time.c 32.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
64 65
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
66
#include <asm/smp.h>
67
#include <asm/vdso_datapage.h>
68
#ifdef CONFIG_PPC64
69
#include <asm/firmware.h>
70 71
#endif
#ifdef CONFIG_PPC_ISERIES
72
#include <asm/iseries/it_lp_queue.h>
73
#include <asm/iseries/hv_call_xm.h>
74
#endif
75
#include <asm/smp.h>
L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84

/* keep track of when we need to update the rtc */
time_t last_rtc_update;
#ifdef CONFIG_PPC_ISERIES
unsigned long iSeries_recal_titan = 0;
unsigned long iSeries_recal_tb = 0; 
static unsigned long first_settimeofday = 1;
#endif

85 86 87
/* The decrementer counts down by 128 every 128ns on a 601. */
#define DECREMENTER_COUNT_601	(1000000000 / HZ)

L
Linus Torvalds 已提交
88 89
#define XSEC_PER_SEC (1024*1024)

90 91 92 93 94 95 96
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
97 98 99 100
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
101
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
102 103
u64 tb_to_xs;
unsigned tb_to_us;
104

105
#define TICKLEN_SCALE	TICK_LENGTH_SHIFT
106 107 108 109 110 111 112
u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
u64 ticklen_to_xs;	/* 0.64 fraction */

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
113
DEFINE_SPINLOCK(rtc_lock);
114
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
115

116 117
u64 tb_to_ns_scale;
unsigned tb_to_ns_shift;
L
Linus Torvalds 已提交
118 119 120 121

struct gettimeofday_struct do_gtod;

extern struct timezone sys_tz;
122
static long timezone_offset;
L
Linus Torvalds 已提交
123

124 125 126
unsigned long ppc_proc_freq;
unsigned long ppc_tb_freq;

127 128
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
129

130 131 132 133 134 135 136
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
137
EXPORT_SYMBOL(__cputime_jiffies_factor);
138
u64 __cputime_msec_factor;
139
EXPORT_SYMBOL(__cputime_msec_factor);
140
u64 __cputime_sec_factor;
141
EXPORT_SYMBOL(__cputime_sec_factor);
142
u64 __cputime_clockt_factor;
143
EXPORT_SYMBOL(__cputime_clockt_factor);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
	u64 now, delta;
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
	delta = now - get_paca()->startpurr;
	get_paca()->startpurr = now;
	if (!in_interrupt()) {
		delta += get_paca()->system_time;
		get_paca()->system_time = 0;
	}
	account_system_time(tsk, 0, delta);
	local_irq_restore(flags);
}

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
void account_process_vtime(struct task_struct *tsk)
{
	cputime_t utime;

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
	account_user_time(tsk, utime);
}

static void account_process_time(struct pt_regs *regs)
{
	int cpu = smp_processor_id();

	account_process_vtime(current);
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_mode(regs));
	scheduler_tick();
 	run_posix_cpu_timers(current);
}

#ifdef CONFIG_PPC_SPLPAR
/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
	spinlock_t lock;
};

static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

234 235
	p->tb = mftb();
	p->purr = mfspr(SPRN_PURR);
236 237 238 239 240 241 242 243 244 245 246 247 248
	wmb();
	p->initialized = 1;
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	int cpu;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
249
	for_each_possible_cpu(cpu)
250 251 252 253 254 255
		spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
}

void calculate_steal_time(void)
{
256
	u64 tb, purr;
257
	s64 stolen;
258
	struct cpu_purr_data *pme;
259 260 261

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
262
	pme = &per_cpu(cpu_purr_data, smp_processor_id());
263 264
	if (!pme->initialized)
		return;		/* this can happen in early boot */
265
	spin_lock(&pme->lock);
266
	tb = mftb();
267 268 269
	purr = mfspr(SPRN_PURR);
	stolen = (tb - pme->tb) - (purr - pme->purr);
	if (stolen > 0)
270 271 272
		account_steal_time(current, stolen);
	pme->tb = tb;
	pme->purr = purr;
273
	spin_unlock(&pme->lock);
274 275 276 277 278 279 280 281
}

/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
282
	struct cpu_purr_data *pme;
283 284 285 286
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
287 288 289 290
	pme = &per_cpu(cpu_purr_data, smp_processor_id());
	spin_lock_irqsave(&pme->lock, flags);
	pme->tb = mftb();
	pme->purr = mfspr(SPRN_PURR);
291
	pme->initialized = 1;
292
	spin_unlock_irqrestore(&pme->lock, flags);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define account_process_time(regs)	update_process_times(user_mode(regs))
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
	__get_cpu_var(last_jiffy) = get_tb();
	snapshot_purr();
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static __inline__ void timer_check_rtc(void)
{
        /*
         * update the rtc when needed, this should be performed on the
         * right fraction of a second. Half or full second ?
         * Full second works on mk48t59 clocks, others need testing.
         * Note that this update is basically only used through 
         * the adjtimex system calls. Setting the HW clock in
         * any other way is a /dev/rtc and userland business.
         * This is still wrong by -0.5/+1.5 jiffies because of the
         * timer interrupt resolution and possible delay, but here we 
         * hit a quantization limit which can only be solved by higher
         * resolution timers and decoupling time management from timer
         * interrupts. This is also wrong on the clocks
         * which require being written at the half second boundary.
         * We should have an rtc call that only sets the minutes and
         * seconds like on Intel to avoid problems with non UTC clocks.
         */
363
        if (ppc_md.set_rtc_time && ntp_synced() &&
364
	    xtime.tv_sec - last_rtc_update >= 659 &&
365
	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
366 367 368 369 370 371 372 373 374
		struct rtc_time tm;
		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
		tm.tm_year -= 1900;
		tm.tm_mon -= 1;
		if (ppc_md.set_rtc_time(&tm) == 0)
			last_rtc_update = xtime.tv_sec + 1;
		else
			/* Try again one minute later */
			last_rtc_update += 60;
L
Linus Torvalds 已提交
375 376 377 378 379 380
        }
}

/*
 * This version of gettimeofday has microsecond resolution.
 */
381
static inline void __do_gettimeofday(struct timeval *tv)
L
Linus Torvalds 已提交
382
{
383 384 385 386
	unsigned long sec, usec;
	u64 tb_ticks, xsec;
	struct gettimeofday_vars *temp_varp;
	u64 temp_tb_to_xs, temp_stamp_xsec;
L
Linus Torvalds 已提交
387 388 389 390 391 392 393 394

	/*
	 * These calculations are faster (gets rid of divides)
	 * if done in units of 1/2^20 rather than microseconds.
	 * The conversion to microseconds at the end is done
	 * without a divide (and in fact, without a multiply)
	 */
	temp_varp = do_gtod.varp;
395 396 397 398 399 400

	/* Sampling the time base must be done after loading
	 * do_gtod.varp in order to avoid racing with update_gtod.
	 */
	data_barrier(temp_varp);
	tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
L
Linus Torvalds 已提交
401 402
	temp_tb_to_xs = temp_varp->tb_to_xs;
	temp_stamp_xsec = temp_varp->stamp_xsec;
403
	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
L
Linus Torvalds 已提交
404
	sec = xsec / XSEC_PER_SEC;
405 406
	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
	usec = SCALE_XSEC(usec, 1000000);
L
Linus Torvalds 已提交
407 408 409 410 411 412 413

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

void do_gettimeofday(struct timeval *tv)
{
414 415 416
	if (__USE_RTC()) {
		/* do this the old way */
		unsigned long flags, seq;
417
		unsigned int sec, nsec, usec;
418 419 420 421

		do {
			seq = read_seqbegin_irqsave(&xtime_lock, flags);
			sec = xtime.tv_sec;
422
			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
423
		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
424
		usec = nsec / 1000;
425 426 427 428 429 430 431 432
		while (usec >= 1000000) {
			usec -= 1000000;
			++sec;
		}
		tv->tv_sec = sec;
		tv->tv_usec = usec;
		return;
	}
433
	__do_gettimeofday(tv);
L
Linus Torvalds 已提交
434 435 436 437 438
}

EXPORT_SYMBOL(do_gettimeofday);

/*
439 440 441 442 443 444
 * There are two copies of tb_to_xs and stamp_xsec so that no
 * lock is needed to access and use these values in
 * do_gettimeofday.  We alternate the copies and as long as a
 * reasonable time elapses between changes, there will never
 * be inconsistent values.  ntpd has a minimum of one minute
 * between updates.
L
Linus Torvalds 已提交
445
 */
446
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
447
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
448 449
{
	unsigned temp_idx;
450
	struct gettimeofday_vars *temp_varp;
L
Linus Torvalds 已提交
451 452 453 454

	temp_idx = (do_gtod.var_idx == 0);
	temp_varp = &do_gtod.vars[temp_idx];

455 456
	temp_varp->tb_to_xs = new_tb_to_xs;
	temp_varp->tb_orig_stamp = new_tb_stamp;
L
Linus Torvalds 已提交
457
	temp_varp->stamp_xsec = new_stamp_xsec;
458
	smp_mb();
L
Linus Torvalds 已提交
459 460 461
	do_gtod.varp = temp_varp;
	do_gtod.var_idx = temp_idx;

462 463 464 465 466 467 468 469
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
470 471
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
472
	 */
473 474 475 476 477
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
478
	smp_wmb();
479
	++(vdso_data->tb_update_count);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

/*
 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
 * difference tb - tb_orig_stamp small enough to always fit inside a
 * 32 bits number. This is a requirement of our fast 32 bits userland
 * implementation in the vdso. If we "miss" a call to this function
 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
 * with a too big difference, then the vdso will fallback to calling
 * the syscall
 */
static __inline__ void timer_recalc_offset(u64 cur_tb)
{
	unsigned long offset;
	u64 new_stamp_xsec;
496
	u64 tlen, t2x;
497 498
	u64 tb, xsec_old, xsec_new;
	struct gettimeofday_vars *varp;
499

500 501
	if (__USE_RTC())
		return;
502
	tlen = current_tick_length();
503
	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
504 505
	if (tlen == last_tick_len && offset < 0x80000000u)
		return;
506 507 508 509 510 511 512 513
	if (tlen != last_tick_len) {
		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
		last_tick_len = tlen;
	} else
		t2x = do_gtod.varp->tb_to_xs;
	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(new_stamp_xsec, 1000000000);
	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

	++vdso_data->tb_update_count;
	smp_mb();

	/*
	 * Make sure time doesn't go backwards for userspace gettimeofday.
	 */
	tb = get_tb();
	varp = do_gtod.varp;
	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
		+ varp->stamp_xsec;
	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
	if (xsec_new < xsec_old)
		new_stamp_xsec += xsec_old - xsec_new;

529
	update_gtod(cur_tb, new_stamp_xsec, t2x);
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
}

#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

static void iSeries_tb_recal(void)
{
	struct div_result divres;
	unsigned long titan, tb;
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
579
				calc_cputime_factors();
L
Linus Torvalds 已提交
580 581 582 583
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
				tb_to_xs = divres.result_low;
				do_gtod.varp->tb_to_xs = tb_to_xs;
584 585
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
}
#endif

/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
614
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
615
{
616
	struct pt_regs *old_regs;
L
Linus Torvalds 已提交
617
	int next_dec;
618 619
	int cpu = smp_processor_id();
	unsigned long ticks;
620
	u64 tb_next_jiffy;
621 622 623 624 625

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
626

627
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
628 629
	irq_enter();

630
	profile_tick(CPU_PROFILING);
631
	calculate_steal_time();
L
Linus Torvalds 已提交
632

633
#ifdef CONFIG_PPC_ISERIES
634 635
	if (firmware_has_feature(FW_FEATURE_ISERIES))
		get_lppaca()->int_dword.fields.decr_int = 0;
636 637 638 639 640 641 642 643 644
#endif

	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
	       >= tb_ticks_per_jiffy) {
		/* Update last_jiffy */
		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
		/* Handle RTCL overflow on 601 */
		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
			per_cpu(last_jiffy, cpu) -= 1000000000;
L
Linus Torvalds 已提交
645 646 647 648 649 650 651 652 653

		/*
		 * We cannot disable the decrementer, so in the period
		 * between this cpu's being marked offline in cpu_online_map
		 * and calling stop-self, it is taking timer interrupts.
		 * Avoid calling into the scheduler rebalancing code if this
		 * is the case.
		 */
		if (!cpu_is_offline(cpu))
654
			account_process_time(regs);
655

L
Linus Torvalds 已提交
656 657 658 659
		/*
		 * No need to check whether cpu is offline here; boot_cpuid
		 * should have been fixed up by now.
		 */
660 661 662 663
		if (cpu != boot_cpuid)
			continue;

		write_seqlock(&xtime_lock);
664 665 666
		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
			tb_last_jiffy = tb_next_jiffy;
667
			do_timer(1);
668 669 670
			timer_recalc_offset(tb_last_jiffy);
			timer_check_rtc();
		}
671
		write_sequnlock(&xtime_lock);
L
Linus Torvalds 已提交
672 673
	}
	
674
	next_dec = tb_ticks_per_jiffy - ticks;
L
Linus Torvalds 已提交
675 676 677
	set_dec(next_dec);

#ifdef CONFIG_PPC_ISERIES
678
	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
O
Olaf Hering 已提交
679
		process_hvlpevents();
L
Linus Torvalds 已提交
680 681
#endif

682
#ifdef CONFIG_PPC64
683
	/* collect purr register values often, for accurate calculations */
684
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
685 686 687
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
688
#endif
L
Linus Torvalds 已提交
689 690

	irq_exit();
691
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
692 693
}

694 695
void wakeup_decrementer(void)
{
696
	unsigned long ticks;
697 698

	/*
699 700
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
701
	 */
702 703 704 705 706 707
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
708 709
}

710
#ifdef CONFIG_SMP
711 712 713
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
714
	unsigned long half = tb_ticks_per_jiffy / 2;
715
	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
716
	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
717

718 719
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
720 721 722 723 724
	/*
	 * The stolen time calculation for POWER5 shared-processor LPAR
	 * systems works better if the two threads' timebase interrupts
	 * are staggered by half a jiffy with respect to each other.
	 */
725
	for_each_possible_cpu(i) {
726 727 728 729 730 731 732 733 734
		if (i == boot_cpuid)
			continue;
		if (i == (boot_cpuid ^ 1))
			per_cpu(last_jiffy, i) =
				per_cpu(last_jiffy, boot_cpuid) - half;
		else if (i & 1)
			per_cpu(last_jiffy, i) =
				per_cpu(last_jiffy, i ^ 1) + half;
		else {
735 736 737 738 739 740 741
			previous_tb += offset;
			per_cpu(last_jiffy, i) = previous_tb;
		}
	}
}
#endif

L
Linus Torvalds 已提交
742 743 744 745 746 747 748 749 750
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
751 752
	if (__USE_RTC())
		return get_rtc();
L
Linus Torvalds 已提交
753 754 755 756 757 758 759 760
	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
}

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, new_sec = tv->tv_sec;
	long wtm_nsec, new_nsec = tv->tv_nsec;
	unsigned long flags;
761 762
	u64 new_xsec;
	unsigned long tb_delta;
L
Linus Torvalds 已提交
763 764 765 766 767

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);
768 769 770 771 772

	/*
	 * Updating the RTC is not the job of this code. If the time is
	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
	 * is cleared.  Tools like clock/hwclock either copy the RTC
L
Linus Torvalds 已提交
773 774 775 776 777
	 * to the system time, in which case there is no point in writing
	 * to the RTC again, or write to the RTC but then they don't call
	 * settimeofday to perform this operation.
	 */
#ifdef CONFIG_PPC_ISERIES
778
	if (firmware_has_feature(FW_FEATURE_ISERIES) && first_settimeofday) {
L
Linus Torvalds 已提交
779 780 781 782
		iSeries_tb_recal();
		first_settimeofday = 0;
	}
#endif
783

784 785 786 787
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

788 789 790 791
	/*
	 * Subtract off the number of nanoseconds since the
	 * beginning of the last tick.
	 */
792
	tb_delta = tb_ticks_since(tb_last_jiffy);
793 794
	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
L
Linus Torvalds 已提交
795 796 797 798 799 800 801 802 803 804 805 806

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);

 	set_normalized_timespec(&xtime, new_sec, new_nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	/* In case of a large backwards jump in time with NTP, we want the 
	 * clock to be updated as soon as the PLL is again in lock.
	 */
	last_rtc_update = new_sec - 658;

J
john stultz 已提交
807
	ntp_clear();
L
Linus Torvalds 已提交
808

809 810 811
	new_xsec = xtime.tv_nsec;
	if (new_xsec != 0) {
		new_xsec *= XSEC_PER_SEC;
812 813
		do_div(new_xsec, NSEC_PER_SEC);
	}
814
	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
815
	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
L
Linus Torvalds 已提交
816

817 818
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
L
Linus Torvalds 已提交
819 820 821 822 823 824 825 826

	write_sequnlock_irqrestore(&xtime_lock, flags);
	clock_was_set();
	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

827
static int __init get_freq(char *name, int cells, unsigned long *val)
828 829
{
	struct device_node *cpu;
830
	const unsigned int *fp;
831
	int found = 0;
832

833
	/* The cpu node should have timebase and clock frequency properties */
834 835
	cpu = of_find_node_by_type(NULL, "cpu");

836
	if (cpu) {
837
		fp = get_property(cpu, name, NULL);
838
		if (fp) {
839
			found = 1;
840
			*val = of_read_ulong(fp, cells);
841
		}
842 843

		of_node_put(cpu);
844
	}
845 846 847 848 849 850 851 852 853 854 855

	return found;
}

void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

856 857
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
858
	}
859

860 861 862 863 864 865 866
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
867
	}
868

869 870 871 872 873 874 875 876 877 878 879
#ifdef CONFIG_BOOKE
	/* Set the time base to zero */
	mtspr(SPRN_TBWL, 0);
	mtspr(SPRN_TBWU, 0);

	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
880 881
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895
unsigned long get_boot_time(void)
{
	struct rtc_time tm;

	if (ppc_md.get_boot_time)
		return ppc_md.get_boot_time();
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
896 897 898
void __init time_init(void)
{
	unsigned long flags;
899
	unsigned long tm = 0;
L
Linus Torvalds 已提交
900
	struct div_result res;
901
	u64 scale, x;
902 903 904 905
	unsigned shift;

        if (ppc_md.time_init != NULL)
                timezone_offset = ppc_md.time_init();
L
Linus Torvalds 已提交
906

907 908 909
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
910
		tb_last_jiffy = get_rtcl();
911 912 913
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
914
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
915
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
916
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
917
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
918
		tb_last_jiffy = get_tb();
919
	}
920 921

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
922
	tb_ticks_per_sec = ppc_tb_freq;
923 924
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
925
	calc_cputime_factors();
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
944 945 946 947 948 949 950
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
951
	 */
952 953
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
954 955 956 957 958
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
959

L
Linus Torvalds 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;

979
	tm = get_boot_time();
L
Linus Torvalds 已提交
980 981

	write_seqlock_irqsave(&xtime_lock, flags);
982 983 984 985 986 987 988 989

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
		tm -= timezone_offset;
        }

990 991
	xtime.tv_sec = tm;
	xtime.tv_nsec = 0;
L
Linus Torvalds 已提交
992 993
	do_gtod.varp = &do_gtod.vars[0];
	do_gtod.var_idx = 0;
994
	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
995
	__get_cpu_var(last_jiffy) = tb_last_jiffy;
996
	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
L
Linus Torvalds 已提交
997 998 999
	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
	do_gtod.varp->tb_to_xs = tb_to_xs;
	do_gtod.tb_to_us = tb_to_us;
1000 1001 1002 1003

	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1004
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1005
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

	time_freq = 0;

	last_rtc_update = xtime.tv_sec;
	set_normalized_timespec(&wall_to_monotonic,
	                        -xtime.tv_sec, -xtime.tv_nsec);
	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* Not exact, but the timer interrupt takes care of this */
	set_dec(tb_ticks_per_jiffy);
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1023 1024
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

1042
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1043 1044 1045 1046

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1047
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1048 1049 1050 1051 1052

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1053
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1054
	 */
1055
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1056 1057 1058 1059

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1060
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1106 1107
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1108 1109 1110 1111 1112 1113
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1114 1115
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1125 1126 1127
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1128
        return mlt;
1129
}
L
Linus Torvalds 已提交
1130 1131 1132 1133 1134

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1135 1136
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1137
{
1138 1139 1140
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1147 1148 1149 1150 1151
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1152

1153 1154 1155 1156 1157
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1158

1159 1160
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1161 1162

}