process.c 25.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36 37 38 39 40 41 42 43

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
44
#include <asm/machdep.h>
45
#include <asm/time.h>
46
#include <asm/syscalls.h>
47 48 49
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
50 51 52 53 54 55

extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
56
struct task_struct *last_task_used_vsx = NULL;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
87
			giveup_fpu(tsk);
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
		}
		preempt_enable();
	}
}

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
136
			giveup_altivec(tsk);
137 138 139 140 141 142
		}
		preempt_enable();
	}
}
#endif /* CONFIG_ALTIVEC */

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
#endif /* CONFIG_VSX */

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
202
			giveup_spe(tsk);
203 204 205 206 207 208
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

209
#ifndef CONFIG_SMP
210 211 212 213
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
214
void discard_lazy_cpu_state(void)
215 216 217 218 219 220 221 222
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
223 224 225 226
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
227 228 229 230 231 232
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
233
#endif /* CONFIG_SMP */
234

235 236
static DEFINE_PER_CPU(unsigned long, current_dabr);

237 238
int set_dabr(unsigned long dabr)
{
239 240
	__get_cpu_var(current_dabr) = dabr;

241
#ifdef CONFIG_PPC_MERGE		/* XXX for now */
242 243
	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr);
244
#endif
245

246 247
	/* XXX should we have a CPU_FTR_HAS_DABR ? */
#if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
248
	mtspr(SPRN_DABR, dabr);
249
#endif
250
	return 0;
251 252
}

253 254 255
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;

#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
291 292 293 294
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
		giveup_vsx(prev);
#endif /* CONFIG_VSX */
295 296 297 298 299 300 301 302 303 304
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
305 306 307 308 309 310 311 312 313 314
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
315 316 317 318
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
319
#ifdef CONFIG_SPE
320 321 322 323 324 325
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
326

327 328
#endif /* CONFIG_SMP */

329
	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
330 331 332 333
		set_dabr(new->thread.dabr);

	new_thread = &new->thread;
	old_thread = &current->thread;
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
#endif

349
	local_irq_save(flags);
350 351

	account_system_vtime(current);
352
	account_process_vtime(current);
353 354
	calculate_steal_time();

355 356 357 358 359 360
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
361 362 363 364 365 366 367
	last = _switch(old_thread, new_thread);

	local_irq_restore(flags);

	return last;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

384 385 386 387 388 389 390 391
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

392 393 394 395
		/* We use __get_user here *only* to avoid an OOPS on a
		 * bad address because the pc *should* only be a
		 * kernel address.
		 */
396 397
		if (!__kernel_text_address(pc) ||
		     __get_user(instr, (unsigned int __user *)pc)) {
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
			printk("XXXXXXXX ");
		} else {
			if (regs->nip == pc)
				printk("<%08x> ", instr);
			else
				printk("%08x ", instr);
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
419 420
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	{MSR_ME,	"ME"},
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
441
#define REG		"%016lx"
442 443 444
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
445
#define REG		"%08lx"
446 447 448 449
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

450 451 452 453
void show_regs(struct pt_regs * regs)
{
	int i, trap;

454 455 456
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
457
	       regs, regs->trap, print_tainted(), init_utsname()->release);
458 459
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
460
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
461 462
	trap = TRAP(regs);
	if (trap == 0x300 || trap == 0x600)
463 464 465
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
466
		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
467
#endif
468
	printk("TASK = %p[%d] '%s' THREAD: %p",
469
	       current, task_pid_nr(current), current->comm, task_thread_info(current));
470 471

#ifdef CONFIG_SMP
472
	printk(" CPU: %d", raw_smp_processor_id());
473 474 475
#endif /* CONFIG_SMP */

	for (i = 0;  i < 32;  i++) {
476
		if ((i % REGS_PER_LINE) == 0)
477
			printk("\n" KERN_INFO "GPR%02d: ", i);
478 479
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
480 481 482 483 484 485 486 487
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
488
	printk("NIP ["REG"] ", regs->nip);
489
	print_symbol("%s\n", regs->nip);
490
	printk("LR ["REG"] ", regs->link);
491 492 493
	print_symbol("%s\n", regs->link);
#endif
	show_stack(current, (unsigned long *) regs->gpr[1]);
494 495
	if (!user_mode(regs))
		show_instructions(regs);
496 497 498 499
}

void exit_thread(void)
{
500
	discard_lazy_cpu_state();
501 502 503 504
}

void flush_thread(void)
{
505 506 507
#ifdef CONFIG_PPC64
	struct thread_info *t = current_thread_info();

508 509 510 511 512 513 514
	if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
		clear_ti_thread_flag(t, TIF_ABI_PENDING);
		if (test_ti_thread_flag(t, TIF_32BIT))
			clear_ti_thread_flag(t, TIF_32BIT);
		else
			set_ti_thread_flag(t, TIF_32BIT);
	}
515 516
#endif

517
	discard_lazy_cpu_state();
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

	if (current->thread.dabr) {
		current->thread.dabr = 0;
		set_dabr(0);
	}
}

void
release_thread(struct task_struct *t)
{
}

/*
 * This gets called before we allocate a new thread and copy
 * the current task into it.
 */
void prepare_to_copy(struct task_struct *tsk)
{
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
538
	flush_vsx_to_thread(current);
539 540 541 542 543 544
	flush_spe_to_thread(current);
}

/*
 * Copy a thread..
 */
545 546 547
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
		unsigned long unused, struct task_struct *p,
		struct pt_regs *regs)
548 549 550
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
551
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
552 553 554 555 556 557 558 559 560

	CHECK_FULL_REGS(regs);
	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
	*childregs = *regs;
	if ((childregs->msr & MSR_PR) == 0) {
		/* for kernel thread, set `current' and stackptr in new task */
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
561
#ifdef CONFIG_PPC32
562
		childregs->gpr[2] = (unsigned long) p;
563
#else
A
Al Viro 已提交
564
		clear_tsk_thread_flag(p, TIF_32BIT);
565
#endif
566 567 568 569
		p->thread.regs = NULL;	/* no user register state */
	} else {
		childregs->gpr[1] = usp;
		p->thread.regs = childregs;
570 571 572 573 574 575 576 577
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
			if (!test_thread_flag(TIF_32BIT))
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	}
	childregs->gpr[3] = 0;  /* Result from fork() */
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
594 595
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
596

597 598
#ifdef CONFIG_PPC64
	if (cpu_has_feature(CPU_FTR_SLB)) {
P
Paul Mackerras 已提交
599
		unsigned long sp_vsid;
600
		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
601

P
Paul Mackerras 已提交
602 603 604 605 606 607
		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
				<< SLB_VSID_SHIFT_1T;
		else
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
				<< SLB_VSID_SHIFT;
608
		sp_vsid |= SLB_VSID_KERNEL | llp;
609 610 611 612 613 614 615 616 617 618 619 620 621
		p->thread.ksp_vsid = sp_vsid;
	}

	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
 	 */
	kregs->nip = *((unsigned long *)ret_from_fork);
#else
	kregs->nip = (unsigned long)ret_from_fork;
#endif
622 623 624 625 626 627 628

	return 0;
}

/*
 * Set up a thread for executing a new program
 */
629
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
630
{
631 632 633 634
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

635
	set_fs(USER_DS);
636 637 638 639 640 641

	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
642 643
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
644 645
	}

646 647 648 649 650 651
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
652

653 654 655 656 657 658 659
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

660 661 662
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
663
	regs->msr = MSR_USER;
664
#else
S
Stephen Rothwell 已提交
665
	if (!test_thread_flag(TIF_32BIT)) {
666
		unsigned long entry, toc;
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
686 687 688 689
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
690 691 692
	}
#endif

693
	discard_lazy_cpu_state();
694 695 696
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
697
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
698
	current->thread.fpscr.val = 0;
699 700 701
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
702
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
727 728 729 730 731 732 733
		if (cpu_has_feature(CPU_FTR_SPE)) {
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
734 735 736 737
#else
		return -EINVAL;
#endif
	}
738 739 740 741 742 743 744 745 746 747 748 749

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
750 751 752 753 754 755 756 757 758
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
759 760 761 762
		if (cpu_has_feature(CPU_FTR_SPE))
			val = tsk->thread.fpexc_mode;
		else
			return -EINVAL;
763 764 765 766 767 768 769 770
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

815 816 817 818 819 820 821 822 823 824 825
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

826 827
#define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))

828 829 830 831 832 833 834 835
int sys_clone(unsigned long clone_flags, unsigned long usp,
	      int __user *parent_tidp, void __user *child_threadptr,
	      int __user *child_tidp, int p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	if (usp == 0)
		usp = regs->gpr[1];	/* stack pointer for child */
836 837 838 839 840 841
#ifdef CONFIG_PPC64
	if (test_thread_flag(TIF_32BIT)) {
		parent_tidp = TRUNC_PTR(parent_tidp);
		child_tidp = TRUNC_PTR(child_tidp);
	}
#endif
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
 	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
}

int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
	     unsigned long p4, unsigned long p5, unsigned long p6,
	     struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
}

int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
	      unsigned long p4, unsigned long p5, unsigned long p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
			regs, 0, NULL, NULL);
}

int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
	       unsigned long a3, unsigned long a4, unsigned long a5,
	       struct pt_regs *regs)
{
	int error;
867
	char *filename;
868 869 870 871 872 873 874 875

	filename = getname((char __user *) a0);
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_spe_to_thread(current);
876 877
	error = do_execve(filename, (char __user * __user *) a1,
			  (char __user * __user *) a2, regs);
878 879 880 881 882
	putname(filename);
out:
	return error;
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
#ifdef CONFIG_IRQSTACKS
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

#else
#define valid_irq_stack(sp, p, nb)	0
#endif /* CONFIG_IRQSTACKS */

912
int validate_sp(unsigned long sp, struct task_struct *p,
913 914
		       unsigned long nbytes)
{
A
Al Viro 已提交
915
	unsigned long stack_page = (unsigned long)task_stack_page(p);
916 917 918 919 920

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

921
	return valid_irq_stack(sp, p, nbytes);
922 923
}

924 925
EXPORT_SYMBOL(validate_sp);

926 927 928 929 930 931 932 933 934
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
935
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
936 937 938 939
		return 0;

	do {
		sp = *(unsigned long *)sp;
940
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
941 942
			return 0;
		if (count > 0) {
943
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
944 945 946 947 948 949
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

static int kstack_depth_to_print = 64;

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
972
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
973 974 975 976
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
977
		ip = stack[STACK_FRAME_LR_SAVE];
978 979 980 981 982 983 984 985 986 987 988 989 990
		if (!firstframe || ip != lr) {
			printk("["REG"] ["REG"] ", sp, ip);
			print_symbol("%s", ip);
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
991 992
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			printk("--- Exception: %lx", regs->trap);
			print_symbol(" at %s\n", regs->nip);
			lr = regs->link;
			print_symbol("    LR = %s\n", lr);
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

void dump_stack(void)
{
	show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

#ifdef CONFIG_PPC64
void ppc64_runlatch_on(void)
{
	unsigned long ctrl;

	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
		HMT_medium();

		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);

		set_thread_flag(TIF_RUNLATCH);
	}
}

void ppc64_runlatch_off(void)
{
	unsigned long ctrl;

	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
		HMT_medium();

		clear_thread_flag(TIF_RUNLATCH);

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
}
#endif
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

#if THREAD_SHIFT < PAGE_SHIFT

static struct kmem_cache *thread_info_cache;

struct thread_info *alloc_thread_info(struct task_struct *tsk)
{
	struct thread_info *ti;

	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
	if (unlikely(ti == NULL))
		return NULL;
#ifdef CONFIG_DEBUG_STACK_USAGE
	memset(ti, 0, THREAD_SIZE);
#endif
	return ti;
}

void free_thread_info(struct thread_info *ti)
{
	kmem_cache_free(thread_info_cache, ti);
}

void thread_info_cache_init(void)
{
	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
					      THREAD_SIZE, 0, NULL);
	BUG_ON(thread_info_cache == NULL);
}

#endif /* THREAD_SHIFT < PAGE_SHIFT */