process.c 41.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41 42 43 44 45 46

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
47
#include <asm/machdep.h>
48
#include <asm/time.h>
49
#include <asm/runlatch.h>
50
#include <asm/syscalls.h>
51
#include <asm/switch_to.h>
52
#include <asm/tm.h>
53
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57
#include <asm/code-patching.h>
58 59
#include <linux/kprobes.h>
#include <linux/kdebug.h>
60

61 62 63 64 65 66 67
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

68 69
extern unsigned long _get_SP(void);

70 71 72 73 74 75 76 77 78 79 80 81
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
void giveup_fpu_maybe_transactional(struct task_struct *tsk)
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
82
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
		set_thread_flag(TIF_RESTORE_TM);
	}

	giveup_fpu(tsk);
}

void giveup_altivec_maybe_transactional(struct task_struct *tsk)
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
100
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101 102 103 104 105 106 107 108 109 110 111
		set_thread_flag(TIF_RESTORE_TM);
	}

	giveup_altivec(tsk);
}

#else
#define giveup_fpu_maybe_transactional(tsk)	giveup_fpu(tsk)
#define giveup_altivec_maybe_transactional(tsk)	giveup_altivec(tsk)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

112
#ifdef CONFIG_PPC_FPU
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
133
			 * the FP register state on context switch,
134 135 136 137
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
138
			giveup_fpu_maybe_transactional(tsk);
139 140 141 142
		}
		preempt_enable();
	}
}
143
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
144
#endif /* CONFIG_PPC_FPU */
145 146 147 148 149 150

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
151
		giveup_fpu_maybe_transactional(current);
152 153 154 155 156 157 158 159 160 161 162
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
163
		giveup_altivec_maybe_transactional(current);
164
	else
165
		giveup_altivec_notask();
166 167 168 169 170 171 172 173 174 175 176 177 178
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
179
			giveup_altivec_maybe_transactional(tsk);
180 181 182 183
		}
		preempt_enable();
	}
}
184
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
185 186
#endif /* CONFIG_ALTIVEC */

187 188 189 190 191 192 193 194 195 196 197 198
#ifdef CONFIG_VSX
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
}
EXPORT_SYMBOL(enable_kernel_vsx);

199 200
void giveup_vsx(struct task_struct *tsk)
{
201 202
	giveup_fpu_maybe_transactional(tsk);
	giveup_altivec_maybe_transactional(tsk);
203 204
	__giveup_vsx(tsk);
}
205
EXPORT_SYMBOL(giveup_vsx);
206

207 208 209 210 211 212 213 214 215 216 217
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
218
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
219 220
#endif /* CONFIG_VSX */

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
240
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
241
			giveup_spe(tsk);
242 243 244 245 246 247
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

248 249 250 251 252 253
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

254
	current->thread.trap_nr = signal_code;
255 256 257 258 259 260 261 262 263 264 265 266
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
267
void do_break (struct pt_regs *regs, unsigned long address,
268 269 270 271
		    unsigned long error_code)
{
	siginfo_t info;

272
	current->thread.trap_nr = TRAP_HWBKPT;
273 274 275 276
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

277
	if (debugger_break_match(regs))
278 279
		return;

280 281
	/* Clear the breakpoint */
	hw_breakpoint_disable();
282 283 284 285 286 287 288 289

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
290
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
291

292
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
293

294 295 296 297 298 299
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
300
	thread->debug.iac1 = thread->debug.iac2 = 0;
301
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
302
	thread->debug.iac3 = thread->debug.iac4 = 0;
303
#endif
304
	thread->debug.dac1 = thread->debug.dac2 = 0;
305
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
306
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
307
#endif
308
	thread->debug.dbcr0 = 0;
309 310 311 312
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
313
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
314 315 316 317 318
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
319
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
320
#else
321
	thread->debug.dbcr1 = 0;
322 323 324
#endif
}

325
static void prime_debug_regs(struct debug_reg *debug)
326
{
327 328 329 330 331 332 333
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

334 335
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
336
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
337 338
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
339
#endif
340 341
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
342
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
343 344
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
345
#endif
346 347
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
348
#ifdef CONFIG_BOOKE
349
	mtspr(SPRN_DBCR2, debug->dbcr2);
350 351 352 353 354 355 356
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
357
void switch_booke_debug_regs(struct debug_reg *new_debug)
358
{
359
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
360 361
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
362
}
363
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
364
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
365
#ifndef CONFIG_HAVE_HW_BREAKPOINT
366 367
static void set_debug_reg_defaults(struct thread_struct *thread)
{
368 369
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
370
	set_breakpoint(&thread->hw_brk);
371
}
372
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
373 374
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

375
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
376 377
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
378
	mtspr(SPRN_DAC1, dabr);
379 380 381
#ifdef CONFIG_PPC_47x
	isync();
#endif
382 383
	return 0;
}
384
#elif defined(CONFIG_PPC_BOOK3S)
385 386
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
387
	mtspr(SPRN_DABR, dabr);
388 389
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
390
	return 0;
391
}
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

412 413
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
414
	unsigned long dawr, dawrx, mrd;
415 416 417 418 419 420 421 422 423

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
424 425 426 427 428 429 430 431
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
432 433 434 435 436 437 438 439

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

440
void __set_breakpoint(struct arch_hw_breakpoint *brk)
441
{
442
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
443

444
	if (cpu_has_feature(CPU_FTR_DAWR))
445 446 447
		set_dawr(brk);
	else
		set_dabr(brk);
448
}
449

450 451 452 453 454 455 456
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

457 458 459
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
460

461 462 463 464 465 466 467 468 469 470 471
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
472

473
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
474 475 476 477 478 479 480 481 482 483 484 485
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
486
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
536
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
537
	 * ckpt_regs.msr is already set.
538
	 */
539
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
540
		thr->ckpt_regs.msr = thr->regs->msr;
541 542 543 544 545 546 547

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

548
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
549 550 551 552 553 554 555 556 557 558 559 560 561

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

587
static inline void tm_recheckpoint_new_task(struct task_struct *new)
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

605 606
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
607
		return;
608
	}
609
	msr = new->thread.ckpt_regs.msr;
610 611 612 613 614 615 616 617 618 619 620 621 622 623
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
624
#ifdef CONFIG_ALTIVEC
625 626 627 628
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
629
#endif
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

669
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
670 671 672 673 674 675 676 677 678 679 680 681 682
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
	if (msr_diff & MSR_FP) {
		fp_enable();
		load_fp_state(&current->thread.fp_state);
		regs->msr |= current->thread.fpexc_mode;
	}
	if (msr_diff & MSR_VEC) {
		vec_enable();
		load_vr_state(&current->thread.vr_state);
	}
	regs->msr |= msr_diff;
}

683 684 685 686
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
687

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
		u64 fscr = old_thread->fscr & ~FSCR_DSCR;

		if (new_thread->dscr_inherit) {
			dscr = new_thread->dscr;
			fscr |= FSCR_DSCR;
		}

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);

		if (old_thread->fscr != fscr)
			mtspr(SPRN_FSCR, fscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

755 756 757 758 759
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
760 761 762
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
763

764 765 766
	new_thread = &new->thread;
	old_thread = &current->thread;

767 768
	WARN_ON(!irqs_disabled());

769 770 771
	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
772
	 */
773
	save_sprs(&prev->thread);
774

775 776
	__switch_to_tm(prev);

777 778 779 780 781 782
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
783 784
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
785 786
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
787
#endif /* CONFIG_VSX */
788 789 790
#ifdef CONFIG_SPE
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
791 792
#endif /* CONFIG_SPE */

793
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
794
	switch_booke_debug_regs(&new->thread.debug);
795
#else
796 797 798 799 800
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
801
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
802
		__set_breakpoint(&new->thread.hw_brk);
803
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
804 805
#endif

806 807 808 809 810
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
811
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
812 813 814 815 816 817
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
818 819 820
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
821
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
822 823 824 825 826 827 828
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
829

830 831 832 833 834 835
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
836 837 838

	tm_recheckpoint_new_task(new);

839 840
	last = _switch(old_thread, new_thread);

841 842 843 844
	/* Need to recalculate these after calling _switch() */
	old_thread = &last->thread;
	new_thread = &current->thread;

P
Peter Zijlstra 已提交
845 846 847
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
848
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
849 850 851 852
		batch->active = 1;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

853 854
	restore_sprs(old_thread, new_thread);

855 856 857
	return last;
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

874 875 876 877 878 879 880 881
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

882
		if (!__kernel_text_address(pc) ||
883
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
884
			printk(KERN_CONT "XXXXXXXX ");
885 886
		} else {
			if (regs->nip == pc)
887
				printk(KERN_CONT "<%08x> ", instr);
888
			else
889
				printk(KERN_CONT "%08x ", instr);
890 891 892 893 894 895 896 897 898 899 900 901
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
902 903 904 905 906 907 908 909 910
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
911 912 913 914
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
915
#ifdef CONFIG_BOOKE
916
	{MSR_DE,	"DE"},
917 918 919 920
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
921 922
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
923 924 925 926 927
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
945
#define REG		"%016lx"
946 947 948
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
949
#define REG		"%08lx"
950 951 952 953
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

954 955 956 957
void show_regs(struct pt_regs * regs)
{
	int i, trap;

958 959
	show_regs_print_info(KERN_DEFAULT);

960 961 962
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
963
	       regs, regs->trap, print_tainted(), init_utsname()->release);
964 965
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
966
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
967
	trap = TRAP(regs);
968
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
969
		printk("CFAR: "REG" ", regs->orig_gpr3);
970
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
971
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
972
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
973
#else
974 975 976 977 978 979
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
980 981
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
982
#endif
983 984

	for (i = 0;  i < 32;  i++) {
985
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
986
			printk("\nGPR%02d: ", i);
987 988
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
989 990 991 992 993 994 995 996
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
997 998
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
999
#endif
1000
	show_stack(current, (unsigned long *) regs->gpr[1]);
1001 1002
	if (!user_mode(regs))
		show_instructions(regs);
1003 1004 1005 1006 1007 1008 1009 1010
}

void exit_thread(void)
{
}

void flush_thread(void)
{
1011
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1012
	flush_ptrace_hw_breakpoint(current);
1013
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1014
	set_debug_reg_defaults(&current->thread);
1015
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1016 1017 1018 1019 1020 1021 1022 1023
}

void
release_thread(struct task_struct *t)
{
}

/*
1024 1025
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1026
 */
1027
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1028
{
1029 1030 1031 1032
	flush_fp_to_thread(src);
	flush_altivec_to_thread(src);
	flush_vsx_to_thread(src);
	flush_spe_to_thread(src);
1033 1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1042

1043
	*dst = *src;
1044 1045 1046

	clear_task_ebb(dst);

1047
	return 0;
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1067 1068 1069
/*
 * Copy a thread..
 */
1070

1071 1072 1073
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1074
int copy_thread(unsigned long clone_flags, unsigned long usp,
1075
		unsigned long kthread_arg, struct task_struct *p)
1076 1077 1078
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1079 1080
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1081
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1082 1083 1084 1085

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1086
	if (unlikely(p->flags & PF_KTHREAD)) {
1087
		/* kernel thread */
1088
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
1089
		memset(childregs, 0, sizeof(struct pt_regs));
1090
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1091 1092 1093
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1094
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1095
		clear_tsk_thread_flag(p, TIF_32BIT);
1096
		childregs->softe = 1;
1097
#endif
1098
		childregs->gpr[15] = kthread_arg;
1099
		p->thread.regs = NULL;	/* no user register state */
1100
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1101
		f = ret_from_kernel_thread;
1102
	} else {
1103
		/* user thread */
1104
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1105 1106
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1107 1108
		if (usp)
			childregs->gpr[1] = usp;
1109
		p->thread.regs = childregs;
A
Al Viro 已提交
1110
		childregs->gpr[3] = 0;  /* Result from fork() */
1111 1112
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1113
			if (!is_32bit_task())
1114 1115 1116 1117 1118
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1119 1120

		f = ret_from_fork;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	}
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1132
	((unsigned long *)sp)[0] = 0;
1133 1134 1135 1136
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1137
#ifdef CONFIG_PPC32
1138 1139
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1140
#endif
1141 1142 1143 1144
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1145 1146 1147 1148 1149
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1150 1151
	setup_ksp_vsid(p, sp);

1152 1153
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1154 1155
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = current->thread.dscr;
1156
	}
1157 1158
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1159
#endif
1160
	kregs->nip = ppc_function_entry(f);
1161 1162 1163 1164 1165 1166
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1167
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1168
{
1169 1170 1171 1172
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1173 1174 1175 1176 1177
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1178 1179
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1180 1181
	}

1182 1183 1184 1185 1186 1187
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1188

1189 1190 1191 1192 1193 1194 1195
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1196 1197 1198
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1199
	regs->msr = MSR_USER;
1200
#else
1201
	if (!is_32bit_task()) {
1202
		unsigned long entry;
1203

1204 1205 1206
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1239 1240 1241
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1242 1243 1244 1245
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1246 1247
	}
#endif
1248 1249 1250
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1251
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1252
	current->thread.fp_save_area = NULL;
1253
#ifdef CONFIG_ALTIVEC
1254 1255
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1256
	current->thread.vr_save_area = NULL;
1257 1258 1259 1260 1261 1262 1263 1264 1265
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1266 1267 1268 1269 1270 1271 1272
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1273
}
1274
EXPORT_SYMBOL(start_thread);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1289
		if (cpu_has_feature(CPU_FTR_SPE)) {
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1303 1304 1305 1306 1307 1308
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1309 1310 1311 1312
#else
		return -EINVAL;
#endif
	}
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1325 1326 1327 1328 1329 1330 1331 1332 1333
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1348
			val = tsk->thread.fpexc_mode;
1349
		} else
1350
			return -EINVAL;
1351 1352 1353 1354 1355 1356 1357 1358
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1438
int validate_sp(unsigned long sp, struct task_struct *p,
1439 1440
		       unsigned long nbytes)
{
A
Al Viro 已提交
1441
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1442 1443 1444 1445 1446

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1447
	return valid_irq_stack(sp, p, nbytes);
1448 1449
}

1450 1451
EXPORT_SYMBOL(validate_sp);

1452 1453 1454 1455 1456 1457 1458 1459 1460
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1461
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1462 1463 1464 1465
		return 0;

	do {
		sp = *(unsigned long *)sp;
1466
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1467 1468
			return 0;
		if (count > 0) {
1469
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1470 1471 1472 1473 1474 1475
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1476

1477
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1478 1479 1480 1481 1482 1483

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1484 1485 1486
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1487
	unsigned long rth = (unsigned long)return_to_handler;
1488
#endif
1489 1490 1491 1492 1493 1494

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1495
			sp = current_stack_pointer();
1496 1497 1498 1499 1500 1501 1502
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1503
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1504 1505 1506 1507
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1508
		ip = stack[STACK_FRAME_LR_SAVE];
1509
		if (!firstframe || ip != lr) {
1510
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1511
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1512
			if ((ip == rth) && curr_frame >= 0) {
1513 1514 1515 1516 1517
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1528 1529
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1530 1531 1532
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1533
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1534
			       regs->trap, (void *)regs->nip, (void *)lr);
1535 1536 1537 1538 1539 1540 1541
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1542
#ifdef CONFIG_PPC64
1543
/* Called with hard IRQs off */
1544
void notrace __ppc64_runlatch_on(void)
1545
{
1546
	struct thread_info *ti = current_thread_info();
1547 1548
	unsigned long ctrl;

1549 1550 1551
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1552

1553
	ti->local_flags |= _TLF_RUNLATCH;
1554 1555
}

1556
/* Called with hard IRQs off */
1557
void notrace __ppc64_runlatch_off(void)
1558
{
1559
	struct thread_info *ti = current_thread_info();
1560 1561
	unsigned long ctrl;

1562
	ti->local_flags &= ~_TLF_RUNLATCH;
1563

1564 1565 1566
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1567
}
1568
#endif /* CONFIG_PPC64 */
1569

1570 1571 1572 1573 1574 1575
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1592 1593 1594
	unsigned long base = mm->brk;
	unsigned long ret;

1595
#ifdef CONFIG_PPC_STD_MMU_64
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1608 1609 1610 1611 1612 1613

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1614