time.c 31.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
55
#include <linux/delay.h>
L
Linus Torvalds 已提交
56 57 58 59 60 61 62 63 64

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
65 66
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
67
#include <asm/smp.h>
68
#include <asm/vdso_datapage.h>
69
#include <asm/firmware.h>
M
Michael Neuling 已提交
70
#include <asm/cputime.h>
71
#ifdef CONFIG_PPC_ISERIES
72
#include <asm/iseries/it_lp_queue.h>
73
#include <asm/iseries/hv_call_xm.h>
74
#endif
L
Linus Torvalds 已提交
75

76 77
/* powerpc clocksource/clockevent code */

78
#include <linux/clockchips.h>
79 80
#include <linux/clocksource.h>

81
static cycle_t rtc_read(struct clocksource *);
82 83 84 85 86 87 88 89 90 91
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = rtc_read,
};

92
static cycle_t timebase_read(struct clocksource *);
93 94 95 96 97 98 99 100 101 102
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = timebase_read,
};

103 104 105 106 107 108 109 110 111 112
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

static struct clock_event_device decrementer_clockevent = {
       .name           = "decrementer",
       .rating         = 200,
113
       .shift          = 0,	/* To be filled in */
114 115 116 117 118 119 120
       .mult           = 0,	/* To be filled in */
       .irq            = 0,
       .set_next_event = decrementer_set_next_event,
       .set_mode       = decrementer_set_mode,
       .features       = CLOCK_EVT_FEAT_ONESHOT,
};

121 122 123 124 125 126
struct decrementer_clock {
	struct clock_event_device event;
	u64 next_tb;
};

static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
127

L
Linus Torvalds 已提交
128
#ifdef CONFIG_PPC_ISERIES
129 130
static unsigned long __initdata iSeries_recal_titan;
static signed long __initdata iSeries_recal_tb;
131 132

/* Forward declaration is only needed for iSereis compiles */
133
static void __init clocksource_init(void);
L
Linus Torvalds 已提交
134 135 136 137
#endif

#define XSEC_PER_SEC (1024*1024)

138 139 140 141 142 143 144
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
145 146 147 148
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
149
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
150 151
u64 tb_to_xs;
unsigned tb_to_us;
152

153
#define TICKLEN_SCALE	NTP_SCALE_SHIFT
154 155
static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
static u64 ticklen_to_xs;	/* 0.64 fraction */
156 157 158 159 160

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
161
DEFINE_SPINLOCK(rtc_lock);
162
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
163

164 165 166
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static unsigned long boot_tb __read_mostly;
L
Linus Torvalds 已提交
167 168

extern struct timezone sys_tz;
169
static long timezone_offset;
L
Linus Torvalds 已提交
170

171
unsigned long ppc_proc_freq;
172
EXPORT_SYMBOL(ppc_proc_freq);
173 174
unsigned long ppc_tb_freq;

175 176
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
177

178 179 180 181 182 183 184
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
185
EXPORT_SYMBOL(__cputime_jiffies_factor);
186
u64 __cputime_msec_factor;
187
EXPORT_SYMBOL(__cputime_msec_factor);
188
u64 __cputime_sec_factor;
189
EXPORT_SYMBOL(__cputime_sec_factor);
190
u64 __cputime_clockt_factor;
191
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
192 193
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

219 220 221 222 223
/*
 * Read the SPURR on systems that have it, otherwise the purr
 */
static u64 read_spurr(u64 purr)
{
224 225 226 227 228
	/*
	 * cpus without PURR won't have a SPURR
	 * We already know the former when we use this, so tell gcc
	 */
	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
229 230 231 232
		return mfspr(SPRN_SPURR);
	return purr;
}

233 234 235 236 237 238
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
239
	u64 now, nowscaled, delta, deltascaled, sys_time;
240 241 242 243
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
244
	nowscaled = read_spurr(now);
245
	delta = now - get_paca()->startpurr;
246
	deltascaled = nowscaled - get_paca()->startspurr;
247
	get_paca()->startpurr = now;
248
	get_paca()->startspurr = nowscaled;
249
	if (!in_interrupt()) {
250 251 252
		/* deltascaled includes both user and system time.
		 * Hence scale it based on the purr ratio to estimate
		 * the system time */
253
		sys_time = get_paca()->system_time;
254
		if (get_paca()->user_time)
255 256 257
			deltascaled = deltascaled * sys_time /
			     (sys_time + get_paca()->user_time);
		delta += sys_time;
258 259
		get_paca()->system_time = 0;
	}
260 261 262 263
	if (in_irq() || idle_task(smp_processor_id()) != tsk)
		account_system_time(tsk, 0, delta, deltascaled);
	else
		account_idle_time(delta);
M
Michael Neuling 已提交
264 265
	per_cpu(cputime_last_delta, smp_processor_id()) = delta;
	per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
266 267 268 269 270 271 272 273 274
	local_irq_restore(flags);
}

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
275
void account_process_tick(struct task_struct *tsk, int user_tick)
276
{
277
	cputime_t utime, utimescaled;
278 279 280

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
M
Michael Neuling 已提交
281
	utimescaled = cputime_to_scaled(utime);
282
	account_user_time(tsk, utime, utimescaled);
283 284 285 286 287 288 289 290 291
}

/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
292
	u64	spurr;			/* last SPURR value read */
293 294
};

295 296 297 298 299 300 301
/*
 * Each entry in the cpu_purr_data array is manipulated only by its
 * "owner" cpu -- usually in the timer interrupt but also occasionally
 * in process context for cpu online.  As long as cpus do not touch
 * each others' cpu_purr_data, disabling local interrupts is
 * sufficient to serialize accesses.
 */
302 303 304 305
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
306
	unsigned long flags;
307 308
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

309
	local_irq_save(flags);
310
	p->tb = get_tb_or_rtc();
311
	p->purr = mfspr(SPRN_PURR);
312 313
	wmb();
	p->initialized = 1;
314
	local_irq_restore(flags);
315 316 317 318 319 320 321 322 323
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
324
	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
325 326
}

327 328 329
/*
 * Must be called with interrupts disabled.
 */
330 331
void calculate_steal_time(void)
{
332
	u64 tb, purr;
333
	s64 stolen;
334
	struct cpu_purr_data *pme;
335

336
	pme = &__get_cpu_var(cpu_purr_data);
337
	if (!pme->initialized)
338
		return;		/* !CPU_FTR_PURR or early in early boot */
339
	tb = mftb();
340 341
	purr = mfspr(SPRN_PURR);
	stolen = (tb - pme->tb) - (purr - pme->purr);
342 343 344 345 346 347
	if (stolen > 0) {
		if (idle_task(smp_processor_id()) != current)
			account_steal_time(stolen);
		else
			account_idle_time(stolen);
	}
348 349 350 351
	pme->tb = tb;
	pme->purr = purr;
}

352
#ifdef CONFIG_PPC_SPLPAR
353 354 355 356 357 358
/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
359
	struct cpu_purr_data *pme;
360 361 362 363
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
364
	local_irq_save(flags);
365
	pme = &__get_cpu_var(cpu_purr_data);
366 367
	pme->tb = mftb();
	pme->purr = mfspr(SPRN_PURR);
368
	pme->initialized = 1;
369
	local_irq_restore(flags);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
389
	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
390 391 392
	snapshot_purr();
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

421
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
422
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
423
{
424 425 426 427 428 429 430 431
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
432 433
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
434
	 */
435 436 437 438 439
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
440
	vdso_data->stamp_xtime = xtime;
441
	smp_wmb();
442
	++(vdso_data->tb_update_count);
443 444
}

L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

466
static int __init iSeries_tb_recal(void)
L
Linus Torvalds 已提交
467 468 469
{
	struct div_result divres;
	unsigned long titan, tb;
470 471 472 473 474

	/* Make sure we only run on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		return -ENODEV;

L
Linus Torvalds 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
497
				calc_cputime_factors();
L
Linus Torvalds 已提交
498 499
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				tb_to_xs = divres.result_low;
500 501
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
502 503 504 505 506 507 508 509 510 511 512
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
513

514 515
	/* Called here as now we know accurate values for the timebase */
	clocksource_init();
516
	return 0;
L
Linus Torvalds 已提交
517
}
518 519 520 521 522 523 524 525 526
late_initcall(iSeries_tb_recal);

/* Called from platform early init */
void __init iSeries_time_init_early(void)
{
	iSeries_recal_tb = get_tb();
	iSeries_recal_titan = HvCallXm_loadTod();
}
#endif /* CONFIG_PPC_ISERIES */
L
Linus Torvalds 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
542
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
543
{
544
	struct pt_regs *old_regs;
545 546
	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
	struct clock_event_device *evt = &decrementer->event;
547
	u64 now;
548 549 550 551

	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continuue to take decrementer exceptions */
	set_dec(DECREMENTER_MAX);
552 553 554 555 556

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
557

558
	now = get_tb_or_rtc();
559
	if (now < decrementer->next_tb) {
560
		/* not time for this event yet */
561
		now = decrementer->next_tb - now;
562
		if (now <= DECREMENTER_MAX)
563
			set_dec((int)now);
564 565
		return;
	}
566
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
567 568
	irq_enter();

569
	calculate_steal_time();
L
Linus Torvalds 已提交
570

571
#ifdef CONFIG_PPC_ISERIES
572 573
	if (firmware_has_feature(FW_FEATURE_ISERIES))
		get_lppaca()->int_dword.fields.decr_int = 0;
574 575
#endif

576 577
	if (evt->event_handler)
		evt->event_handler(evt);
L
Linus Torvalds 已提交
578 579

#ifdef CONFIG_PPC_ISERIES
580
	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
O
Olaf Hering 已提交
581
		process_hvlpevents();
L
Linus Torvalds 已提交
582 583
#endif

584
#ifdef CONFIG_PPC64
585
	/* collect purr register values often, for accurate calculations */
586
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
587 588 589
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
590
#endif
L
Linus Torvalds 已提交
591 592

	irq_exit();
593
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
594 595
}

596 597
void wakeup_decrementer(void)
{
598
	unsigned long ticks;
599 600

	/*
601 602
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
603
	 */
604 605 606 607 608 609
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
#ifdef CONFIG_SUSPEND
void generic_suspend_disable_irqs(void)
{
	preempt_disable();

	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

	set_dec(0x7fffffff);
	local_irq_disable();
	set_dec(0x7fffffff);
}

void generic_suspend_enable_irqs(void)
{
	wakeup_decrementer();

	local_irq_enable();
	preempt_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

651
#ifdef CONFIG_SMP
652 653 654
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
655
	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
656

657 658
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
659

660
	for_each_possible_cpu(i) {
661 662
		if (i == boot_cpuid)
			continue;
663
		per_cpu(last_jiffy, i) = previous_tb;
664 665 666 667
	}
}
#endif

L
Linus Torvalds 已提交
668 669 670 671 672 673 674 675 676
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
677 678
	if (__USE_RTC())
		return get_rtc();
679
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
680 681
}

682
static int __init get_freq(char *name, int cells, unsigned long *val)
683 684
{
	struct device_node *cpu;
685
	const unsigned int *fp;
686
	int found = 0;
687

688
	/* The cpu node should have timebase and clock frequency properties */
689 690
	cpu = of_find_node_by_type(NULL, "cpu");

691
	if (cpu) {
692
		fp = of_get_property(cpu, name, NULL);
693
		if (fp) {
694
			found = 1;
695
			*val = of_read_ulong(fp, cells);
696
		}
697 698

		of_node_put(cpu);
699
	}
700 701 702 703 704 705 706 707 708 709 710

	return found;
}

void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

711 712
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
713
	}
714

715 716 717 718 719 720 721
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
722
	}
723

J
Josh Boyer 已提交
724
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
725 726 727 728 729 730
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
731 732
}

733
int update_persistent_clock(struct timespec now)
734 735 736
{
	struct rtc_time tm;

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

unsigned long read_persistent_clock(void)
{
	struct rtc_time tm;
	static int first = 1;

	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
		if (ppc_md.get_boot_time)
			return ppc_md.get_boot_time() -timezone_offset;
	}
762 763 764 765 766 767 768
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

769
/* clocksource code */
770
static cycle_t rtc_read(struct clocksource *cs)
771 772 773 774
{
	return (cycle_t)get_rtc();
}

775
static cycle_t timebase_read(struct clocksource *cs)
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
{
	return (cycle_t)get_tb();
}

void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
{
	u64 t2x, stamp_xsec;

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

	/* XXX this assumes clock->shift == 22 */
	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
	t2x = (u64) clock->mult * 4611686018ULL;
	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(stamp_xsec, 1000000000);
	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
	update_gtod(clock->cycle_last, stamp_xsec, t2x);
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

811
static void __init clocksource_init(void)
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);

	if (clocksource_register(clock)) {
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

832 833 834
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
835
	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
836 837 838 839 840 841 842 843 844 845 846
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
static void __init setup_clockevent_multiplier(unsigned long hz)
{
	u64 mult, shift = 32;

	while (1) {
		mult = div_sc(hz, NSEC_PER_SEC, shift);
		if (mult && (mult >> 32UL) == 0UL)
			break;

		shift--;
	}

	decrementer_clockevent.shift = shift;
	decrementer_clockevent.mult = mult;
}

863 864
static void register_decrementer_clockevent(int cpu)
{
865
	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
866 867

	*dec = decrementer_clockevent;
868
	dec->cpumask = cpumask_of(cpu);
869

870
	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
871 872 873 874 875
	       dec->name, dec->mult, dec->shift, cpu);

	clockevents_register_device(dec);
}

876
static void __init init_decrementer_clockevent(void)
877 878 879
{
	int cpu = smp_processor_id();

880
	setup_clockevent_multiplier(ppc_tb_freq);
881 882
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
883 884
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
885 886 887 888 889 890 891 892 893 894 895

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

896
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
897 898 899 900
void __init time_init(void)
{
	unsigned long flags;
	struct div_result res;
901
	u64 scale, x;
902 903
	unsigned shift;

904 905 906
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
907
		tb_last_jiffy = get_rtcl();
908 909 910
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
911
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
912
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
913
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
914
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
915
		tb_last_jiffy = get_tb();
916
	}
917 918

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
919
	tb_ticks_per_sec = ppc_tb_freq;
920 921
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
922
	calc_cputime_factors();
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
941 942 943 944 945 946 947
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
948
	 */
949 950
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
951 952 953 954 955
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
956

L
Linus Torvalds 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
975
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
976
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
977 978

	write_seqlock_irqsave(&xtime_lock, flags);
979 980 981 982 983 984 985

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
        }

986 987 988
	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
989
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
990
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
991 992 993

	write_sequnlock_irqrestore(&xtime_lock, flags);

994 995 996 997
	/* Register the clocksource, if we're not running on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		clocksource_init();

998
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1006 1007
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

1025
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1026 1027 1028 1029

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1030
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1031 1032 1033 1034 1035

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1036
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1037
	 */
1038
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1039 1040 1041 1042

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1043
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1089 1090
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1097 1098
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1108 1109 1110
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1111
        return mlt;
1112
}
L
Linus Torvalds 已提交
1113 1114 1115 1116 1117

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1118 1119
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1120
{
1121 1122 1123
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128 1129

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1130 1131 1132 1133 1134
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1135

1136 1137 1138 1139 1140
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1141

1142 1143
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1144 1145

}
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
	if (IS_ERR(pdev))
		return PTR_ERR(pdev);

	return 0;
}

module_init(rtc_init);