time.c 31.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
55
#include <linux/delay.h>
56
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
66 67
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
68
#include <asm/smp.h>
69
#include <asm/vdso_datapage.h>
70
#include <asm/firmware.h>
M
Michael Neuling 已提交
71
#include <asm/cputime.h>
72
#ifdef CONFIG_PPC_ISERIES
73
#include <asm/iseries/it_lp_queue.h>
74
#include <asm/iseries/hv_call_xm.h>
75
#endif
L
Linus Torvalds 已提交
76

77 78
/* powerpc clocksource/clockevent code */

79
#include <linux/clockchips.h>
80 81
#include <linux/clocksource.h>

82
static cycle_t rtc_read(struct clocksource *);
83 84 85 86 87 88 89 90 91 92
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = rtc_read,
};

93
static cycle_t timebase_read(struct clocksource *);
94 95 96 97 98 99 100 101 102 103
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = timebase_read,
};

104 105 106 107 108 109 110 111 112 113
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

static struct clock_event_device decrementer_clockevent = {
       .name           = "decrementer",
       .rating         = 200,
114
       .shift          = 0,	/* To be filled in */
115 116 117 118 119 120 121
       .mult           = 0,	/* To be filled in */
       .irq            = 0,
       .set_next_event = decrementer_set_next_event,
       .set_mode       = decrementer_set_mode,
       .features       = CLOCK_EVT_FEAT_ONESHOT,
};

122 123 124 125 126 127
struct decrementer_clock {
	struct clock_event_device event;
	u64 next_tb;
};

static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
128

L
Linus Torvalds 已提交
129
#ifdef CONFIG_PPC_ISERIES
130 131
static unsigned long __initdata iSeries_recal_titan;
static signed long __initdata iSeries_recal_tb;
132 133

/* Forward declaration is only needed for iSereis compiles */
134
static void __init clocksource_init(void);
L
Linus Torvalds 已提交
135 136 137 138
#endif

#define XSEC_PER_SEC (1024*1024)

139 140 141 142 143 144 145
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
146 147 148 149
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
150
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
151 152
u64 tb_to_xs;
unsigned tb_to_us;
153

154
#define TICKLEN_SCALE	NTP_SCALE_SHIFT
155 156
static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
static u64 ticklen_to_xs;	/* 0.64 fraction */
157 158 159 160 161

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
162
DEFINE_SPINLOCK(rtc_lock);
163
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
164

165 166 167
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static unsigned long boot_tb __read_mostly;
L
Linus Torvalds 已提交
168 169

extern struct timezone sys_tz;
170
static long timezone_offset;
L
Linus Torvalds 已提交
171

172
unsigned long ppc_proc_freq;
173
EXPORT_SYMBOL(ppc_proc_freq);
174 175
unsigned long ppc_tb_freq;

176 177
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
178

179 180 181 182 183 184 185
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
186
EXPORT_SYMBOL(__cputime_jiffies_factor);
187
u64 __cputime_msec_factor;
188
EXPORT_SYMBOL(__cputime_msec_factor);
189
u64 __cputime_sec_factor;
190
EXPORT_SYMBOL(__cputime_sec_factor);
191
u64 __cputime_clockt_factor;
192
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
193 194
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

220 221 222 223 224
/*
 * Read the SPURR on systems that have it, otherwise the purr
 */
static u64 read_spurr(u64 purr)
{
225 226 227 228 229
	/*
	 * cpus without PURR won't have a SPURR
	 * We already know the former when we use this, so tell gcc
	 */
	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
230 231 232 233
		return mfspr(SPRN_SPURR);
	return purr;
}

234 235 236 237 238 239
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
240
	u64 now, nowscaled, delta, deltascaled, sys_time;
241 242 243 244
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
245
	nowscaled = read_spurr(now);
246
	delta = now - get_paca()->startpurr;
247
	deltascaled = nowscaled - get_paca()->startspurr;
248
	get_paca()->startpurr = now;
249
	get_paca()->startspurr = nowscaled;
250
	if (!in_interrupt()) {
251 252 253
		/* deltascaled includes both user and system time.
		 * Hence scale it based on the purr ratio to estimate
		 * the system time */
254
		sys_time = get_paca()->system_time;
255
		if (get_paca()->user_time)
256 257 258
			deltascaled = deltascaled * sys_time /
			     (sys_time + get_paca()->user_time);
		delta += sys_time;
259 260
		get_paca()->system_time = 0;
	}
261 262 263 264
	if (in_irq() || idle_task(smp_processor_id()) != tsk)
		account_system_time(tsk, 0, delta, deltascaled);
	else
		account_idle_time(delta);
M
Michael Neuling 已提交
265 266
	per_cpu(cputime_last_delta, smp_processor_id()) = delta;
	per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
267 268 269 270 271 272 273 274 275
	local_irq_restore(flags);
}

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
276
void account_process_tick(struct task_struct *tsk, int user_tick)
277
{
278
	cputime_t utime, utimescaled;
279 280 281

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
M
Michael Neuling 已提交
282
	utimescaled = cputime_to_scaled(utime);
283
	account_user_time(tsk, utime, utimescaled);
284 285 286 287 288 289 290 291 292
}

/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
293
	u64	spurr;			/* last SPURR value read */
294 295
};

296 297 298 299 300 301 302
/*
 * Each entry in the cpu_purr_data array is manipulated only by its
 * "owner" cpu -- usually in the timer interrupt but also occasionally
 * in process context for cpu online.  As long as cpus do not touch
 * each others' cpu_purr_data, disabling local interrupts is
 * sufficient to serialize accesses.
 */
303 304 305 306
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
307
	unsigned long flags;
308 309
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

310
	local_irq_save(flags);
311
	p->tb = get_tb_or_rtc();
312
	p->purr = mfspr(SPRN_PURR);
313 314
	wmb();
	p->initialized = 1;
315
	local_irq_restore(flags);
316 317 318 319 320 321 322 323 324
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
325
	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
326 327
}

328 329 330
/*
 * Must be called with interrupts disabled.
 */
331 332
void calculate_steal_time(void)
{
333
	u64 tb, purr;
334
	s64 stolen;
335
	struct cpu_purr_data *pme;
336

337
	pme = &__get_cpu_var(cpu_purr_data);
338
	if (!pme->initialized)
339
		return;		/* !CPU_FTR_PURR or early in early boot */
340
	tb = mftb();
341 342
	purr = mfspr(SPRN_PURR);
	stolen = (tb - pme->tb) - (purr - pme->purr);
343 344 345 346 347 348
	if (stolen > 0) {
		if (idle_task(smp_processor_id()) != current)
			account_steal_time(stolen);
		else
			account_idle_time(stolen);
	}
349 350 351 352
	pme->tb = tb;
	pme->purr = purr;
}

353
#ifdef CONFIG_PPC_SPLPAR
354 355 356 357 358 359
/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
360
	struct cpu_purr_data *pme;
361 362 363 364
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
365
	local_irq_save(flags);
366
	pme = &__get_cpu_var(cpu_purr_data);
367 368
	pme->tb = mftb();
	pme->purr = mfspr(SPRN_PURR);
369
	pme->initialized = 1;
370
	local_irq_restore(flags);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
390
	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
391 392 393
	snapshot_purr();
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

422
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
423
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
424
{
425 426 427 428 429 430 431 432
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
433 434
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
435
	 */
436 437 438 439 440
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
441
	vdso_data->stamp_xtime = xtime;
442
	smp_wmb();
443
	++(vdso_data->tb_update_count);
444 445
}

L
Linus Torvalds 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

467
static int __init iSeries_tb_recal(void)
L
Linus Torvalds 已提交
468 469 470
{
	struct div_result divres;
	unsigned long titan, tb;
471 472 473 474 475

	/* Make sure we only run on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		return -ENODEV;

L
Linus Torvalds 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
498
				calc_cputime_factors();
L
Linus Torvalds 已提交
499 500
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				tb_to_xs = divres.result_low;
501 502
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
503 504 505 506 507 508 509 510 511 512 513
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
514

515 516
	/* Called here as now we know accurate values for the timebase */
	clocksource_init();
517
	return 0;
L
Linus Torvalds 已提交
518
}
519 520 521 522 523 524 525 526 527
late_initcall(iSeries_tb_recal);

/* Called from platform early init */
void __init iSeries_time_init_early(void)
{
	iSeries_recal_tb = get_tb();
	iSeries_recal_titan = HvCallXm_loadTod();
}
#endif /* CONFIG_PPC_ISERIES */
L
Linus Torvalds 已提交
528

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
#if defined(CONFIG_PERF_COUNTERS) && defined(CONFIG_PPC32)
DEFINE_PER_CPU(u8, perf_counter_pending);

void set_perf_counter_pending(void)
{
	get_cpu_var(perf_counter_pending) = 1;
	set_dec(1);
	put_cpu_var(perf_counter_pending);
}

#define test_perf_counter_pending()	__get_cpu_var(perf_counter_pending)
#define clear_perf_counter_pending()	__get_cpu_var(perf_counter_pending) = 0

#else  /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */

#define test_perf_counter_pending()	0
#define clear_perf_counter_pending()

#endif /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */

L
Linus Torvalds 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562
/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
563
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
564
{
565
	struct pt_regs *old_regs;
566 567
	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
	struct clock_event_device *evt = &decrementer->event;
568
	u64 now;
569 570 571 572

	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continuue to take decrementer exceptions */
	set_dec(DECREMENTER_MAX);
573 574

#ifdef CONFIG_PPC32
575 576 577 578
	if (test_perf_counter_pending()) {
		clear_perf_counter_pending();
		perf_counter_do_pending();
	}
579 580 581
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
582

583
	now = get_tb_or_rtc();
584
	if (now < decrementer->next_tb) {
585
		/* not time for this event yet */
586
		now = decrementer->next_tb - now;
587
		if (now <= DECREMENTER_MAX)
588
			set_dec((int)now);
589 590
		return;
	}
591
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
592 593
	irq_enter();

594
	calculate_steal_time();
L
Linus Torvalds 已提交
595

596
#ifdef CONFIG_PPC_ISERIES
597 598
	if (firmware_has_feature(FW_FEATURE_ISERIES))
		get_lppaca()->int_dword.fields.decr_int = 0;
599 600
#endif

601 602
	if (evt->event_handler)
		evt->event_handler(evt);
L
Linus Torvalds 已提交
603 604

#ifdef CONFIG_PPC_ISERIES
605
	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
O
Olaf Hering 已提交
606
		process_hvlpevents();
L
Linus Torvalds 已提交
607 608
#endif

609
#ifdef CONFIG_PPC64
610
	/* collect purr register values often, for accurate calculations */
611
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
612 613 614
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
615
#endif
L
Linus Torvalds 已提交
616 617

	irq_exit();
618
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
619 620
}

621 622
void wakeup_decrementer(void)
{
623
	unsigned long ticks;
624 625

	/*
626 627
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
628
	 */
629 630 631 632 633 634
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
635 636
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
#ifdef CONFIG_SUSPEND
void generic_suspend_disable_irqs(void)
{
	preempt_disable();

	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

	set_dec(0x7fffffff);
	local_irq_disable();
	set_dec(0x7fffffff);
}

void generic_suspend_enable_irqs(void)
{
	wakeup_decrementer();

	local_irq_enable();
	preempt_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

676
#ifdef CONFIG_SMP
677 678 679
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
680
	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
681

682 683
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
684

685
	for_each_possible_cpu(i) {
686 687
		if (i == boot_cpuid)
			continue;
688
		per_cpu(last_jiffy, i) = previous_tb;
689 690 691 692
	}
}
#endif

L
Linus Torvalds 已提交
693 694 695 696 697 698 699 700 701
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
702 703
	if (__USE_RTC())
		return get_rtc();
704
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
705 706
}

707
static int __init get_freq(char *name, int cells, unsigned long *val)
708 709
{
	struct device_node *cpu;
710
	const unsigned int *fp;
711
	int found = 0;
712

713
	/* The cpu node should have timebase and clock frequency properties */
714 715
	cpu = of_find_node_by_type(NULL, "cpu");

716
	if (cpu) {
717
		fp = of_get_property(cpu, name, NULL);
718
		if (fp) {
719
			found = 1;
720
			*val = of_read_ulong(fp, cells);
721
		}
722 723

		of_node_put(cpu);
724
	}
725 726 727 728 729 730 731 732 733 734 735

	return found;
}

void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

736 737
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
738
	}
739

740 741 742 743 744 745 746
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
747
	}
748

J
Josh Boyer 已提交
749
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
750 751 752 753 754 755
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
756 757
}

758
int update_persistent_clock(struct timespec now)
759 760 761
{
	struct rtc_time tm;

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

unsigned long read_persistent_clock(void)
{
	struct rtc_time tm;
	static int first = 1;

	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
		if (ppc_md.get_boot_time)
			return ppc_md.get_boot_time() -timezone_offset;
	}
787 788 789 790 791 792 793
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

794
/* clocksource code */
795
static cycle_t rtc_read(struct clocksource *cs)
796 797 798 799
{
	return (cycle_t)get_rtc();
}

800
static cycle_t timebase_read(struct clocksource *cs)
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
{
	return (cycle_t)get_tb();
}

void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
{
	u64 t2x, stamp_xsec;

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

	/* XXX this assumes clock->shift == 22 */
	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
	t2x = (u64) clock->mult * 4611686018ULL;
	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(stamp_xsec, 1000000000);
	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
	update_gtod(clock->cycle_last, stamp_xsec, t2x);
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

836
static void __init clocksource_init(void)
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);

	if (clocksource_register(clock)) {
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

857 858 859
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
860
	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
861 862 863 864 865 866 867 868 869 870 871
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static void __init setup_clockevent_multiplier(unsigned long hz)
{
	u64 mult, shift = 32;

	while (1) {
		mult = div_sc(hz, NSEC_PER_SEC, shift);
		if (mult && (mult >> 32UL) == 0UL)
			break;

		shift--;
	}

	decrementer_clockevent.shift = shift;
	decrementer_clockevent.mult = mult;
}

888 889
static void register_decrementer_clockevent(int cpu)
{
890
	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
891 892

	*dec = decrementer_clockevent;
893
	dec->cpumask = cpumask_of(cpu);
894

895
	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
896 897 898 899 900
	       dec->name, dec->mult, dec->shift, cpu);

	clockevents_register_device(dec);
}

901
static void __init init_decrementer_clockevent(void)
902 903 904
{
	int cpu = smp_processor_id();

905
	setup_clockevent_multiplier(ppc_tb_freq);
906 907
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
908 909
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
910 911 912 913 914 915 916 917 918 919 920

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

921
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
922 923 924 925
void __init time_init(void)
{
	unsigned long flags;
	struct div_result res;
926
	u64 scale, x;
927 928
	unsigned shift;

929 930 931
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
932
		tb_last_jiffy = get_rtcl();
933 934 935
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
936
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
937
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
938
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
939
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
940
		tb_last_jiffy = get_tb();
941
	}
942 943

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
944
	tb_ticks_per_sec = ppc_tb_freq;
945 946
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
947
	calc_cputime_factors();
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
966 967 968 969 970 971 972
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
973
	 */
974 975
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
976 977 978 979 980
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
981

L
Linus Torvalds 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1000
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1001
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1002 1003

	write_seqlock_irqsave(&xtime_lock, flags);
1004 1005 1006 1007 1008 1009 1010

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
        }

1011 1012 1013
	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1014
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1015
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
1016 1017 1018

	write_sequnlock_irqrestore(&xtime_lock, flags);

1019 1020 1021 1022
	/* Register the clocksource, if we're not running on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		clocksource_init();

1023
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
1024 1025 1026 1027 1028 1029 1030
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1031 1032
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

1050
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1051 1052 1053 1054

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1055
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1056 1057 1058 1059 1060

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1061
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1062
	 */
1063
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1064 1065 1066 1067

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1068
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1114 1115
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1116 1117 1118 1119 1120 1121
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1122 1123
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1133 1134 1135
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1136
        return mlt;
1137
}
L
Linus Torvalds 已提交
1138 1139 1140 1141 1142

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1143 1144
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1145
{
1146 1147 1148
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1149 1150 1151 1152 1153 1154

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1155 1156 1157 1158 1159
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1160

1161 1162 1163 1164 1165
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1166

1167 1168
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1169 1170

}
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
	if (IS_ERR(pdev))
		return PTR_ERR(pdev);

	return 0;
}

module_init(rtc_init);