process.c 42.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41 42 43 44 45 46

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
47
#include <asm/machdep.h>
48
#include <asm/time.h>
49
#include <asm/runlatch.h>
50
#include <asm/syscalls.h>
51
#include <asm/switch_to.h>
52
#include <asm/tm.h>
53
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57
#include <asm/code-patching.h>
58 59
#include <linux/kprobes.h>
#include <linux/kdebug.h>
60

61 62 63 64 65 66 67
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

68 69
extern unsigned long _get_SP(void);

70
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71
static void check_if_tm_restore_required(struct task_struct *tsk)
72 73 74 75 76 77 78 79 80 81
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
82
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 84 85 86
		set_thread_flag(TIF_RESTORE_TM);
	}
}
#else
87
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 89
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

90 91 92 93 94 95 96 97 98 99 100 101 102
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

void msr_check_and_set(unsigned long bits)
103
{
104 105
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
106

107
	newmsr = oldmsr | bits;
108 109

#ifdef CONFIG_VSX
110
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111 112
		newmsr |= MSR_VSX;
#endif
113

114 115
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
116
}
117

118
void __msr_check_and_clear(unsigned long bits)
119 120 121 122 123 124 125 126 127 128 129 130 131 132
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
133
EXPORT_SYMBOL(__msr_check_and_clear);
134 135 136 137 138 139 140

#ifdef CONFIG_PPC_FPU
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
141
	__giveup_fpu(tsk);
142
	msr_check_and_clear(MSR_FP);
143 144 145
}
EXPORT_SYMBOL(giveup_fpu);

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
166
			 * the FP register state on context switch,
167 168 169 170
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
171
			giveup_fpu(tsk);
172 173 174 175
		}
		preempt_enable();
	}
}
176
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
177
#endif /* CONFIG_PPC_FPU */
178 179 180 181 182

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

183
	msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
184

185 186
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		__giveup_fpu(current);
187 188 189 190
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
191 192 193 194
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

195
	msr_check_and_set(MSR_VEC);
196
	__giveup_altivec(tsk);
197
	msr_check_and_clear(MSR_VEC);
198 199 200
}
EXPORT_SYMBOL(giveup_altivec);

201 202 203 204
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

205
	msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
206

207 208
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		__giveup_altivec(current);
209 210 211 212 213 214 215 216 217 218 219 220 221
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
222
			giveup_altivec(tsk);
223 224 225 226
		}
		preempt_enable();
	}
}
227
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
228 229
#endif /* CONFIG_ALTIVEC */

230
#ifdef CONFIG_VSX
231 232 233 234
void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

235
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
236 237 238 239 240
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
	__giveup_vsx(tsk);
241
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
242 243 244
}
EXPORT_SYMBOL(giveup_vsx);

245 246 247 248
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

249
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
250

251 252 253 254 255 256
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
257
	}
258 259 260 261 262 263 264 265 266 267 268 269 270 271
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
272
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
273 274
#endif /* CONFIG_VSX */

275
#ifdef CONFIG_SPE
276 277 278 279
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

280
	msr_check_and_set(MSR_SPE);
281
	__giveup_spe(tsk);
282
	msr_check_and_clear(MSR_SPE);
283 284
}
EXPORT_SYMBOL(giveup_spe);
285 286 287 288 289

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

290
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
291

292 293
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		__giveup_spe(current);
294 295 296 297 298 299 300 301 302
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
303
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
304
			giveup_spe(tsk);
305 306 307 308 309 310
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

311 312 313 314 315 316
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

317
	current->thread.trap_nr = signal_code;
318 319 320 321 322 323 324 325 326 327 328 329
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
330
void do_break (struct pt_regs *regs, unsigned long address,
331 332 333 334
		    unsigned long error_code)
{
	siginfo_t info;

335
	current->thread.trap_nr = TRAP_HWBKPT;
336 337 338 339
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

340
	if (debugger_break_match(regs))
341 342
		return;

343 344
	/* Clear the breakpoint */
	hw_breakpoint_disable();
345 346 347 348 349 350 351 352

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
353
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
354

355
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
356

357 358 359 360 361 362
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
363
	thread->debug.iac1 = thread->debug.iac2 = 0;
364
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
365
	thread->debug.iac3 = thread->debug.iac4 = 0;
366
#endif
367
	thread->debug.dac1 = thread->debug.dac2 = 0;
368
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
369
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
370
#endif
371
	thread->debug.dbcr0 = 0;
372 373 374 375
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
376
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
377 378 379 380 381
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
382
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
383
#else
384
	thread->debug.dbcr1 = 0;
385 386 387
#endif
}

388
static void prime_debug_regs(struct debug_reg *debug)
389
{
390 391 392 393 394 395 396
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

397 398
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
399
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
400 401
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
402
#endif
403 404
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
405
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
406 407
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
408
#endif
409 410
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
411
#ifdef CONFIG_BOOKE
412
	mtspr(SPRN_DBCR2, debug->dbcr2);
413 414 415 416 417 418 419
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
420
void switch_booke_debug_regs(struct debug_reg *new_debug)
421
{
422
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
423 424
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
425
}
426
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
427
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
428
#ifndef CONFIG_HAVE_HW_BREAKPOINT
429 430
static void set_debug_reg_defaults(struct thread_struct *thread)
{
431 432
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
433
	set_breakpoint(&thread->hw_brk);
434
}
435
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
436 437
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

438
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
439 440
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
441
	mtspr(SPRN_DAC1, dabr);
442 443 444
#ifdef CONFIG_PPC_47x
	isync();
#endif
445 446
	return 0;
}
447
#elif defined(CONFIG_PPC_BOOK3S)
448 449
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
450
	mtspr(SPRN_DABR, dabr);
451 452
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
453
	return 0;
454
}
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

475 476
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
477
	unsigned long dawr, dawrx, mrd;
478 479 480 481 482 483 484 485 486

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
487 488 489 490 491 492 493 494
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
495 496 497 498 499 500 501 502

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

503
void __set_breakpoint(struct arch_hw_breakpoint *brk)
504
{
505
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
506

507
	if (cpu_has_feature(CPU_FTR_DAWR))
508 509 510
		set_dawr(brk);
	else
		set_dabr(brk);
511
}
512

513 514 515 516 517 518 519
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

520 521 522
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
523

524 525 526 527 528 529 530 531 532 533 534
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
535

536
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
537 538 539 540 541 542 543 544 545 546 547 548
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
549
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
599
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
600
	 * ckpt_regs.msr is already set.
601
	 */
602
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
603
		thr->ckpt_regs.msr = thr->regs->msr;
604 605 606 607 608 609 610

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

611
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
612 613 614 615 616 617 618 619 620 621 622 623 624

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

650
static inline void tm_recheckpoint_new_task(struct task_struct *new)
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

668 669
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
670
		return;
671
	}
672
	msr = new->thread.ckpt_regs.msr;
673 674 675 676 677 678 679 680 681 682 683 684 685 686
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
687
#ifdef CONFIG_ALTIVEC
688 689 690 691
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
692
#endif
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

732
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
733 734 735 736 737 738 739 740 741 742 743 744 745
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
	if (msr_diff & MSR_FP) {
		fp_enable();
		load_fp_state(&current->thread.fp_state);
		regs->msr |= current->thread.fpexc_mode;
	}
	if (msr_diff & MSR_VEC) {
		vec_enable();
		load_vr_state(&current->thread.vr_state);
	}
	regs->msr |= msr_diff;
}

746 747 748 749
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
		u64 fscr = old_thread->fscr & ~FSCR_DSCR;

		if (new_thread->dscr_inherit) {
			dscr = new_thread->dscr;
			fscr |= FSCR_DSCR;
		}

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);

		if (old_thread->fscr != fscr)
			mtspr(SPRN_FSCR, fscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

818 819 820 821 822
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
823 824 825
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
826

827 828 829
	new_thread = &new->thread;
	old_thread = &current->thread;

830 831
	WARN_ON(!irqs_disabled());

832 833 834
	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
835
	 */
836
	save_sprs(&prev->thread);
837

838 839
	__switch_to_tm(prev);

840 841 842 843 844 845
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
846 847
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
848 849
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
850
#endif /* CONFIG_VSX */
851 852 853
#ifdef CONFIG_SPE
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
854 855
#endif /* CONFIG_SPE */

856
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
857
	switch_booke_debug_regs(&new->thread.debug);
858
#else
859 860 861 862 863
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
864
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
865
		__set_breakpoint(&new->thread.hw_brk);
866
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
867 868
#endif

869 870 871 872 873
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
874
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
875 876 877 878 879 880
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
881 882 883
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
884
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
885 886 887 888 889 890 891
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
892

893 894 895 896 897 898
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
899 900 901

	tm_recheckpoint_new_task(new);

902 903
	last = _switch(old_thread, new_thread);

904 905 906 907
	/* Need to recalculate these after calling _switch() */
	old_thread = &last->thread;
	new_thread = &current->thread;

P
Peter Zijlstra 已提交
908 909 910
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
911
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
912 913 914 915
		batch->active = 1;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

916 917
	restore_sprs(old_thread, new_thread);

918 919 920
	return last;
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

937 938 939 940 941 942 943 944
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

945
		if (!__kernel_text_address(pc) ||
946
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
947
			printk(KERN_CONT "XXXXXXXX ");
948 949
		} else {
			if (regs->nip == pc)
950
				printk(KERN_CONT "<%08x> ", instr);
951
			else
952
				printk(KERN_CONT "%08x ", instr);
953 954 955 956 957 958 959 960 961 962 963 964
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
965 966 967 968 969 970 971 972 973
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
974 975 976 977
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
978
#ifdef CONFIG_BOOKE
979
	{MSR_DE,	"DE"},
980 981 982 983
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
984 985
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
986 987 988 989 990
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
1008
#define REG		"%016lx"
1009 1010 1011
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1012
#define REG		"%08lx"
1013 1014 1015 1016
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1017 1018 1019 1020
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1021 1022
	show_regs_print_info(KERN_DEFAULT);

1023 1024 1025
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1026
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1027 1028
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
1029
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1030
	trap = TRAP(regs);
1031
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1032
		printk("CFAR: "REG" ", regs->orig_gpr3);
1033
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1034
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1035
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1036
#else
1037 1038 1039 1040 1041 1042
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1043 1044
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1045
#endif
1046 1047

	for (i = 0;  i < 32;  i++) {
1048
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1049
			printk("\nGPR%02d: ", i);
1050 1051
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1052 1053 1054 1055 1056 1057 1058 1059
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1060 1061
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1062
#endif
1063
	show_stack(current, (unsigned long *) regs->gpr[1]);
1064 1065
	if (!user_mode(regs))
		show_instructions(regs);
1066 1067 1068 1069 1070 1071 1072 1073
}

void exit_thread(void)
{
}

void flush_thread(void)
{
1074
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1075
	flush_ptrace_hw_breakpoint(current);
1076
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1077
	set_debug_reg_defaults(&current->thread);
1078
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1079 1080 1081 1082 1083 1084 1085 1086
}

void
release_thread(struct task_struct *t)
{
}

/*
1087 1088
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1089
 */
1090
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1091
{
1092 1093 1094 1095
	flush_fp_to_thread(src);
	flush_altivec_to_thread(src);
	flush_vsx_to_thread(src);
	flush_spe_to_thread(src);
1096 1097 1098 1099 1100 1101 1102 1103 1104
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1105

1106
	*dst = *src;
1107 1108 1109

	clear_task_ebb(dst);

1110
	return 0;
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1130 1131 1132
/*
 * Copy a thread..
 */
1133

1134 1135 1136
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1137
int copy_thread(unsigned long clone_flags, unsigned long usp,
1138
		unsigned long kthread_arg, struct task_struct *p)
1139 1140 1141
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1142 1143
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1144
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1145 1146 1147 1148

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1149
	if (unlikely(p->flags & PF_KTHREAD)) {
1150
		/* kernel thread */
1151
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
1152
		memset(childregs, 0, sizeof(struct pt_regs));
1153
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1154 1155 1156
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1157
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1158
		clear_tsk_thread_flag(p, TIF_32BIT);
1159
		childregs->softe = 1;
1160
#endif
1161
		childregs->gpr[15] = kthread_arg;
1162
		p->thread.regs = NULL;	/* no user register state */
1163
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1164
		f = ret_from_kernel_thread;
1165
	} else {
1166
		/* user thread */
1167
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1168 1169
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1170 1171
		if (usp)
			childregs->gpr[1] = usp;
1172
		p->thread.regs = childregs;
A
Al Viro 已提交
1173
		childregs->gpr[3] = 0;  /* Result from fork() */
1174 1175
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1176
			if (!is_32bit_task())
1177 1178 1179 1180 1181
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1182 1183

		f = ret_from_fork;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	}
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1195
	((unsigned long *)sp)[0] = 0;
1196 1197 1198 1199
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1200
#ifdef CONFIG_PPC32
1201 1202
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1203
#endif
1204 1205 1206 1207
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1208 1209 1210 1211 1212
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1213 1214
	setup_ksp_vsid(p, sp);

1215 1216
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1217 1218
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = current->thread.dscr;
1219
	}
1220 1221
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1222
#endif
1223
	kregs->nip = ppc_function_entry(f);
1224 1225 1226 1227 1228 1229
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1230
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1231
{
1232 1233 1234 1235
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1236 1237 1238 1239 1240
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1241 1242
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1243 1244
	}

1245 1246 1247 1248 1249 1250
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1251

1252 1253 1254 1255 1256 1257 1258
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1259 1260 1261
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1262
	regs->msr = MSR_USER;
1263
#else
1264
	if (!is_32bit_task()) {
1265
		unsigned long entry;
1266

1267 1268 1269
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1302 1303 1304
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1305 1306 1307 1308
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1309 1310
	}
#endif
1311 1312 1313
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1314
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1315
	current->thread.fp_save_area = NULL;
1316
#ifdef CONFIG_ALTIVEC
1317 1318
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1319
	current->thread.vr_save_area = NULL;
1320 1321 1322 1323 1324 1325 1326 1327 1328
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1329 1330 1331 1332 1333 1334 1335
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1336
}
1337
EXPORT_SYMBOL(start_thread);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1352
		if (cpu_has_feature(CPU_FTR_SPE)) {
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1366 1367 1368 1369 1370 1371
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1372 1373 1374 1375
#else
		return -EINVAL;
#endif
	}
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1388 1389 1390 1391 1392 1393 1394 1395 1396
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1411
			val = tsk->thread.fpexc_mode;
1412
		} else
1413
			return -EINVAL;
1414 1415 1416 1417 1418 1419 1420 1421
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1501
int validate_sp(unsigned long sp, struct task_struct *p,
1502 1503
		       unsigned long nbytes)
{
A
Al Viro 已提交
1504
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1505 1506 1507 1508 1509

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1510
	return valid_irq_stack(sp, p, nbytes);
1511 1512
}

1513 1514
EXPORT_SYMBOL(validate_sp);

1515 1516 1517 1518 1519 1520 1521 1522 1523
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1524
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1525 1526 1527 1528
		return 0;

	do {
		sp = *(unsigned long *)sp;
1529
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1530 1531
			return 0;
		if (count > 0) {
1532
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1533 1534 1535 1536 1537 1538
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1539

1540
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1541 1542 1543 1544 1545 1546

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1547 1548 1549
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1550
	unsigned long rth = (unsigned long)return_to_handler;
1551
#endif
1552 1553 1554 1555 1556 1557

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1558
			sp = current_stack_pointer();
1559 1560 1561 1562 1563 1564 1565
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1566
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1567 1568 1569 1570
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1571
		ip = stack[STACK_FRAME_LR_SAVE];
1572
		if (!firstframe || ip != lr) {
1573
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1574
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1575
			if ((ip == rth) && curr_frame >= 0) {
1576 1577 1578 1579 1580
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1591 1592
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1593 1594 1595
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1596
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1597
			       regs->trap, (void *)regs->nip, (void *)lr);
1598 1599 1600 1601 1602 1603 1604
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1605
#ifdef CONFIG_PPC64
1606
/* Called with hard IRQs off */
1607
void notrace __ppc64_runlatch_on(void)
1608
{
1609
	struct thread_info *ti = current_thread_info();
1610 1611
	unsigned long ctrl;

1612 1613 1614
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1615

1616
	ti->local_flags |= _TLF_RUNLATCH;
1617 1618
}

1619
/* Called with hard IRQs off */
1620
void notrace __ppc64_runlatch_off(void)
1621
{
1622
	struct thread_info *ti = current_thread_info();
1623 1624
	unsigned long ctrl;

1625
	ti->local_flags &= ~_TLF_RUNLATCH;
1626

1627 1628 1629
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1630
}
1631
#endif /* CONFIG_PPC64 */
1632

1633 1634 1635 1636 1637 1638
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1655 1656 1657
	unsigned long base = mm->brk;
	unsigned long ret;

1658
#ifdef CONFIG_PPC_STD_MMU_64
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1671 1672 1673 1674 1675 1676

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1677