sched_fair.c 37.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
80 81 82 83 84
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

P
Peter Zijlstra 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

144
#else	/* CONFIG_FAIR_GROUP_SCHED */
145

146 147 148
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
149 150 151 152
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
153 154
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
155

P
Peter Zijlstra 已提交
156
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157
{
P
Peter Zijlstra 已提交
158
	return &task_rq(p)->cfs;
159 160
}

P
Peter Zijlstra 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

196 197 198 199 200

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

201
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202
{
203 204
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
205 206 207 208 209
		min_vruntime = vruntime;

	return min_vruntime;
}

210
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217 218
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

219
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220
{
221
	return se->vruntime - cfs_rq->min_vruntime;
222 223
}

224 225 226
/*
 * Enqueue an entity into the rb-tree:
 */
227
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 229 230 231
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
232
	s64 key = entity_key(cfs_rq, se);
233 234 235 236 237 238 239 240 241 242 243 244
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
245
		if (key < entity_key(cfs_rq, entry)) {
246 247 248 249 250 251 252 253 254 255 256
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
257
	if (leftmost) {
I
Ingo Molnar 已提交
258
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
266 267 268 269 270

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

271
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
288

289 290 291
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

292 293 294 295 296 297 298 299 300 301 302 303 304
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

305 306
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
307
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308

309 310
	if (!last)
		return NULL;
311 312

	return rb_entry(last, struct sched_entity, run_node);
313 314
}

315 316 317 318
/**************************************************************
 * Scheduling class statistics methods:
 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
335 336 337 338 339 340 341 342 343

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
344 345 346
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
347
	unsigned long nr_latency = sched_nr_latency;
348 349

	if (unlikely(nr_running > nr_latency)) {
350
		period = sysctl_sched_min_granularity;
351 352 353 354 355 356
		period *= nr_running;
	}

	return period;
}

357 358 359 360 361 362
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
363
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
364
{
365 366 367 368 369 370 371 372 373 374 375
	u64 slice = __sched_period(cfs_rq->nr_running);

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		slice *= se->load.weight;
		do_div(slice, cfs_rq->load.weight);
	}


	return slice;
376 377
}

378
/*
379
 * We calculate the vruntime slice of a to be inserted task
380
 *
381
 * vs = s/w = p/rw
382
 */
383
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
384
{
385
	unsigned long nr_running = cfs_rq->nr_running;
386 387
	unsigned long weight;
	u64 vslice;
P
Peter Zijlstra 已提交
388

389 390
	if (!se->on_rq)
		nr_running++;
P
Peter Zijlstra 已提交
391

392
	vslice = __sched_period(nr_running);
393

394
	for_each_sched_entity(se) {
395
		cfs_rq = cfs_rq_of(se);
396

397 398 399
		weight = cfs_rq->load.weight;
		if (!se->on_rq)
			weight += se->load.weight;
400

401 402
		vslice *= NICE_0_LOAD;
		do_div(vslice, weight);
403 404
	}

405
	return vslice;
P
Peter Zijlstra 已提交
406 407
}

408 409 410 411 412
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
413 414
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
415
{
416
	unsigned long delta_exec_weighted;
417

418
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
419 420

	curr->sum_exec_runtime += delta_exec;
421
	schedstat_add(cfs_rq, exec_clock, delta_exec);
422 423 424 425 426
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
I
Ingo Molnar 已提交
427
	curr->vruntime += delta_exec_weighted;
428 429
}

430
static void update_curr(struct cfs_rq *cfs_rq)
431
{
432
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
433
	u64 now = rq_of(cfs_rq)->clock;
434 435 436 437 438 439 440 441 442 443
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
444
	delta_exec = (unsigned long)(now - curr->exec_start);
445

I
Ingo Molnar 已提交
446 447
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
448 449 450 451 452 453

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
454 455 456
}

static inline void
457
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
458
{
459
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
460 461 462 463 464
}

/*
 * Task is being enqueued - update stats:
 */
465
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
466 467 468 469 470
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
471
	if (se != cfs_rq->curr)
472
		update_stats_wait_start(cfs_rq, se);
473 474 475
}

static void
476
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
477
{
478 479
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
480 481 482
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
483
	schedstat_set(se->wait_start, 0);
484 485 486
}

static inline void
487
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 489 490 491 492
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
493
	if (se != cfs_rq->curr)
494
		update_stats_wait_end(cfs_rq, se);
495 496 497 498 499 500
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
501
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
502 503 504 505
{
	/*
	 * We are starting a new run period:
	 */
506
	se->exec_start = rq_of(cfs_rq)->clock;
507 508 509 510 511 512
}

/**************************************************
 * Scheduling class queueing methods:
 */

513 514 515 516 517 518 519 520 521 522 523 524 525
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

526 527 528 529
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
530 531 532 533
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, se->load.weight);
534 535
	cfs_rq->nr_running++;
	se->on_rq = 1;
536
	list_add(&se->group_node, &cfs_rq->tasks);
537 538 539 540 541 542
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
543 544 545 546
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, -se->load.weight);
547 548
	cfs_rq->nr_running--;
	se->on_rq = 0;
549
	list_del_init(&se->group_node);
550 551
}

552
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
553 554 555
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
556
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
557
		struct task_struct *tsk = task_of(se);
558 559 560 561 562 563 564 565 566

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
567 568

		account_scheduler_latency(tsk, delta >> 10, 1);
569 570
	}
	if (se->block_start) {
571
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
572
		struct task_struct *tsk = task_of(se);
573 574 575 576 577 578 579 580 581

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
582 583 584 585 586 587 588

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
589

I
Ingo Molnar 已提交
590 591 592
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
593
		account_scheduler_latency(tsk, delta >> 10, 0);
594 595 596 597
	}
#endif
}

P
Peter Zijlstra 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

611 612 613
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
614
	u64 vruntime;
615

P
Peter Zijlstra 已提交
616 617 618 619 620
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
621

622 623 624 625 626 627
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
628
	if (initial && sched_feat(START_DEBIT))
629
		vruntime += sched_vslice_add(cfs_rq, se);
630

I
Ingo Molnar 已提交
631
	if (!initial) {
632
		/* sleeps upto a single latency don't count. */
633 634
		if (sched_feat(NEW_FAIR_SLEEPERS))
			vruntime -= sysctl_sched_latency;
635

636 637
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
638 639
	}

P
Peter Zijlstra 已提交
640
	se->vruntime = vruntime;
641 642
}

643
static void
644
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
645 646
{
	/*
647
	 * Update run-time statistics of the 'current'.
648
	 */
649
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
650
	account_entity_enqueue(cfs_rq, se);
651

I
Ingo Molnar 已提交
652
	if (wakeup) {
653
		place_entity(cfs_rq, se, 0);
654
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
655
	}
656

657
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
658
	check_spread(cfs_rq, se);
659 660
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
661 662
}

I
Ingo Molnar 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

678
static void
679
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
680
{
681 682 683 684 685
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

686
	update_stats_dequeue(cfs_rq, se);
687
	if (sleep) {
I
Ingo Molnar 已提交
688
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
689
#ifdef CONFIG_SCHEDSTATS
690 691 692 693
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
694
				se->sleep_start = rq_of(cfs_rq)->clock;
695
			if (tsk->state & TASK_UNINTERRUPTIBLE)
696
				se->block_start = rq_of(cfs_rq)->clock;
697
		}
698
#endif
P
Peter Zijlstra 已提交
699 700
	}

701
	if (se != cfs_rq->curr)
702 703
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
704 705 706 707 708
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
709
static void
I
Ingo Molnar 已提交
710
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
711
{
712 713
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
714
	ideal_runtime = sched_slice(cfs_rq, curr);
715
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
716
	if (delta_exec > ideal_runtime)
717 718 719
		resched_task(rq_of(cfs_rq)->curr);
}

720
static void
721
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
722
{
723 724 725 726 727 728 729 730 731 732 733
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

734
	update_stats_curr_start(cfs_rq, se);
735
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
736 737 738 739 740 741
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
742
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
743 744 745 746
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
747
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
748 749
}

750 751 752
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

753 754 755 756 757 758
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!cfs_rq->next)
		return se;

759
	if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
760 761 762 763 764
		return se;

	return cfs_rq->next;
}

765
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
766
{
D
Dmitry Adamushko 已提交
767
	struct sched_entity *se = NULL;
768

D
Dmitry Adamushko 已提交
769 770
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
771
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
772 773
		set_next_entity(cfs_rq, se);
	}
774 775 776 777

	return se;
}

778
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
779 780 781 782 783 784
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
785
		update_curr(cfs_rq);
786

P
Peter Zijlstra 已提交
787
	check_spread(cfs_rq, prev);
788
	if (prev->on_rq) {
789
		update_stats_wait_start(cfs_rq, prev);
790 791 792
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
793
	cfs_rq->curr = NULL;
794 795
}

P
Peter Zijlstra 已提交
796 797
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
798 799
{
	/*
800
	 * Update run-time statistics of the 'current'.
801
	 */
802
	update_curr(cfs_rq);
803

P
Peter Zijlstra 已提交
804 805 806 807 808
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
809 810 811 812
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
813 814 815 816 817 818 819 820
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

821
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
822
		check_preempt_tick(cfs_rq, curr);
823 824 825 826 827 828
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

866 867 868 869 870
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
871
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
872 873
{
	struct cfs_rq *cfs_rq;
874
	struct sched_entity *se = &p->se;
875 876

	for_each_sched_entity(se) {
877
		if (se->on_rq)
878 879
			break;
		cfs_rq = cfs_rq_of(se);
880
		enqueue_entity(cfs_rq, se, wakeup);
881
		wakeup = 1;
882
	}
P
Peter Zijlstra 已提交
883 884

	hrtick_start_fair(rq, rq->curr);
885 886 887 888 889 890 891
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
892
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
893 894
{
	struct cfs_rq *cfs_rq;
895
	struct sched_entity *se = &p->se;
896 897 898

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
899
		dequeue_entity(cfs_rq, se, sleep);
900
		/* Don't dequeue parent if it has other entities besides us */
901
		if (cfs_rq->load.weight)
902
			break;
903
		sleep = 1;
904
	}
P
Peter Zijlstra 已提交
905 906

	hrtick_start_fair(rq, rq->curr);
907 908 909
}

/*
910 911 912
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
913
 */
914
static void yield_task_fair(struct rq *rq)
915
{
916 917 918
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
919 920

	/*
921 922 923 924 925
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

926
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
927
		update_rq_clock(rq);
928
		/*
929
		 * Update run-time statistics of the 'current'.
930
		 */
D
Dmitry Adamushko 已提交
931
		update_curr(cfs_rq);
932 933 934 935 936

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
937
	 */
D
Dmitry Adamushko 已提交
938
	rightmost = __pick_last_entity(cfs_rq);
939 940 941
	/*
	 * Already in the rightmost position?
	 */
942
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
943 944 945 946
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
947 948
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
949
	 */
950
	se->vruntime = rightmost->vruntime + 1;
951 952
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
977
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
978 979 980
		return cpu;

	for_each_domain(cpu, sd) {
981 982 983
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1008

I
Ingo Molnar 已提交
1009 1010
static const struct sched_class fair_sched_class;

1011
static int
I
Ingo Molnar 已提交
1012 1013 1014
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1015 1016
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1017
	struct task_struct *curr = this_rq->curr;
1018 1019 1020 1021 1022 1023 1024
	unsigned long tl = this_load;
	unsigned long tl_per_task;

	if (!(this_sd->flags & SD_WAKE_AFFINE))
		return 0;

	/*
I
Ingo Molnar 已提交
1025 1026 1027
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1028
	 */
I
Ingo Molnar 已提交
1029 1030 1031 1032 1033
	if (sync && curr->sched_class == &fair_sched_class) {
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

1046
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			100*(tl + p->se.load.weight) <= imbalance*load) {
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1061 1062 1063
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1064
	int prev_cpu, this_cpu, new_cpu;
1065
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1066
	struct rq *rq, *this_rq;
1067 1068
	unsigned int imbalance;
	int idx;
1069

1070 1071 1072
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1073
	this_rq		= cpu_rq(this_cpu);
1074
	new_cpu		= prev_cpu;
1075

1076 1077 1078 1079
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1080
	for_each_domain(this_cpu, sd) {
1081
		if (cpu_isset(prev_cpu, sd->span)) {
1082 1083 1084 1085 1086 1087
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1088
		goto out;
1089 1090 1091 1092

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1093
	if (!this_sd)
1094
		goto out;
1095

1096 1097 1098 1099
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1100
	load = source_load(prev_cpu, idx);
1101 1102
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1103 1104 1105 1106 1107
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1108
		goto out;
1109 1110 1111 1112 1113 1114 1115 1116 1117

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1118
			return this_cpu;
1119 1120 1121
		}
	}

1122
out:
1123 1124 1125 1126
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1127 1128 1129 1130 1131
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1132 1133
	 * More easily preempt - nice tasks, while not making
	 * it harder for + nice tasks.
1134
	 */
1135 1136
	if (unlikely(se->load.weight > NICE_0_LOAD))
		gran = calc_delta_fair(gran, &se->load);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1169

D
Dhaval Giani 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

1181 1182 1183
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1184
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1185 1186
{
	struct task_struct *curr = rq->curr;
1187
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1188
	struct sched_entity *se = &curr->se, *pse = &p->se;
D
Dhaval Giani 已提交
1189
	int se_depth, pse_depth;
1190 1191

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1192
		update_rq_clock(rq);
1193
		update_curr(cfs_rq);
1194 1195 1196
		resched_task(curr);
		return;
	}
1197

I
Ingo Molnar 已提交
1198 1199 1200 1201
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1202 1203
	cfs_rq_of(pse)->next = pse;

1204 1205 1206 1207 1208 1209
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1210

1211 1212
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1213

D
Dhaval Giani 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(se);
	pse_depth = depth_se(pse);

	while (se_depth > pse_depth) {
		se_depth--;
		se = parent_entity(se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		pse = parent_entity(pse);
	}

1235 1236 1237
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1238
	}
1239

1240
	if (wakeup_preempt_entity(se, pse) == 1)
1241
		resched_task(curr);
1242 1243
}

1244
static struct task_struct *pick_next_task_fair(struct rq *rq)
1245
{
P
Peter Zijlstra 已提交
1246
	struct task_struct *p;
1247 1248 1249 1250 1251 1252 1253
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1254
		se = pick_next_entity(cfs_rq);
1255 1256 1257
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1258 1259 1260 1261
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1262 1263 1264 1265 1266
}

/*
 * Account for a descheduled task:
 */
1267
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1268 1269 1270 1271 1272 1273
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1274
		put_prev_entity(cfs_rq, se);
1275 1276 1277
	}
}

1278
#ifdef CONFIG_SMP
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1290
static struct task_struct *
1291
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1292
{
D
Dhaval Giani 已提交
1293 1294
	struct task_struct *p = NULL;
	struct sched_entity *se;
1295

1296
	if (next == &cfs_rq->tasks)
1297 1298
		return NULL;

D
Dhaval Giani 已提交
1299 1300
	/* Skip over entities that are not tasks */
	do {
1301 1302 1303
		se = list_entry(next, struct sched_entity, group_node);
		next = next->next;
	} while (next != &cfs_rq->tasks && !entity_is_task(se));
D
Dhaval Giani 已提交
1304

1305 1306 1307 1308
	if (next == &cfs_rq->tasks)
		return NULL;

	cfs_rq->balance_iterator = next;
D
Dhaval Giani 已提交
1309 1310 1311

	if (entity_is_task(se))
		p = task_of(se);
1312 1313 1314 1315 1316 1317 1318 1319

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1320
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1321 1322 1323 1324 1325 1326
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1327
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1328 1329
}

1330 1331 1332 1333 1334
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1335
{
1336
	struct rq_iterator cfs_rq_iterator;
1337

1338 1339 1340
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1341

1342 1343 1344
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1345 1346
}

1347
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1348
static unsigned long
1349
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1350
		  unsigned long max_load_move,
1351 1352
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1353 1354
{
	long rem_load_move = max_load_move;
1355 1356
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1357

1358 1359
	rcu_read_lock();
	list_for_each_entry(tg, &task_groups, list) {
1360
		long imbalance;
1361 1362
		unsigned long this_weight, busiest_weight;
		long rem_load, max_load, moved_load;
1363

1364 1365 1366 1367 1368
		/*
		 * empty group
		 */
		if (!aggregate(tg, sd)->task_weight)
			continue;
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
		rem_load /= aggregate(tg, sd)->load + 1;

		this_weight = tg->cfs_rq[this_cpu]->task_weight;
		busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;

		imbalance = (busiest_weight - this_weight) / 2;

		if (imbalance < 0)
			imbalance = busiest_weight;

		max_load = max(rem_load, imbalance);
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
				max_load, sd, idle, all_pinned, this_best_prio,
				tg->cfs_rq[busiest_cpu]);

		if (!moved_load)
1387 1388
			continue;

1389
		move_group_shares(tg, sd, busiest_cpu, this_cpu);
1390

1391 1392
		moved_load *= aggregate(tg, sd)->load;
		moved_load /= aggregate(tg, sd)->rq_weight + 1;
1393

1394 1395
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1396 1397
			break;
	}
1398
	rcu_read_unlock();
1399

P
Peter Williams 已提交
1400
	return max_load_move - rem_load_move;
1401
}
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1414

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1438
#endif
1439

1440 1441 1442
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1443
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1444 1445 1446 1447 1448 1449
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1450
		entity_tick(cfs_rq, se, queued);
1451 1452 1453
	}
}

1454
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1455

1456 1457 1458 1459 1460 1461 1462
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1463
static void task_new_fair(struct rq *rq, struct task_struct *p)
1464 1465
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1466
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1467
	int this_cpu = smp_processor_id();
1468 1469 1470

	sched_info_queued(p);

1471
	update_curr(cfs_rq);
1472
	place_entity(cfs_rq, se, 1);
1473

1474
	/* 'curr' will be NULL if the child belongs to a different group */
1475
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1476
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1477
		/*
1478 1479 1480
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1481 1482
		swap(curr->vruntime, se->vruntime);
	}
1483

1484
	enqueue_task_fair(rq, p, 0);
1485
	resched_task(rq->curr);
1486 1487
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1547 1548 1549
/*
 * All the scheduling class methods:
 */
1550 1551
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1552 1553 1554
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1555 1556 1557
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1558

I
Ingo Molnar 已提交
1559
	.check_preempt_curr	= check_preempt_wakeup,
1560 1561 1562 1563

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1564
#ifdef CONFIG_SMP
1565
	.load_balance		= load_balance_fair,
1566
	.move_one_task		= move_one_task_fair,
1567
#endif
1568

1569
	.set_curr_task          = set_curr_task_fair,
1570 1571
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1572 1573 1574

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1575 1576 1577 1578

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1579 1580 1581
};

#ifdef CONFIG_SCHED_DEBUG
1582
static void print_cfs_stats(struct seq_file *m, int cpu)
1583 1584 1585
{
	struct cfs_rq *cfs_rq;

1586
	rcu_read_lock();
1587
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1588
		print_cfs_rq(m, cpu, cfs_rq);
1589
	rcu_read_unlock();
1590 1591
}
#endif