process.c 36.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
31
#include <linux/export.h>
32 33 34
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36
#include <linux/ftrace.h>
37
#include <linux/kernel_stat.h>
38 39
#include <linux/personality.h>
#include <linux/random.h>
40
#include <linux/hw_breakpoint.h>
41 42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52
#include <asm/switch_to.h>
53
#include <asm/tm.h>
54
#include <asm/debug.h>
55 56 57
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
58 59
#include <linux/kprobes.h>
#include <linux/kdebug.h>
60

61 62 63 64 65 66 67
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

68 69 70 71 72
extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
73
struct task_struct *last_task_used_vsx = NULL;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
104
			giveup_fpu(tsk);
105 106 107 108
		}
		preempt_enable();
	}
}
109
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
135
		giveup_altivec_notask();
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
154
			giveup_altivec(tsk);
155 156 157 158
		}
		preempt_enable();
	}
}
159
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
160 161
#endif /* CONFIG_ALTIVEC */

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

181 182 183 184 185 186 187
void giveup_vsx(struct task_struct *tsk)
{
	giveup_fpu(tsk);
	giveup_altivec(tsk);
	__giveup_vsx(tsk);
}

188 189 190 191 192 193 194 195 196 197 198 199 200
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
201
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
202 203
#endif /* CONFIG_VSX */

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
229
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
230
			giveup_spe(tsk);
231 232 233 234 235 236
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

237
#ifndef CONFIG_SMP
238 239 240 241
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
242
void discard_lazy_cpu_state(void)
243 244 245 246 247 248 249 250
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
251 252 253 254
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
255 256 257 258 259 260
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
261
#endif /* CONFIG_SMP */
262

263 264 265 266 267 268
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

269
	current->thread.trap_nr = signal_code;
270 271 272 273 274 275 276 277 278 279 280 281
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
282
void do_break (struct pt_regs *regs, unsigned long address,
283 284 285 286
		    unsigned long error_code)
{
	siginfo_t info;

287
	current->thread.trap_nr = TRAP_HWBKPT;
288 289 290 291
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

292
	if (debugger_break_match(regs))
293 294
		return;

295 296
	/* Clear the breakpoint */
	hw_breakpoint_disable();
297 298 299 300 301 302 303 304

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
305
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
306

307
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	thread->iac1 = thread->iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	thread->iac3 = thread->iac4 = 0;
#endif
	thread->dac1 = thread->dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	thread->dvc1 = thread->dvc2 = 0;
#endif
	thread->dbcr0 = 0;
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
	thread->dbcr1 = 0;
#endif
}

static void prime_debug_regs(struct thread_struct *thread)
{
342 343 344 345 346 347 348
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	mtspr(SPRN_IAC1, thread->iac1);
	mtspr(SPRN_IAC2, thread->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	mtspr(SPRN_IAC3, thread->iac3);
	mtspr(SPRN_IAC4, thread->iac4);
#endif
	mtspr(SPRN_DAC1, thread->dac1);
	mtspr(SPRN_DAC2, thread->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	mtspr(SPRN_DVC1, thread->dvc1);
	mtspr(SPRN_DVC2, thread->dvc2);
#endif
	mtspr(SPRN_DBCR0, thread->dbcr0);
	mtspr(SPRN_DBCR1, thread->dbcr1);
#ifdef CONFIG_BOOKE
	mtspr(SPRN_DBCR2, thread->dbcr2);
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
static void switch_booke_debug_regs(struct thread_struct *new_thread)
{
	if ((current->thread.dbcr0 & DBCR0_IDM)
		|| (new_thread->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_thread);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
379
#ifndef CONFIG_HAVE_HW_BREAKPOINT
380 381
static void set_debug_reg_defaults(struct thread_struct *thread)
{
382 383
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
384
	set_breakpoint(&thread->hw_brk);
385
}
386
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
387 388
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

389
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
390 391
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
392
	mtspr(SPRN_DAC1, dabr);
393 394 395
#ifdef CONFIG_PPC_47x
	isync();
#endif
396 397
	return 0;
}
398
#elif defined(CONFIG_PPC_BOOK3S)
399 400
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
401
	mtspr(SPRN_DABR, dabr);
402 403
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
404
	return 0;
405
}
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

426 427
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
428
	unsigned long dawr, dawrx, mrd;
429 430 431 432 433 434 435 436 437

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
438 439 440 441 442 443 444 445
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
446 447 448 449 450 451 452 453

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

454
int set_breakpoint(struct arch_hw_breakpoint *brk)
455 456 457
{
	__get_cpu_var(current_brk) = *brk;

458 459 460
	if (cpu_has_feature(CPU_FTR_DAWR))
		return set_dawr(brk);

461 462
	return set_dabr(brk);
}
463

464 465 466
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
467

468 469 470 471 472 473 474 475 476 477 478
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
	 * FP & vector regs.
	 */
	thr->tm_orig_msr = thr->regs->msr;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

	tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

526
static inline void tm_recheckpoint_new_task(struct task_struct *new)
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(&new->thread);

	if (!MSR_TM_ACTIVE(new->thread.regs->msr))
		return;
	msr = new->thread.tm_orig_msr;
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
566
#ifdef CONFIG_ALTIVEC
567 568 569 570
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
571
#endif
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
592

593 594 595 596 597 598
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;
P
Peter Zijlstra 已提交
599 600 601
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
602

603 604
	__switch_to_tm(prev);

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
632 633
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
634 635
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
636
#endif /* CONFIG_VSX */
637 638 639 640 641 642 643 644 645 646
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
647 648 649 650 651 652 653 654 655 656
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
657 658 659 660
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
661
#ifdef CONFIG_SPE
662 663 664 665 666 667
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
668

669 670
#endif /* CONFIG_SMP */

671
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
672
	switch_booke_debug_regs(&new->thread);
673
#else
674 675 676 677 678
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
679
	if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
680
		set_breakpoint(&new->thread.hw_brk);
681
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
682 683
#endif

684

685 686
	new_thread = &new->thread;
	old_thread = &current->thread;
687 688 689 690 691 692 693 694 695 696 697 698 699

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
700 701 702 703 704 705 706 707 708 709 710
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
	batch = &__get_cpu_var(ppc64_tlb_batch);
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
711

712
	local_irq_save(flags);
713

714 715 716 717 718 719
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
720 721 722

	tm_recheckpoint_new_task(new);

723 724
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
725 726 727 728 729 730 731 732
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
		batch = &__get_cpu_var(ppc64_tlb_batch);
		batch->active = 1;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

733 734 735 736 737
	local_irq_restore(flags);

	return last;
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

754 755 756 757 758 759 760 761
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

762 763 764 765
		/* We use __get_user here *only* to avoid an OOPS on a
		 * bad address because the pc *should* only be a
		 * kernel address.
		 */
766 767
		if (!__kernel_text_address(pc) ||
		     __get_user(instr, (unsigned int __user *)pc)) {
768
			printk(KERN_CONT "XXXXXXXX ");
769 770
		} else {
			if (regs->nip == pc)
771
				printk(KERN_CONT "<%08x> ", instr);
772
			else
773
				printk(KERN_CONT "%08x ", instr);
774 775 776 777 778 779 780 781 782 783 784 785
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
786 787 788 789 790 791 792 793 794
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
795 796 797 798
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
799
#ifdef CONFIG_BOOKE
800
	{MSR_DE,	"DE"},
801 802 803 804
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
805 806
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
807 808 809 810 811
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
829
#define REG		"%016lx"
830 831 832
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
833
#define REG		"%08lx"
834 835 836 837
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

838 839 840 841
void show_regs(struct pt_regs * regs)
{
	int i, trap;

842 843
	show_regs_print_info(KERN_DEFAULT);

844 845 846
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
847
	       regs, regs->trap, print_tainted(), init_utsname()->release);
848 849
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
850
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
851 852 853
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld\n", regs->softe);
#endif
854
	trap = TRAP(regs);
855 856
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
		printk("CFAR: "REG"\n", regs->orig_gpr3);
857
	if (trap == 0x300 || trap == 0x600)
858
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
859 860
		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
861
		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
862
#endif
863 864

	for (i = 0;  i < 32;  i++) {
865
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
866
			printk("\nGPR%02d: ", i);
867 868
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
869 870 871 872 873 874 875 876
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
877 878
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
879
#endif
880 881 882
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
#endif
883
	show_stack(current, (unsigned long *) regs->gpr[1]);
884 885
	if (!user_mode(regs))
		show_instructions(regs);
886 887 888 889
}

void exit_thread(void)
{
890
	discard_lazy_cpu_state();
891 892 893 894
}

void flush_thread(void)
{
895
	discard_lazy_cpu_state();
896

897
#ifdef CONFIG_HAVE_HW_BREAKPOINT
898
	flush_ptrace_hw_breakpoint(current);
899
#else /* CONFIG_HAVE_HW_BREAKPOINT */
900
	set_debug_reg_defaults(&current->thread);
901
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
902 903 904 905 906 907 908 909
}

void
release_thread(struct task_struct *t)
{
}

/*
910 911
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
912
 */
913
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
914
{
915 916 917 918 919 920
	flush_fp_to_thread(src);
	flush_altivec_to_thread(src);
	flush_vsx_to_thread(src);
	flush_spe_to_thread(src);
	*dst = *src;
	return 0;
921 922 923 924 925
}

/*
 * Copy a thread..
 */
926 927
extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */

A
Alexey Dobriyan 已提交
928
int copy_thread(unsigned long clone_flags, unsigned long usp,
929
		unsigned long arg, struct task_struct *p)
930 931 932
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
933 934
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
935
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
936 937 938 939

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
940
	if (unlikely(p->flags & PF_KTHREAD)) {
941
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
942
		memset(childregs, 0, sizeof(struct pt_regs));
943
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
944
		childregs->gpr[14] = usp;	/* function */
A
Al Viro 已提交
945
#ifdef CONFIG_PPC64
A
Al Viro 已提交
946
		clear_tsk_thread_flag(p, TIF_32BIT);
947
		childregs->softe = 1;
948
#endif
A
Al Viro 已提交
949
		childregs->gpr[15] = arg;
950
		p->thread.regs = NULL;	/* no user register state */
951
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
952
		f = ret_from_kernel_thread;
953
	} else {
954
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
955 956
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
957 958
		if (usp)
			childregs->gpr[1] = usp;
959
		p->thread.regs = childregs;
A
Al Viro 已提交
960
		childregs->gpr[3] = 0;  /* Result from fork() */
961 962
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
963
			if (!is_32bit_task())
964 965 966 967 968
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
969 970

		f = ret_from_fork;
971 972 973 974 975 976 977 978 979 980 981
	}
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
982
	((unsigned long *)sp)[0] = 0;
983 984 985 986
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
987 988
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
989

990 991 992 993
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

994
#ifdef CONFIG_PPC_STD_MMU_64
995
	if (mmu_has_feature(MMU_FTR_SLB)) {
P
Paul Mackerras 已提交
996
		unsigned long sp_vsid;
997
		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
998

999
		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
P
Paul Mackerras 已提交
1000 1001 1002 1003 1004
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
				<< SLB_VSID_SHIFT_1T;
		else
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
				<< SLB_VSID_SHIFT;
1005
		sp_vsid |= SLB_VSID_KERNEL | llp;
1006 1007
		p->thread.ksp_vsid = sp_vsid;
	}
1008
#endif /* CONFIG_PPC_STD_MMU_64 */
1009 1010
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1011 1012
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = current->thread.dscr;
1013
	}
1014 1015
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1016
#endif
1017 1018 1019 1020 1021
	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
A
Al Viro 已提交
1022
	 */
1023
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1024
	kregs->nip = *((unsigned long *)f);
1025
#else
A
Al Viro 已提交
1026
	kregs->nip = (unsigned long)f;
1027
#endif
1028 1029 1030 1031 1032 1033
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1034
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1035
{
1036 1037 1038 1039
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1040 1041 1042 1043 1044
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1045 1046
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1047 1048
	}

1049 1050 1051 1052 1053 1054
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1055

1056 1057 1058 1059 1060 1061 1062
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1063 1064 1065
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1066
	regs->msr = MSR_USER;
1067
#else
1068
	if (!is_32bit_task()) {
1069
		unsigned long entry, toc;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1089 1090 1091 1092
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1093 1094
	}
#endif
1095
	discard_lazy_cpu_state();
1096 1097 1098
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1099
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1100
	current->thread.fpscr.val = 0;
1101 1102 1103
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1104
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1105 1106 1107 1108 1109 1110 1111 1112 1113
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1114 1115 1116 1117 1118 1119 1120
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1136 1137 1138 1139 1140 1141 1142
		if (cpu_has_feature(CPU_FTR_SPE)) {
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1143 1144 1145 1146
#else
		return -EINVAL;
#endif
	}
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1159 1160 1161 1162 1163 1164 1165 1166 1167
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1168 1169 1170 1171
		if (cpu_has_feature(CPU_FTR_SPE))
			val = tsk->thread.fpexc_mode;
		else
			return -EINVAL;
1172 1173 1174 1175 1176 1177 1178 1179
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1259
int validate_sp(unsigned long sp, struct task_struct *p,
1260 1261
		       unsigned long nbytes)
{
A
Al Viro 已提交
1262
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1263 1264 1265 1266 1267

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1268
	return valid_irq_stack(sp, p, nbytes);
1269 1270
}

1271 1272
EXPORT_SYMBOL(validate_sp);

1273 1274 1275 1276 1277 1278 1279 1280 1281
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1282
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1283 1284 1285 1286
		return 0;

	do {
		sp = *(unsigned long *)sp;
1287
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1288 1289
			return 0;
		if (count > 0) {
1290
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1291 1292 1293 1294 1295 1296
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1297

1298
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1299 1300 1301 1302 1303 1304

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1305 1306 1307
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1308 1309
	unsigned long rth = (unsigned long)return_to_handler;
	unsigned long mrth = -1;
1310
#ifdef CONFIG_PPC64
1311 1312 1313 1314
	extern void mod_return_to_handler(void);
	rth = *(unsigned long *)rth;
	mrth = (unsigned long)mod_return_to_handler;
	mrth = *(unsigned long *)mrth;
1315 1316
#endif
#endif
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1331
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1332 1333 1334 1335
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1336
		ip = stack[STACK_FRAME_LR_SAVE];
1337
		if (!firstframe || ip != lr) {
1338
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1339
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1340
			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1341 1342 1343 1344 1345
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1356 1357
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1358 1359 1360
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1361 1362
			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
			       regs->trap, (void *)regs->nip, (void *)lr);
1363 1364 1365 1366 1367 1368 1369
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1370
#ifdef CONFIG_PPC64
1371 1372
/* Called with hard IRQs off */
void __ppc64_runlatch_on(void)
1373
{
1374
	struct thread_info *ti = current_thread_info();
1375 1376
	unsigned long ctrl;

1377 1378 1379
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1380

1381
	ti->local_flags |= _TLF_RUNLATCH;
1382 1383
}

1384
/* Called with hard IRQs off */
1385
void __ppc64_runlatch_off(void)
1386
{
1387
	struct thread_info *ti = current_thread_info();
1388 1389
	unsigned long ctrl;

1390
	ti->local_flags &= ~_TLF_RUNLATCH;
1391

1392 1393 1394
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1395
}
1396
#endif /* CONFIG_PPC64 */
1397

1398 1399 1400 1401 1402 1403
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1420 1421 1422
	unsigned long base = mm->brk;
	unsigned long ret;

1423
#ifdef CONFIG_PPC_STD_MMU_64
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1436 1437 1438 1439 1440 1441

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

unsigned long randomize_et_dyn(unsigned long base)
{
	unsigned long ret = PAGE_ALIGN(base + brk_rnd());

	if (ret < base)
		return base;

	return ret;
}