
		     __func__, obj_priv->gtt_offset);
2325 2326 2327
		return;
	}

2328 2329 2330 2331
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2332 2333 2334
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2335 2336 2337
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2357 2358
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2359 2360
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2361
	struct drm_i915_private *dev_priv = dev->dev_private;
2362 2363
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_i915_fence_reg *reg = NULL;
2364 2365
	struct drm_i915_gem_object *old_obj_priv = NULL;
	int i, ret, avail;
2366

2367 2368 2369 2370 2371 2372
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
		list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
		return 0;
	}

2373 2374 2375 2376 2377
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2378 2379 2380 2381 2382
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2383 2384
		break;
	case I915_TILING_Y:
2385 2386 2387 2388 2389
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2390 2391 2392 2393
		break;
	}

	/* First try to find a free reg */
2394
	avail = 0;
2395 2396 2397 2398
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			break;
2399 2400 2401 2402

		old_obj_priv = reg->obj->driver_private;
		if (!old_obj_priv->pin_count)
		    avail++;
2403 2404 2405 2406
	}

	/* None available, try to steal one or wait for a user to finish */
	if (i == dev_priv->num_fence_regs) {
2407
		struct drm_gem_object *old_obj = NULL;
2408

2409
		if (avail == 0)
C
Chris Wilson 已提交
2410
			return -ENOSPC;
2411

2412 2413 2414
		list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
				    fence_list) {
			old_obj = old_obj_priv->obj;
2415 2416 2417 2418

			if (old_obj_priv->pin_count)
				continue;

2419 2420 2421 2422 2423 2424
			/* Take a reference, as otherwise the wait_rendering
			 * below may cause the object to get freed out from
			 * under us.
			 */
			drm_gem_object_reference(old_obj);

2425 2426
			/* i915 uses fences for GPU access to tiled buffers */
			if (IS_I965G(dev) || !old_obj_priv->active)
2427
				break;
2428

2429 2430 2431 2432 2433 2434 2435 2436
			/* This brings the object to the head of the LRU if it
			 * had been written to.  The only way this should
			 * result in us waiting longer than the expected
			 * optimal amount of time is if there was a
			 * fence-using buffer later that was read-only.
			 */
			i915_gem_object_flush_gpu_write_domain(old_obj);
			ret = i915_gem_object_wait_rendering(old_obj);
2437 2438
			if (ret != 0) {
				drm_gem_object_unreference(old_obj);
2439
				return ret;
2440
			}
2441

2442
			break;
2443 2444 2445 2446 2447 2448
		}

		/*
		 * Zap this virtual mapping so we can set up a fence again
		 * for this object next time we need it.
		 */
2449 2450
		i915_gem_release_mmap(old_obj);

2451
		i = old_obj_priv->fence_reg;
2452 2453
		reg = &dev_priv->fence_regs[i];

2454
		old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2455
		list_del_init(&old_obj_priv->fence_list);
2456

2457
		drm_gem_object_unreference(old_obj);
2458 2459 2460
	}

	obj_priv->fence_reg = i;
2461 2462
	list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);

2463 2464 2465 2466 2467 2468 2469 2470
	reg->obj = obj;

	if (IS_I965G(dev))
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2471

C
Chris Wilson 已提交
2472 2473
	trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);

2474
	return 0;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2488
	drm_i915_private_t *dev_priv = dev->dev_private;
2489 2490 2491 2492
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (IS_I965G(dev))
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	else {
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2504 2505 2506

	dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2507
	list_del_init(&obj_priv->fence_list);
2508 2509
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

		i915_gem_object_flush_gpu_write_domain(obj);
		i915_gem_object_flush_gtt_write_domain(obj);
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

	i915_gem_clear_fence_reg (obj);

	return 0;
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_mm_node *free_space;
2556 2557
	bool retry_alloc = false;
	int ret;
2558

2559 2560
	if (dev_priv->mm.suspended)
		return -EBUSY;
2561 2562 2563 2564 2565 2566

	if (obj_priv->madv == I915_MADV_DONTNEED) {
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2567
	if (alignment == 0)
2568
		alignment = i915_gem_get_gtt_alignment(obj);
2569
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
		if (obj_priv->gtt_space != NULL) {
			obj_priv->gtt_space->private = obj;
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
		}
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2592
		ret = i915_gem_evict_something(dev, obj->size);
2593
		if (ret != 0) {
2594 2595
			if (ret != -ERESTARTSYS)
				DRM_ERROR("Failed to evict a buffer %d\n", ret);
2596 2597 2598 2599 2600 2601
			return ret;
		}
		goto search_free;
	}

#if WATCH_BUF
2602
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2603 2604
		 obj->size, obj_priv->gtt_offset);
#endif
2605 2606 2607 2608
	if (retry_alloc) {
		i915_gem_object_set_page_gfp_mask (obj,
						   i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
	}
2609
	ret = i915_gem_object_get_pages(obj);
2610 2611 2612 2613
	if (retry_alloc) {
		i915_gem_object_set_page_gfp_mask (obj,
						   i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
	}
2614 2615 2616
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
			ret = i915_gem_evict_something(dev, obj->size);
			if (ret) {
				if (ret != -ERESTARTSYS)
					DRM_ERROR("Failed to allocate space for backing pages %d\n", ret);

				/* now try to shrink everyone else */
				if (! retry_alloc) {
				    retry_alloc = true;
				    goto search_free;
				}

				return ret;
			}

			goto search_free;
		}

2637 2638 2639 2640 2641 2642 2643
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2644
					       obj_priv->pages,
2645
					       obj->size >> PAGE_SHIFT,
2646 2647
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2648
	if (obj_priv->agp_mem == NULL) {
2649
		i915_gem_object_put_pages(obj);
2650 2651
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2652 2653 2654 2655 2656 2657 2658 2659 2660

		ret = i915_gem_evict_something(dev, obj->size);
		if (ret) {
			if (ret != -ERESTARTSYS)
				DRM_ERROR("Failed to allocate space to bind AGP: %d\n", ret);
			return ret;
		}

		goto search_free;
2661 2662 2663 2664 2665 2666 2667 2668
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2669 2670
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2671

C
Chris Wilson 已提交
2672 2673
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2686
	if (obj_priv->pages == NULL)
2687 2688
		return;

C
Chris Wilson 已提交
2689 2690
	trace_i915_gem_object_clflush(obj);

2691
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2692 2693
}

2694 2695 2696 2697 2698 2699
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	uint32_t seqno;
C
Chris Wilson 已提交
2700
	uint32_t old_write_domain;
2701 2702 2703 2704 2705

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
		return;

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2706
	old_write_domain = obj->write_domain;
2707
	i915_gem_flush(dev, 0, obj->write_domain);
2708
	seqno = i915_add_request(dev, NULL, obj->write_domain);
2709 2710
	obj->write_domain = 0;
	i915_gem_object_move_to_active(obj, seqno);
C
Chris Wilson 已提交
2711 2712 2713 2714

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2715 2716 2717 2718 2719 2720
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2721 2722
	uint32_t old_write_domain;

2723 2724 2725 2726 2727 2728 2729
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2730
	old_write_domain = obj->write_domain;
2731
	obj->write_domain = 0;
C
Chris Wilson 已提交
2732 2733 2734 2735

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2736 2737 2738 2739 2740 2741 2742
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2743
	uint32_t old_write_domain;
2744 2745 2746 2747 2748 2749

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2750
	old_write_domain = obj->write_domain;
2751
	obj->write_domain = 0;
C
Chris Wilson 已提交
2752 2753 2754 2755

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2756 2757
}

2758 2759 2760 2761 2762 2763
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2764
int
2765 2766 2767
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
C
Chris Wilson 已提交
2768
	uint32_t old_write_domain, old_read_domains;
2769
	int ret;
2770

2771 2772 2773 2774
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2775 2776 2777 2778 2779 2780
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2781 2782 2783
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2784 2785
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2786
	 */
2787 2788
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2789

2790
	i915_gem_object_flush_cpu_write_domain(obj);
2791

2792 2793 2794 2795 2796 2797 2798 2799
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2800 2801
	}

C
Chris Wilson 已提交
2802 2803 2804 2805
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
	return 0;
}

/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2818
	uint32_t old_write_domain, old_read_domains;
2819 2820 2821
	int ret;

	i915_gem_object_flush_gpu_write_domain(obj);
2822
	/* Wait on any GPU rendering and flushing to occur. */
2823 2824 2825
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2826

2827
	i915_gem_object_flush_gtt_write_domain(obj);
2828

2829 2830
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2831
	 */
2832
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2833

C
Chris Wilson 已提交
2834 2835 2836
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2837 2838
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2839 2840
		i915_gem_clflush_object(obj);

2841
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2842 2843 2844 2845 2846
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2847 2848 2849 2850 2851 2852 2853 2854 2855
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2856

C
Chris Wilson 已提交
2857 2858 2859 2860
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2861 2862 2863
	return 0;
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2975
static void
2976
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2977 2978 2979 2980 2981
{
	struct drm_device		*dev = obj->dev;
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
2982
	uint32_t			old_read_domains;
2983

2984 2985
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2986

2987 2988
	intel_mark_busy(dev, obj);

2989 2990 2991
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2992 2993
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
2994 2995 2996 2997 2998
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
2999 3000
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3001 3002 3003 3004 3005 3006 3007 3008 3009
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3010 3011
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3012
		flush_domains |= obj->write_domain;
3013 3014
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3015 3016 3017 3018 3019
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3020
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3021 3022 3023 3024 3025 3026 3027 3028
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3029 3030
	old_read_domains = obj->read_domains;

3031 3032 3033 3034 3035 3036 3037 3038
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3039
	obj->read_domains = obj->pending_read_domains;
3040 3041 3042 3043 3044 3045 3046 3047 3048

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3049 3050 3051 3052

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3053 3054 3055
}

/**
3056
 * Moves the object from a partially CPU read to a full one.
3057
 *
3058 3059
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3060
 */
3061 3062
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3063 3064 3065
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3077
			drm_clflush_pages(obj_priv->pages + i, 1);
3078 3079 3080 3081 3082 3083
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3084
	kfree(obj_priv->page_cpu_valid);
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
C
Chris Wilson 已提交
3105
	uint32_t old_read_domains;
3106
	int i, ret;
3107

3108 3109
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3110

3111 3112
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
3113
	ret = i915_gem_object_wait_rendering(obj);
3114
	if (ret != 0)
3115
		return ret;
3116 3117 3118 3119 3120 3121
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3122

3123 3124 3125
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3126
	if (obj_priv->page_cpu_valid == NULL) {
3127 3128
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3129 3130 3131 3132
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3133 3134 3135 3136

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3137 3138
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3139 3140 3141
		if (obj_priv->page_cpu_valid[i])
			continue;

3142
		drm_clflush_pages(obj_priv->pages + i, 1);
3143 3144 3145 3146

		obj_priv->page_cpu_valid[i] = 1;
	}

3147 3148 3149 3150 3151
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3152
	old_read_domains = obj->read_domains;
3153 3154
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3155 3156 3157 3158
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3159 3160 3161 3162 3163 3164 3165 3166 3167
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
3168 3169
				 struct drm_i915_gem_exec_object *entry,
				 struct drm_i915_gem_relocation_entry *relocs)
3170 3171
{
	struct drm_device *dev = obj->dev;
3172
	drm_i915_private_t *dev_priv = dev->dev_private;
3173 3174
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int i, ret;
3175
	void __iomem *reloc_page;
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3188
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3189 3190
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3191 3192
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3193 3194

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3195
						   reloc->target_handle);
3196 3197 3198 3199 3200 3201
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
			return -EBADF;
		}
		target_obj_priv = target_obj->driver_private;

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3217 3218 3219 3220 3221
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3222
				  reloc->target_handle);
3223 3224 3225 3226 3227
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3228
		/* Validate that the target is in a valid r/w GPU domain */
3229 3230
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3231 3232 3233
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3234 3235 3236 3237
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3238 3239
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3240 3241
			return -EINVAL;
		}
3242 3243
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3244 3245 3246
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3247 3248 3249
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3250 3251 3252 3253 3254 3255
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3256 3257
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3258 3259 3260 3261

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3262
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3263 3264 3265 3266
			drm_gem_object_unreference(target_obj);
			continue;
		}

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3298 3299 3300 3301 3302
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3303 3304 3305 3306 3307
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3308
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3309 3310 3311
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
						       ~(PAGE_SIZE - 1)));
3312
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3313
						   (reloc_offset & (PAGE_SIZE - 1)));
3314
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3315 3316 3317

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3318
			  obj, (unsigned int) reloc->offset,
3319 3320 3321
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3322
		io_mapping_unmap_atomic(reloc_page);
3323

3324 3325
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3326
		 */
3327
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/** Dispatch a batchbuffer to the ring
 */
static int
i915_dispatch_gem_execbuffer(struct drm_device *dev,
			      struct drm_i915_gem_execbuffer *exec,
3344
			      struct drm_clip_rect *cliprects,
3345 3346 3347 3348 3349
			      uint64_t exec_offset)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int nbox = exec->num_cliprects;
	int i = 0, count;
3350
	uint32_t exec_start, exec_len;
3351 3352 3353 3354 3355
	RING_LOCALS;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

C
Chris Wilson 已提交
3356 3357
	trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno);

3358 3359 3360 3361
	count = nbox ? nbox : 1;

	for (i = 0; i < count; i++) {
		if (i < nbox) {
3362
			int ret = i915_emit_box(dev, cliprects, i,
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
						exec->DR1, exec->DR4);
			if (ret)
				return ret;
		}

		if (IS_I830(dev) || IS_845G(dev)) {
			BEGIN_LP_RING(4);
			OUT_RING(MI_BATCH_BUFFER);
			OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			OUT_RING(exec_start + exec_len - 4);
			OUT_RING(0);
			ADVANCE_LP_RING();
		} else {
			BEGIN_LP_RING(2);
			if (IS_I965G(dev)) {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6) |
					 MI_BATCH_NON_SECURE_I965);
				OUT_RING(exec_start);
			} else {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6));
				OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			}
			ADVANCE_LP_RING();
		}
	}

	/* XXX breadcrumb */
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3398 3399 3400 3401
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3402 3403 3404 3405 3406 3407 3408 3409
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3410
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3411 3412

	mutex_lock(&dev->struct_mutex);
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

		ret = i915_wait_request(dev, request->seqno);
		if (ret != 0)
			break;
	}
3427
	mutex_unlock(&dev->struct_mutex);
3428

3429 3430 3431
	return ret;
}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
static int
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3447
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
	if (*relocs == NULL)
		return -ENOMEM;

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3461
			drm_free_large(*relocs);
3462
			*relocs = NULL;
3463
			return -EFAULT;
3464 3465 3466 3467 3468
		}

		reloc_index += exec_list[i].relocation_count;
	}

3469
	return 0;
3470 3471 3472 3473 3474 3475 3476 3477
}

static int
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3478
	int ret = 0;
3479 3480 3481

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3482
		int unwritten;
3483 3484 3485

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3486 3487 3488 3489 3490 3491 3492 3493
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3494 3495 3496 3497 3498
		}

		reloc_count += exec_list[i].relocation_count;
	}

3499
err:
3500
	drm_free_large(relocs);
3501 3502 3503 3504

	return ret;
}

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
static int
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3523 3524 3525 3526 3527 3528 3529 3530 3531
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3532
	struct drm_i915_gem_object *obj_priv;
3533
	struct drm_clip_rect *cliprects = NULL;
3534 3535
	struct drm_i915_gem_relocation_entry *relocs;
	int ret, ret2, i, pinned = 0;
3536
	uint64_t exec_offset;
3537
	uint32_t seqno, flush_domains, reloc_index;
3538
	int pin_tries;
3539 3540 3541 3542 3543 3544

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

3545 3546 3547 3548
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3549
	/* Copy in the exec list from userland */
3550 3551
	exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
	object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	if (exec_list == NULL || object_list == NULL) {
		DRM_ERROR("Failed to allocate exec or object list "
			  "for %d buffers\n",
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		goto pre_mutex_err;
	}

3569
	if (args->num_cliprects != 0) {
3570 3571
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
		if (cliprects == NULL)
			goto pre_mutex_err;

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3586 3587 3588 3589 3590
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3591 3592 3593 3594
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3595
	if (atomic_read(&dev_priv->mm.wedged)) {
3596 3597
		DRM_ERROR("Execbuf while wedged\n");
		mutex_unlock(&dev->struct_mutex);
3598 3599
		ret = -EIO;
		goto pre_mutex_err;
3600 3601 3602 3603 3604
	}

	if (dev_priv->mm.suspended) {
		DRM_ERROR("Execbuf while VT-switched.\n");
		mutex_unlock(&dev->struct_mutex);
3605 3606
		ret = -EBUSY;
		goto pre_mutex_err;
3607 3608
	}

3609
	/* Look up object handles */
3610 3611 3612 3613 3614 3615 3616 3617 3618
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
			ret = -EBADF;
			goto err;
		}
3619 3620 3621 3622 3623 3624 3625 3626 3627

		obj_priv = object_list[i]->driver_private;
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
			ret = -EBADF;
			goto err;
		}
		obj_priv->in_execbuffer = true;
3628
	}
3629

3630 3631 3632
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3633 3634
		reloc_index = 0;

3635 3636 3637 3638 3639
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3640 3641
							       &exec_list[i],
							       &relocs[reloc_index]);
3642 3643 3644
			if (ret)
				break;
			pinned = i + 1;
3645
			reloc_index += exec_list[i].relocation_count;
3646 3647 3648 3649 3650 3651
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3652
		if (ret != -ENOSPC || pin_tries >= 1) {
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
				for (i = 0; i < args->buffer_count; i++)
					total_size += object_list[i]->size;
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
					  pinned+1, args->buffer_count,
					  total_size, ret);
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3670 3671
			goto err;
		}
3672 3673 3674 3675

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3676
		pinned = 0;
3677 3678 3679

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3680
		if (ret && ret != -ENOSPC)
3681
			goto err;
3682 3683 3684 3685
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3686 3687 3688 3689 3690 3691
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3692

3693 3694 3695 3696 3697 3698 3699 3700
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3701 3702
	i915_verify_inactive(dev, __FILE__, __LINE__);

3703 3704 3705 3706 3707 3708 3709
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3710 3711 3712
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3713
		/* Compute new gpu domains and update invalidate/flush */
3714
		i915_gem_object_set_to_gpu_domain(obj);
3715 3716 3717 3718
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
		if (dev->flush_domains)
3730 3731
			(void)i915_add_request(dev, file_priv,
					       dev->flush_domains);
3732
	}
3733

3734 3735
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
C
Chris Wilson 已提交
3736
		uint32_t old_write_domain = obj->write_domain;
3737 3738

		obj->write_domain = obj->pending_write_domain;
C
Chris Wilson 已提交
3739 3740 3741
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3742 3743
	}

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3754
	i915_gem_dump_object(batch_obj,
3755 3756 3757 3758 3759 3760
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3761
	ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	flush_domains = i915_retire_commands(dev);

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3782
	seqno = i915_add_request(dev, file_priv, flush_domains);
3783 3784 3785 3786
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3787
		i915_gem_object_move_to_active(obj, seqno);
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3799 3800 3801
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3802 3803 3804 3805 3806
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
			obj_priv = object_list[i]->driver_private;
			obj_priv->in_execbuffer = false;
		}
3807
		drm_gem_object_unreference(object_list[i]);
3808
	}
3809 3810 3811

	mutex_unlock(&dev->struct_mutex);

3812 3813 3814 3815 3816 3817
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
3818 3819
		if (ret) {
			ret = -EFAULT;
3820 3821 3822
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
3823
		}
3824 3825
	}

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3840
pre_mutex_err:
3841 3842
	drm_free_large(object_list);
	drm_free_large(exec_list);
3843
	kfree(cliprects);
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

	return ret;
}

int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
		if (ret != 0) {
3859
			if (ret != -EBUSY && ret != -ERESTARTSYS)
3860
				DRM_ERROR("Failure to bind: %d\n", ret);
3861 3862
			return ret;
		}
3863 3864 3865 3866 3867
	}
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle tiled surfaces.
	 */
3868
	if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3869
		ret = i915_gem_object_get_fence_reg(obj);
3870 3871 3872 3873 3874 3875
		if (ret != 0) {
			if (ret != -EBUSY && ret != -ERESTARTSYS)
				DRM_ERROR("Failure to install fence: %d\n",
					  ret);
			return ret;
		}
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	}
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
3886
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
		    !list_empty(&obj_priv->list))
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
3913
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}
	obj_priv = obj->driver_private;

3942 3943 3944 3945 3946 3947 3948
	if (obj_priv->madv == I915_MADV_DONTNEED) {
		DRM_ERROR("Attempting to pin a I915_MADV_DONTNEED buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
3949 3950 3951
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3952
		drm_gem_object_unreference(obj);
3953
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
3966 3967 3968 3969 3970
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3971
	i915_gem_object_flush_cpu_write_domain(obj);
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
3985
	struct drm_i915_gem_object *obj_priv;
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

J
Jesse Barnes 已提交
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	obj_priv = obj->driver_private;
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

4031
	mutex_lock(&dev->struct_mutex);
4032 4033 4034 4035 4036 4037 4038
	/* Update the active list for the hardware's current position.
	 * Otherwise this only updates on a delayed timer or when irqs are
	 * actually unmasked, and our working set ends up being larger than
	 * required.
	 */
	i915_gem_retire_requests(dev);

4039
	obj_priv = obj->driver_private;
4040 4041 4042 4043 4044 4045 4046 4047
	/* Don't count being on the flushing list against the object being
	 * done.  Otherwise, a buffer left on the flushing list but not getting
	 * flushed (because nobody's flushing that domain) won't ever return
	 * unbusy and get reused by libdrm's bo cache.  The other expected
	 * consumer of this interface, OpenGL's occlusion queries, also specs
	 * that the objects get unbusy "eventually" without any interference.
	 */
	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

	mutex_lock(&dev->struct_mutex);
	obj_priv = obj->driver_private;

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

	obj_priv->madv = args->madv;
	args->retained = obj_priv->gtt_space != NULL;

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4104 4105 4106 4107
int i915_gem_init_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;

4108
	obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
	if (obj_priv == NULL)
		return -ENOMEM;

	/*
	 * We've just allocated pages from the kernel,
	 * so they've just been written by the CPU with
	 * zeros. They'll need to be clflushed before we
	 * use them with the GPU.
	 */
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;

4121 4122
	obj_priv->agp_type = AGP_USER_MEMORY;

4123 4124
	obj->driver_private = obj_priv;
	obj_priv->obj = obj;
4125
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
4126
	INIT_LIST_HEAD(&obj_priv->list);
4127
	INIT_LIST_HEAD(&obj_priv->fence_list);
4128
	obj_priv->madv = I915_MADV_WILLNEED;
4129

C
Chris Wilson 已提交
4130 4131
	trace_i915_gem_object_create(obj);

4132 4133 4134 4135 4136
	return 0;
}

void i915_gem_free_object(struct drm_gem_object *obj)
{
4137
	struct drm_device *dev = obj->dev;
4138 4139
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

C
Chris Wilson 已提交
4140 4141
	trace_i915_gem_object_destroy(obj);

4142 4143 4144
	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

4145 4146 4147
	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

4148 4149
	i915_gem_object_unbind(obj);

4150 4151
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4152

4153
	kfree(obj_priv->page_cpu_valid);
4154
	kfree(obj_priv->bit_17);
4155
	kfree(obj->driver_private);
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
}

/** Unbinds all objects that are on the given buffer list. */
static int
i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
{
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	while (!list_empty(head)) {
		obj_priv = list_first_entry(head,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		if (obj_priv->pin_count != 0) {
			DRM_ERROR("Pinned object in unbind list\n");
			mutex_unlock(&dev->struct_mutex);
			return -EINVAL;
		}

		ret = i915_gem_object_unbind(obj);
		if (ret != 0) {
			DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
				  ret);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}


	return 0;
}

4191
int
4192 4193 4194 4195 4196 4197
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno, cur_seqno, last_seqno;
	int stuck, ret;

4198 4199 4200 4201
	mutex_lock(&dev->struct_mutex);

	if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
4202
		return 0;
4203
	}
4204 4205 4206 4207 4208

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 */
	dev_priv->mm.suspended = 1;
B
Ben Gamari 已提交
4209
	del_timer(&dev_priv->hangcheck_timer);
4210

4211 4212 4213 4214 4215 4216
	/* Cancel the retire work handler, wait for it to finish if running
	 */
	mutex_unlock(&dev->struct_mutex);
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
	mutex_lock(&dev->struct_mutex);

4217 4218 4219 4220
	i915_kernel_lost_context(dev);

	/* Flush the GPU along with all non-CPU write domains
	 */
4221 4222
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238

	if (seqno == 0) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOMEM;
	}

	dev_priv->mm.waiting_gem_seqno = seqno;
	last_seqno = 0;
	stuck = 0;
	for (;;) {
		cur_seqno = i915_get_gem_seqno(dev);
		if (i915_seqno_passed(cur_seqno, seqno))
			break;
		if (last_seqno == cur_seqno) {
			if (stuck++ > 100) {
				DRM_ERROR("hardware wedged\n");
4239
				atomic_set(&dev_priv->mm.wedged, 1);
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
				DRM_WAKEUP(&dev_priv->irq_queue);
				break;
			}
		}
		msleep(10);
		last_seqno = cur_seqno;
	}
	dev_priv->mm.waiting_gem_seqno = 0;

	i915_gem_retire_requests(dev);

4251
	spin_lock(&dev_priv->mm.active_list_lock);
4252
	if (!atomic_read(&dev_priv->mm.wedged)) {
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
		/* Active and flushing should now be empty as we've
		 * waited for a sequence higher than any pending execbuffer
		 */
		WARN_ON(!list_empty(&dev_priv->mm.active_list));
		WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
		/* Request should now be empty as we've also waited
		 * for the last request in the list
		 */
		WARN_ON(!list_empty(&dev_priv->mm.request_list));
	}
4263

4264 4265 4266 4267
	/* Empty the active and flushing lists to inactive.  If there's
	 * anything left at this point, it means that we're wedged and
	 * nothing good's going to happen by leaving them there.  So strip
	 * the GPU domains and just stuff them onto inactive.
4268
	 */
4269
	while (!list_empty(&dev_priv->mm.active_list)) {
C
Chris Wilson 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
		struct drm_gem_object *obj;
		uint32_t old_write_domain;

		obj = list_first_entry(&dev_priv->mm.active_list,
				       struct drm_i915_gem_object,
				       list)->obj;
		old_write_domain = obj->write_domain;
		obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj);

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
4283
	}
4284
	spin_unlock(&dev_priv->mm.active_list_lock);
4285 4286

	while (!list_empty(&dev_priv->mm.flushing_list)) {
C
Chris Wilson 已提交
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
		struct drm_gem_object *obj;
		uint32_t old_write_domain;

		obj = list_first_entry(&dev_priv->mm.flushing_list,
				       struct drm_i915_gem_object,
				       list)->obj;
		old_write_domain = obj->write_domain;
		obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj);

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
4300 4301 4302 4303
	}


	/* Move all inactive buffers out of the GTT. */
4304
	ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
4305
	WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4306 4307
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4308
		return ret;
4309
	}
4310

4311 4312 4313
	i915_gem_cleanup_ringbuffer(dev);
	mutex_unlock(&dev->struct_mutex);

4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	return 0;
}

static int
i915_gem_init_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	/* If we need a physical address for the status page, it's already
	 * initialized at driver load time.
	 */
	if (!I915_NEED_GFX_HWS(dev))
		return 0;

	obj = drm_gem_object_alloc(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;
4337
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4338 4339 4340 4341 4342 4343 4344 4345 4346

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
		return ret;
	}

	dev_priv->status_gfx_addr = obj_priv->gtt_offset;

4347
	dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4348
	if (dev_priv->hw_status_page == NULL) {
4349 4350
		DRM_ERROR("Failed to map status page.\n");
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4351
		i915_gem_object_unpin(obj);
4352 4353 4354 4355 4356 4357
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}
	dev_priv->hws_obj = obj;
	memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
	I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4358
	I915_READ(HWS_PGA); /* posting read */
4359 4360 4361 4362 4363
	DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);

	return 0;
}

4364 4365 4366 4367
static void
i915_gem_cleanup_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4368 4369
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4370 4371 4372 4373

	if (dev_priv->hws_obj == NULL)
		return;

4374 4375 4376
	obj = dev_priv->hws_obj;
	obj_priv = obj->driver_private;

4377
	kunmap(obj_priv->pages[0]);
4378 4379 4380
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->hws_obj = NULL;
4381

4382 4383 4384 4385 4386 4387 4388
	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
	dev_priv->hw_status_page = NULL;

	/* Write high address into HWS_PGA when disabling. */
	I915_WRITE(HWS_PGA, 0x1ffff000);
}

J
Jesse Barnes 已提交
4389
int
4390 4391 4392 4393 4394
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
J
Jesse Barnes 已提交
4395
	drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4396
	int ret;
4397
	u32 head;
4398 4399 4400 4401 4402 4403 4404 4405

	ret = i915_gem_init_hws(dev);
	if (ret != 0)
		return ret;

	obj = drm_gem_object_alloc(dev, 128 * 1024);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
4406
		i915_gem_cleanup_hws(dev);
4407 4408 4409 4410 4411 4412 4413
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
4414
		i915_gem_cleanup_hws(dev);
4415 4416 4417 4418
		return ret;
	}

	/* Set up the kernel mapping for the ring. */
J
Jesse Barnes 已提交
4419
	ring->Size = obj->size;
4420

J
Jesse Barnes 已提交
4421 4422 4423 4424 4425
	ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
	ring->map.size = obj->size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;
4426

J
Jesse Barnes 已提交
4427 4428
	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
4429 4430
		DRM_ERROR("Failed to map ringbuffer.\n");
		memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4431
		i915_gem_object_unpin(obj);
4432
		drm_gem_object_unreference(obj);
4433
		i915_gem_cleanup_hws(dev);
4434 4435
		return -EINVAL;
	}
J
Jesse Barnes 已提交
4436 4437
	ring->ring_obj = obj;
	ring->virtual_start = ring->map.handle;
4438 4439 4440 4441

	/* Stop the ring if it's running. */
	I915_WRITE(PRB0_CTL, 0);
	I915_WRITE(PRB0_TAIL, 0);
4442
	I915_WRITE(PRB0_HEAD, 0);
4443 4444 4445

	/* Initialize the ring. */
	I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
		DRM_ERROR("Ring head not reset to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		I915_WRITE(PRB0_HEAD, 0);

		DRM_ERROR("Ring head forced to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
	}

4466 4467 4468 4469 4470
	I915_WRITE(PRB0_CTL,
		   ((obj->size - 4096) & RING_NR_PAGES) |
		   RING_NO_REPORT |
		   RING_VALID);

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* If the head is still not zero, the ring is dead */
	if (head != 0) {
		DRM_ERROR("Ring initialization failed "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		return -EIO;
	}

4484
	/* Update our cache of the ring state */
J
Jesse Barnes 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_kernel_lost_context(dev);
	else {
		ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
		ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
		ring->space = ring->head - (ring->tail + 8);
		if (ring->space < 0)
			ring->space += ring->Size;
	}
4494 4495 4496 4497

	return 0;
}

J
Jesse Barnes 已提交
4498
void
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (dev_priv->ring.ring_obj == NULL)
		return;

	drm_core_ioremapfree(&dev_priv->ring.map, dev);

	i915_gem_object_unpin(dev_priv->ring.ring_obj);
	drm_gem_object_unreference(dev_priv->ring.ring_obj);
	dev_priv->ring.ring_obj = NULL;
	memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));

4513
	i915_gem_cleanup_hws(dev);
4514 4515 4516 4517 4518 4519 4520 4521 4522
}

int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4523 4524 4525
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4526
	if (atomic_read(&dev_priv->mm.wedged)) {
4527
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4528
		atomic_set(&dev_priv->mm.wedged, 0);
4529 4530 4531
	}

	mutex_lock(&dev->struct_mutex);
4532 4533 4534
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4535 4536
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4537
		return ret;
4538
	}
4539

4540
	spin_lock(&dev_priv->mm.active_list_lock);
4541
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4542 4543
	spin_unlock(&dev_priv->mm.active_list_lock);

4544 4545 4546 4547
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	BUG_ON(!list_empty(&dev_priv->mm.request_list));
	mutex_unlock(&dev->struct_mutex);
4548 4549 4550

	drm_irq_install(dev);

4551 4552 4553 4554 4555 4556 4557 4558 4559
	return 0;
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	int ret;

J
Jesse Barnes 已提交
4560 4561 4562
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4563
	ret = i915_gem_idle(dev);
4564 4565
	drm_irq_uninstall(dev);

4566
	return ret;
4567 4568 4569 4570 4571 4572 4573
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4574 4575 4576
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4577 4578 4579
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4580 4581 4582 4583 4584
}

void
i915_gem_load(struct drm_device *dev)
{
4585
	int i;
4586 4587
	drm_i915_private_t *dev_priv = dev->dev_private;

4588
	spin_lock_init(&dev_priv->mm.active_list_lock);
4589 4590 4591 4592
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
	INIT_LIST_HEAD(&dev_priv->mm.request_list);
4593
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4594 4595 4596 4597
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
	dev_priv->mm.next_gem_seqno = 1;

4598 4599 4600 4601
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4602 4603 4604
	/* Old X drivers will take 0-2 for front, back, depth buffers */
	dev_priv->fence_reg_start = 3;

4605
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4606 4607 4608 4609
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}

4622 4623
	i915_gem_detect_bit_6_swizzle(dev);
}
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
			      int id, int size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4639
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

	phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4658
	kfree(phys_obj);
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4687
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

	obj_priv = obj->driver_private;
	if (!obj_priv->phys_obj)
		return;

4703
	ret = i915_gem_object_get_pages(obj);
4704 4705 4706 4707 4708 4709
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4710
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4711 4712 4713 4714 4715
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4716
	drm_clflush_pages(obj_priv->pages, page_count);
4717
	drm_agp_chipset_flush(dev);
4718 4719

	i915_gem_object_put_pages(obj);
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
			    struct drm_gem_object *obj, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

	obj_priv = obj->driver_private;

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}


	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
						obj->size);
		if (ret) {
4752
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4753 4754 4755 4756 4757 4758 4759 4760
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4761
	ret = i915_gem_object_get_pages(obj);
4762 4763 4764 4765 4766 4767 4768 4769
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4770
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4771 4772 4773 4774 4775 4776
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4777 4778
	i915_gem_object_put_pages(obj);

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4797
	DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4798 4799 4800 4801 4802 4803 4804
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949

/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
    struct inode *inode;

    inode = obj->filp->f_path.dentry->d_inode;

    mutex_lock(&inode->i_mutex);
    truncate_inode_pages(inode->i_mapping, 0);
    mutex_unlock(&inode->i_mutex);
}

static int
i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		i915_gem_retire_requests(dev);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
				struct drm_gem_object *obj = obj_priv->obj;
				i915_gem_object_unbind(obj);
				i915_gem_object_truncate(obj);

				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
				struct drm_gem_object *obj = obj_priv->obj;
				i915_gem_object_unbind(obj);
				if (i915_gem_object_is_purgeable(obj_priv))
					i915_gem_object_truncate(obj);

				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}