process.c 42.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41 42 43 44 45 46

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
47
#include <asm/machdep.h>
48
#include <asm/time.h>
49
#include <asm/runlatch.h>
50
#include <asm/syscalls.h>
51
#include <asm/switch_to.h>
52
#include <asm/tm.h>
53
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57
#include <asm/code-patching.h>
58 59
#include <linux/kprobes.h>
#include <linux/kdebug.h>
60

61 62 63 64 65 66 67
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

68 69 70 71 72
extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
73
struct task_struct *last_task_used_vsx = NULL;
74 75 76
struct task_struct *last_task_used_spe = NULL;
#endif

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
void giveup_fpu_maybe_transactional(struct task_struct *tsk)
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
		set_thread_flag(TIF_RESTORE_TM);
	}

	giveup_fpu(tsk);
}

void giveup_altivec_maybe_transactional(struct task_struct *tsk)
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
		set_thread_flag(TIF_RESTORE_TM);
	}

	giveup_altivec(tsk);
}

#else
#define giveup_fpu_maybe_transactional(tsk)	giveup_fpu(tsk)
#define giveup_altivec_maybe_transactional(tsk)	giveup_altivec(tsk)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

119
#ifdef CONFIG_PPC_FPU
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
147
			giveup_fpu_maybe_transactional(tsk);
148 149 150 151
		}
		preempt_enable();
	}
}
152
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153
#endif /* CONFIG_PPC_FPU */
154 155 156 157 158 159 160

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161
		giveup_fpu_maybe_transactional(current);
162 163 164
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
165
	giveup_fpu_maybe_transactional(last_task_used_math);
166 167 168 169 170 171 172 173 174 175 176
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177
		giveup_altivec_maybe_transactional(current);
178
	else
179
		giveup_altivec_notask();
180
#else
181
	giveup_altivec_maybe_transactional(last_task_used_altivec);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
198
			giveup_altivec_maybe_transactional(tsk);
199 200 201 202
		}
		preempt_enable();
	}
}
203
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 205
#endif /* CONFIG_ALTIVEC */

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

225 226
void giveup_vsx(struct task_struct *tsk)
{
227 228
	giveup_fpu_maybe_transactional(tsk);
	giveup_altivec_maybe_transactional(tsk);
229 230
	__giveup_vsx(tsk);
}
231
EXPORT_SYMBOL(giveup_vsx);
232

233 234 235 236 237 238 239 240 241 242 243 244 245
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
246
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
247 248
#endif /* CONFIG_VSX */

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
274
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
275
			giveup_spe(tsk);
276 277 278 279 280 281
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

282
#ifndef CONFIG_SMP
283 284 285 286
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
287
void discard_lazy_cpu_state(void)
288 289 290 291 292 293 294 295
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
296 297 298 299
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
300 301 302 303 304 305
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
306
#endif /* CONFIG_SMP */
307

308 309 310 311 312 313
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

314
	current->thread.trap_nr = signal_code;
315 316 317 318 319 320 321 322 323 324 325 326
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
327
void do_break (struct pt_regs *regs, unsigned long address,
328 329 330 331
		    unsigned long error_code)
{
	siginfo_t info;

332
	current->thread.trap_nr = TRAP_HWBKPT;
333 334 335 336
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

337
	if (debugger_break_match(regs))
338 339
		return;

340 341
	/* Clear the breakpoint */
	hw_breakpoint_disable();
342 343 344 345 346 347 348 349

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
350
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
351

352
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
353

354 355 356 357 358 359
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
360
	thread->debug.iac1 = thread->debug.iac2 = 0;
361
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
362
	thread->debug.iac3 = thread->debug.iac4 = 0;
363
#endif
364
	thread->debug.dac1 = thread->debug.dac2 = 0;
365
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
366
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
367
#endif
368
	thread->debug.dbcr0 = 0;
369 370 371 372
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
373
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
374 375 376 377 378
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
379
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
380
#else
381
	thread->debug.dbcr1 = 0;
382 383 384
#endif
}

385
static void prime_debug_regs(struct debug_reg *debug)
386
{
387 388 389 390 391 392 393
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

394 395
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
396
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
397 398
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
399
#endif
400 401
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
402
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
403 404
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
405
#endif
406 407
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
408
#ifdef CONFIG_BOOKE
409
	mtspr(SPRN_DBCR2, debug->dbcr2);
410 411 412 413 414 415 416
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
417
void switch_booke_debug_regs(struct debug_reg *new_debug)
418
{
419
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
420 421
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
422
}
423
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
424
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
425
#ifndef CONFIG_HAVE_HW_BREAKPOINT
426 427
static void set_debug_reg_defaults(struct thread_struct *thread)
{
428 429
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
430
	set_breakpoint(&thread->hw_brk);
431
}
432
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
433 434
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

435
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
436 437
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
438
	mtspr(SPRN_DAC1, dabr);
439 440 441
#ifdef CONFIG_PPC_47x
	isync();
#endif
442 443
	return 0;
}
444
#elif defined(CONFIG_PPC_BOOK3S)
445 446
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
447
	mtspr(SPRN_DABR, dabr);
448 449
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
450
	return 0;
451
}
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

472 473
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
474
	unsigned long dawr, dawrx, mrd;
475 476 477 478 479 480 481 482 483

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
484 485 486 487 488 489 490 491
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
492 493 494 495 496 497 498 499

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

500
void __set_breakpoint(struct arch_hw_breakpoint *brk)
501
{
502
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
503

504
	if (cpu_has_feature(CPU_FTR_DAWR))
505 506 507
		set_dawr(brk);
	else
		set_dabr(brk);
508
}
509

510 511 512 513 514 515 516
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

517 518 519
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
520

521 522 523 524 525 526 527 528 529 530 531
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
532

533
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
		msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
596 597
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
	 * tm_orig_msr is already set.
598
	 */
599 600
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
		thr->tm_orig_msr = thr->regs->msr;
601 602 603 604 605 606 607

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

608
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
609 610 611 612 613 614 615 616 617 618 619 620 621

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

647
static inline void tm_recheckpoint_new_task(struct task_struct *new)
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

665 666
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
667
		return;
668
	}
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	msr = new->thread.tm_orig_msr;
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
684
#ifdef CONFIG_ALTIVEC
685 686 687 688
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
689
#endif
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

	msr_diff = current->thread.tm_orig_msr & ~regs->msr;
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
	if (msr_diff & MSR_FP) {
		fp_enable();
		load_fp_state(&current->thread.fp_state);
		regs->msr |= current->thread.fpexc_mode;
	}
	if (msr_diff & MSR_VEC) {
		vec_enable();
		load_vr_state(&current->thread.vr_state);
	}
	regs->msr |= msr_diff;
}

743 744 745 746
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
747

748 749 750 751 752
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
753 754 755
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
756

757 758
	WARN_ON(!irqs_disabled());

759
	/* Back up the TAR and DSCR across context switches.
760 761 762 763
	 * Note that the TAR is not available for use in the kernel.  (To
	 * provide this, the TAR should be backed up/restored on exception
	 * entry/exit instead, and be in pt_regs.  FIXME, this should be in
	 * pt_regs anyway (for debug).)
764 765
	 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
	 * these will change them.
766
	 */
767
	save_early_sprs(&prev->thread);
768

769 770
	__switch_to_tm(prev);

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
798 799
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
800 801
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
802
#endif /* CONFIG_VSX */
803 804 805 806 807 808 809 810 811 812
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
813 814 815 816 817 818 819 820 821 822
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
823 824 825 826
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
827
#ifdef CONFIG_SPE
828 829 830 831 832 833
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
834

835 836
#endif /* CONFIG_SMP */

837
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
838
	switch_booke_debug_regs(&new->thread.debug);
839
#else
840 841 842 843 844
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
845
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
846
		__set_breakpoint(&new->thread.hw_brk);
847
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
848 849
#endif

850

851 852
	new_thread = &new->thread;
	old_thread = &current->thread;
853 854 855 856 857 858

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
859
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
860 861 862 863 864 865
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
866 867 868
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
869
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
870 871 872 873 874 875 876
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
877

878 879 880 881 882 883
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
884 885 886

	tm_recheckpoint_new_task(new);

887 888
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
889 890 891
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
892
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
893 894 895 896
		batch->active = 1;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

897 898 899
	return last;
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

916 917 918 919 920 921 922 923
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

924
		if (!__kernel_text_address(pc) ||
925
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
926
			printk(KERN_CONT "XXXXXXXX ");
927 928
		} else {
			if (regs->nip == pc)
929
				printk(KERN_CONT "<%08x> ", instr);
930
			else
931
				printk(KERN_CONT "%08x ", instr);
932 933 934 935 936 937 938 939 940 941 942 943
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
944 945 946 947 948 949 950 951 952
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
953 954 955 956
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
957
#ifdef CONFIG_BOOKE
958
	{MSR_DE,	"DE"},
959 960 961 962
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
963 964
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
965 966 967 968 969
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
987
#define REG		"%016lx"
988 989 990
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
991
#define REG		"%08lx"
992 993 994 995
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

996 997 998 999
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1000 1001
	show_regs_print_info(KERN_DEFAULT);

1002 1003 1004
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1005
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1006 1007
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
1008
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1009
	trap = TRAP(regs);
1010
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1011
		printk("CFAR: "REG" ", regs->orig_gpr3);
1012
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1013
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1014
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1015
#else
1016 1017 1018 1019 1020 1021
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1022 1023
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1024
#endif
1025 1026

	for (i = 0;  i < 32;  i++) {
1027
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1028
			printk("\nGPR%02d: ", i);
1029 1030
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1031 1032 1033 1034 1035 1036 1037 1038
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1039 1040
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1041
#endif
1042
	show_stack(current, (unsigned long *) regs->gpr[1]);
1043 1044
	if (!user_mode(regs))
		show_instructions(regs);
1045 1046 1047 1048
}

void exit_thread(void)
{
1049
	discard_lazy_cpu_state();
1050 1051 1052 1053
}

void flush_thread(void)
{
1054
	discard_lazy_cpu_state();
1055

1056
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1057
	flush_ptrace_hw_breakpoint(current);
1058
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1059
	set_debug_reg_defaults(&current->thread);
1060
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1061 1062 1063 1064 1065 1066 1067 1068
}

void
release_thread(struct task_struct *t)
{
}

/*
1069 1070
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1071
 */
1072
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1073
{
1074 1075 1076 1077
	flush_fp_to_thread(src);
	flush_altivec_to_thread(src);
	flush_vsx_to_thread(src);
	flush_spe_to_thread(src);
1078 1079 1080 1081 1082 1083 1084 1085 1086
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1087

1088
	*dst = *src;
1089 1090 1091

	clear_task_ebb(dst);

1092
	return 0;
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1112 1113 1114
/*
 * Copy a thread..
 */
1115

1116 1117 1118
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1119
int copy_thread(unsigned long clone_flags, unsigned long usp,
1120
		unsigned long kthread_arg, struct task_struct *p)
1121 1122 1123
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1124 1125
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1126
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1127 1128 1129 1130

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1131
	if (unlikely(p->flags & PF_KTHREAD)) {
1132
		/* kernel thread */
1133
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
1134
		memset(childregs, 0, sizeof(struct pt_regs));
1135
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1136 1137 1138
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1139
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1140
		clear_tsk_thread_flag(p, TIF_32BIT);
1141
		childregs->softe = 1;
1142
#endif
1143
		childregs->gpr[15] = kthread_arg;
1144
		p->thread.regs = NULL;	/* no user register state */
1145
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1146
		f = ret_from_kernel_thread;
1147
	} else {
1148
		/* user thread */
1149
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1150 1151
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1152 1153
		if (usp)
			childregs->gpr[1] = usp;
1154
		p->thread.regs = childregs;
A
Al Viro 已提交
1155
		childregs->gpr[3] = 0;  /* Result from fork() */
1156 1157
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1158
			if (!is_32bit_task())
1159 1160 1161 1162 1163
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1164 1165

		f = ret_from_fork;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	}
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1177
	((unsigned long *)sp)[0] = 0;
1178 1179 1180 1181
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1182
#ifdef CONFIG_PPC32
1183 1184
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1185
#endif
1186 1187 1188 1189
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1190 1191 1192 1193 1194
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1195 1196
	setup_ksp_vsid(p, sp);

1197 1198
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1199 1200
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = current->thread.dscr;
1201
	}
1202 1203
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1204
#endif
1205
	kregs->nip = ppc_function_entry(f);
1206 1207 1208 1209 1210 1211
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1212
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1213
{
1214 1215 1216 1217
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1218 1219 1220 1221 1222
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1223 1224
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1225 1226
	}

1227 1228 1229 1230 1231 1232
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1233

1234 1235 1236 1237 1238 1239 1240
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1241 1242 1243
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1244
	regs->msr = MSR_USER;
1245
#else
1246
	if (!is_32bit_task()) {
1247
		unsigned long entry;
1248

1249 1250 1251
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1284 1285 1286
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1287 1288 1289 1290
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1291 1292
	}
#endif
1293
	discard_lazy_cpu_state();
1294 1295 1296
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1297
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1298
	current->thread.fp_save_area = NULL;
1299
#ifdef CONFIG_ALTIVEC
1300 1301
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1302
	current->thread.vr_save_area = NULL;
1303 1304 1305 1306 1307 1308 1309 1310 1311
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1312 1313 1314 1315 1316 1317 1318
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1319
}
1320
EXPORT_SYMBOL(start_thread);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1335
		if (cpu_has_feature(CPU_FTR_SPE)) {
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1349 1350 1351 1352 1353 1354
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1355 1356 1357 1358
#else
		return -EINVAL;
#endif
	}
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1371 1372 1373 1374 1375 1376 1377 1378 1379
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1394
			val = tsk->thread.fpexc_mode;
1395
		} else
1396
			return -EINVAL;
1397 1398 1399 1400 1401 1402 1403 1404
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1484
int validate_sp(unsigned long sp, struct task_struct *p,
1485 1486
		       unsigned long nbytes)
{
A
Al Viro 已提交
1487
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1488 1489 1490 1491 1492

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1493
	return valid_irq_stack(sp, p, nbytes);
1494 1495
}

1496 1497
EXPORT_SYMBOL(validate_sp);

1498 1499 1500 1501 1502 1503 1504 1505 1506
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1507
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1508 1509 1510 1511
		return 0;

	do {
		sp = *(unsigned long *)sp;
1512
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1513 1514
			return 0;
		if (count > 0) {
1515
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1516 1517 1518 1519 1520 1521
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1522

1523
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1524 1525 1526 1527 1528 1529

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1530 1531 1532
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1533
	unsigned long rth = (unsigned long)return_to_handler;
1534
#endif
1535 1536 1537 1538 1539 1540

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1541
			sp = current_stack_pointer();
1542 1543 1544 1545 1546 1547 1548
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1549
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1550 1551 1552 1553
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1554
		ip = stack[STACK_FRAME_LR_SAVE];
1555
		if (!firstframe || ip != lr) {
1556
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1557
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1558
			if ((ip == rth) && curr_frame >= 0) {
1559 1560 1561 1562 1563
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1574 1575
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1576 1577 1578
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1579
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1580
			       regs->trap, (void *)regs->nip, (void *)lr);
1581 1582 1583 1584 1585 1586 1587
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1588
#ifdef CONFIG_PPC64
1589
/* Called with hard IRQs off */
1590
void notrace __ppc64_runlatch_on(void)
1591
{
1592
	struct thread_info *ti = current_thread_info();
1593 1594
	unsigned long ctrl;

1595 1596 1597
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1598

1599
	ti->local_flags |= _TLF_RUNLATCH;
1600 1601
}

1602
/* Called with hard IRQs off */
1603
void notrace __ppc64_runlatch_off(void)
1604
{
1605
	struct thread_info *ti = current_thread_info();
1606 1607
	unsigned long ctrl;

1608
	ti->local_flags &= ~_TLF_RUNLATCH;
1609

1610 1611 1612
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1613
}
1614
#endif /* CONFIG_PPC64 */
1615

1616 1617 1618 1619 1620 1621
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1638 1639 1640
	unsigned long base = mm->brk;
	unsigned long ret;

1641
#ifdef CONFIG_PPC_STD_MMU_64
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1654 1655 1656 1657 1658 1659

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1660