time.c 31.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
64 65
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
66
#include <asm/smp.h>
67
#include <asm/vdso_datapage.h>
68
#include <asm/firmware.h>
69
#ifdef CONFIG_PPC_ISERIES
70
#include <asm/iseries/it_lp_queue.h>
71
#include <asm/iseries/hv_call_xm.h>
72
#endif
L
Linus Torvalds 已提交
73

74 75
/* powerpc clocksource/clockevent code */

76
#include <linux/clockchips.h>
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#include <linux/clocksource.h>

static cycle_t rtc_read(void);
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = rtc_read,
};

static cycle_t timebase_read(void);
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = timebase_read,
};

101 102 103 104 105 106 107 108 109 110
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

static struct clock_event_device decrementer_clockevent = {
       .name           = "decrementer",
       .rating         = 200,
111
       .shift          = 16,
112 113 114 115 116 117 118 119 120
       .mult           = 0,	/* To be filled in */
       .irq            = 0,
       .set_next_event = decrementer_set_next_event,
       .set_mode       = decrementer_set_mode,
       .features       = CLOCK_EVT_FEAT_ONESHOT,
};

static DEFINE_PER_CPU(struct clock_event_device, decrementers);
void init_decrementer_clockevent(void);
121
static DEFINE_PER_CPU(u64, decrementer_next_tb);
122

L
Linus Torvalds 已提交
123
#ifdef CONFIG_PPC_ISERIES
124 125
static unsigned long __initdata iSeries_recal_titan;
static signed long __initdata iSeries_recal_tb;
126 127 128

/* Forward declaration is only needed for iSereis compiles */
void __init clocksource_init(void);
L
Linus Torvalds 已提交
129 130 131 132
#endif

#define XSEC_PER_SEC (1024*1024)

133 134 135 136 137 138 139
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
140 141 142 143
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
144
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
145 146
u64 tb_to_xs;
unsigned tb_to_us;
147

148
#define TICKLEN_SCALE	TICK_LENGTH_SHIFT
149 150 151 152 153 154 155
u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
u64 ticklen_to_xs;	/* 0.64 fraction */

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
156
DEFINE_SPINLOCK(rtc_lock);
157
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
158

159 160 161
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static unsigned long boot_tb __read_mostly;
L
Linus Torvalds 已提交
162 163 164 165

struct gettimeofday_struct do_gtod;

extern struct timezone sys_tz;
166
static long timezone_offset;
L
Linus Torvalds 已提交
167

168
unsigned long ppc_proc_freq;
169
EXPORT_SYMBOL(ppc_proc_freq);
170 171
unsigned long ppc_tb_freq;

172 173
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
174

175 176 177 178 179 180 181
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
182
EXPORT_SYMBOL(__cputime_jiffies_factor);
183
u64 __cputime_msec_factor;
184
EXPORT_SYMBOL(__cputime_msec_factor);
185
u64 __cputime_sec_factor;
186
EXPORT_SYMBOL(__cputime_sec_factor);
187
u64 __cputime_clockt_factor;
188
EXPORT_SYMBOL(__cputime_clockt_factor);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

214 215 216 217 218 219 220 221 222 223
/*
 * Read the SPURR on systems that have it, otherwise the purr
 */
static u64 read_spurr(u64 purr)
{
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
	return purr;
}

224 225 226 227 228 229
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
230
	u64 now, nowscaled, delta, deltascaled;
231 232 233 234 235 236
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
	delta = now - get_paca()->startpurr;
	get_paca()->startpurr = now;
237 238 239
	nowscaled = read_spurr(now);
	deltascaled = nowscaled - get_paca()->startspurr;
	get_paca()->startspurr = nowscaled;
240
	if (!in_interrupt()) {
241 242 243 244 245
		/* deltascaled includes both user and system time.
		 * Hence scale it based on the purr ratio to estimate
		 * the system time */
		deltascaled = deltascaled * get_paca()->system_time /
			(get_paca()->system_time + get_paca()->user_time);
246 247 248 249
		delta += get_paca()->system_time;
		get_paca()->system_time = 0;
	}
	account_system_time(tsk, 0, delta);
250 251 252
	get_paca()->purrdelta = delta;
	account_system_time_scaled(tsk, deltascaled);
	get_paca()->spurrdelta = deltascaled;
253 254 255 256 257 258 259 260 261 262 263
	local_irq_restore(flags);
}

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
void account_process_vtime(struct task_struct *tsk)
{
264
	cputime_t utime, utimescaled;
265 266 267 268

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
	account_user_time(tsk, utime);
269 270 271 272 273 274

	/* Estimate the scaled utime by scaling the real utime based
	 * on the last spurr to purr ratio */
	utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
	get_paca()->spurrdelta = get_paca()->purrdelta = 0;
	account_user_time_scaled(tsk, utimescaled);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
}

static void account_process_time(struct pt_regs *regs)
{
	int cpu = smp_processor_id();

	account_process_vtime(current);
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_mode(regs));
	scheduler_tick();
 	run_posix_cpu_timers(current);
}

/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
296
	u64	spurr;			/* last SPURR value read */
297 298
};

299 300 301 302 303 304 305
/*
 * Each entry in the cpu_purr_data array is manipulated only by its
 * "owner" cpu -- usually in the timer interrupt but also occasionally
 * in process context for cpu online.  As long as cpus do not touch
 * each others' cpu_purr_data, disabling local interrupts is
 * sufficient to serialize accesses.
 */
306 307 308 309
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
310
	unsigned long flags;
311 312
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

313
	local_irq_save(flags);
314
	p->tb = get_tb_or_rtc();
315
	p->purr = mfspr(SPRN_PURR);
316 317
	wmb();
	p->initialized = 1;
318
	local_irq_restore(flags);
319 320 321 322 323 324 325 326 327 328 329 330
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
}

331 332 333
/*
 * Must be called with interrupts disabled.
 */
334 335
void calculate_steal_time(void)
{
336
	u64 tb, purr;
337
	s64 stolen;
338
	struct cpu_purr_data *pme;
339 340 341

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
342
	pme = &per_cpu(cpu_purr_data, smp_processor_id());
343 344 345
	if (!pme->initialized)
		return;		/* this can happen in early boot */
	tb = mftb();
346 347 348
	purr = mfspr(SPRN_PURR);
	stolen = (tb - pme->tb) - (purr - pme->purr);
	if (stolen > 0)
349 350 351 352 353
		account_steal_time(current, stolen);
	pme->tb = tb;
	pme->purr = purr;
}

354
#ifdef CONFIG_PPC_SPLPAR
355 356 357 358 359 360
/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
361
	struct cpu_purr_data *pme;
362 363 364 365
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
366
	local_irq_save(flags);
367 368 369
	pme = &per_cpu(cpu_purr_data, smp_processor_id());
	pme->tb = mftb();
	pme->purr = mfspr(SPRN_PURR);
370
	pme->initialized = 1;
371
	local_irq_restore(flags);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define account_process_time(regs)	update_process_times(user_mode(regs))
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
392
	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
393 394 395
	snapshot_purr();
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
424 425

/*
426 427 428 429 430 431
 * There are two copies of tb_to_xs and stamp_xsec so that no
 * lock is needed to access and use these values in
 * do_gettimeofday.  We alternate the copies and as long as a
 * reasonable time elapses between changes, there will never
 * be inconsistent values.  ntpd has a minimum of one minute
 * between updates.
L
Linus Torvalds 已提交
432
 */
433
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
434
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
435 436
{
	unsigned temp_idx;
437
	struct gettimeofday_vars *temp_varp;
L
Linus Torvalds 已提交
438 439 440 441

	temp_idx = (do_gtod.var_idx == 0);
	temp_varp = &do_gtod.vars[temp_idx];

442 443
	temp_varp->tb_to_xs = new_tb_to_xs;
	temp_varp->tb_orig_stamp = new_tb_stamp;
L
Linus Torvalds 已提交
444
	temp_varp->stamp_xsec = new_stamp_xsec;
445
	smp_mb();
L
Linus Torvalds 已提交
446 447 448
	do_gtod.varp = temp_varp;
	do_gtod.var_idx = temp_idx;

449 450 451 452 453 454 455 456
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
457 458
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
459
	 */
460 461 462 463 464
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
465
	smp_wmb();
466
	++(vdso_data->tb_update_count);
467 468
}

L
Linus Torvalds 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

490
static int __init iSeries_tb_recal(void)
L
Linus Torvalds 已提交
491 492 493
{
	struct div_result divres;
	unsigned long titan, tb;
494 495 496 497 498

	/* Make sure we only run on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		return -ENODEV;

L
Linus Torvalds 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
521
				calc_cputime_factors();
L
Linus Torvalds 已提交
522 523 524 525
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
				tb_to_xs = divres.result_low;
				do_gtod.varp->tb_to_xs = tb_to_xs;
526 527
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
528 529 530 531 532 533 534 535 536 537 538
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
539

540 541
	/* Called here as now we know accurate values for the timebase */
	clocksource_init();
542
	return 0;
L
Linus Torvalds 已提交
543
}
544 545 546 547 548 549 550 551 552
late_initcall(iSeries_tb_recal);

/* Called from platform early init */
void __init iSeries_time_init_early(void)
{
	iSeries_recal_tb = get_tb();
	iSeries_recal_titan = HvCallXm_loadTod();
}
#endif /* CONFIG_PPC_ISERIES */
L
Linus Torvalds 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
568
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
569
{
570
	struct pt_regs *old_regs;
571
	int cpu = smp_processor_id();
572
	struct clock_event_device *evt = &per_cpu(decrementers, cpu);
573
	u64 now;
574 575 576 577

	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continuue to take decrementer exceptions */
	set_dec(DECREMENTER_MAX);
578 579 580 581 582

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
583

584 585 586 587 588 589 590 591
	now = get_tb_or_rtc();
	if (now < per_cpu(decrementer_next_tb, cpu)) {
		/* not time for this event yet */
		now = per_cpu(decrementer_next_tb, cpu) - now;
		if (now <= DECREMENTER_MAX)
			set_dec((unsigned int)now - 1);
		return;
	}
592
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
593 594
	irq_enter();

595
	calculate_steal_time();
L
Linus Torvalds 已提交
596

597
#ifdef CONFIG_PPC_ISERIES
598 599
	if (firmware_has_feature(FW_FEATURE_ISERIES))
		get_lppaca()->int_dword.fields.decr_int = 0;
600 601
#endif

602 603 604 605 606 607 608 609 610
	/*
	 * We cannot disable the decrementer, so in the period
	 * between this cpu's being marked offline in cpu_online_map
	 * and calling stop-self, it is taking timer interrupts.
	 * Avoid calling into the scheduler rebalancing code if this
	 * is the case.
	 */
	if (!cpu_is_offline(cpu))
		account_process_time(regs);
611

612 613 614 615
	if (evt->event_handler)
		evt->event_handler(evt);
	else
		evt->set_next_event(DECREMENTER_MAX, evt);
L
Linus Torvalds 已提交
616 617

#ifdef CONFIG_PPC_ISERIES
618
	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
O
Olaf Hering 已提交
619
		process_hvlpevents();
L
Linus Torvalds 已提交
620 621
#endif

622
#ifdef CONFIG_PPC64
623
	/* collect purr register values often, for accurate calculations */
624
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
625 626 627
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
628
#endif
L
Linus Torvalds 已提交
629 630

	irq_exit();
631
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
632 633
}

634 635
void wakeup_decrementer(void)
{
636
	unsigned long ticks;
637 638

	/*
639 640
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
641
	 */
642 643 644 645 646 647
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
648 649
}

650
#ifdef CONFIG_SMP
651 652 653
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
654
	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
655

656 657
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
658

659
	for_each_possible_cpu(i) {
660 661
		if (i == boot_cpuid)
			continue;
662
		per_cpu(last_jiffy, i) = previous_tb;
663 664 665 666
	}
}
#endif

L
Linus Torvalds 已提交
667 668 669 670 671 672 673 674 675
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
676 677
	if (__USE_RTC())
		return get_rtc();
678
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
679 680
}

681
static int __init get_freq(char *name, int cells, unsigned long *val)
682 683
{
	struct device_node *cpu;
684
	const unsigned int *fp;
685
	int found = 0;
686

687
	/* The cpu node should have timebase and clock frequency properties */
688 689
	cpu = of_find_node_by_type(NULL, "cpu");

690
	if (cpu) {
691
		fp = of_get_property(cpu, name, NULL);
692
		if (fp) {
693
			found = 1;
694
			*val = of_read_ulong(fp, cells);
695
		}
696 697

		of_node_put(cpu);
698
	}
699 700 701 702 703 704 705 706 707 708 709

	return found;
}

void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

710 711
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
712
	}
713

714 715 716 717 718 719 720
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
721
	}
722

J
Josh Boyer 已提交
723
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
724 725 726 727 728 729 730 731 732 733
	/* Set the time base to zero */
	mtspr(SPRN_TBWL, 0);
	mtspr(SPRN_TBWU, 0);

	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
734 735
}

736
int update_persistent_clock(struct timespec now)
737 738 739
{
	struct rtc_time tm;

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

unsigned long read_persistent_clock(void)
{
	struct rtc_time tm;
	static int first = 1;

	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
		if (ppc_md.get_boot_time)
			return ppc_md.get_boot_time() -timezone_offset;
	}
765 766 767 768 769 770 771
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/* clocksource code */
static cycle_t rtc_read(void)
{
	return (cycle_t)get_rtc();
}

static cycle_t timebase_read(void)
{
	return (cycle_t)get_tb();
}

void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
{
	u64 t2x, stamp_xsec;

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

	/* XXX this assumes clock->shift == 22 */
	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
	t2x = (u64) clock->mult * 4611686018ULL;
	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(stamp_xsec, 1000000000);
	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
	update_gtod(clock->cycle_last, stamp_xsec, t2x);
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

void __init clocksource_init(void)
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);

	if (clocksource_register(clock)) {
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

835 836 837
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
838 839 840 841
	__get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
	/* The decrementer interrupts on the 0 -> -1 transition */
	if (evt)
		--evt;
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

static void register_decrementer_clockevent(int cpu)
{
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);

	*dec = decrementer_clockevent;
	dec->cpumask = cpumask_of_cpu(cpu);

860
	printk(KERN_INFO "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	       dec->name, dec->mult, dec->shift, cpu);

	clockevents_register_device(dec);
}

void init_decrementer_clockevent(void)
{
	int cpu = smp_processor_id();

	decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
					     decrementer_clockevent.shift);
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
	decrementer_clockevent.min_delta_ns = 1000;

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

886
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
887 888 889 890
void __init time_init(void)
{
	unsigned long flags;
	struct div_result res;
891
	u64 scale, x;
892 893
	unsigned shift;

894 895 896
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
897
		tb_last_jiffy = get_rtcl();
898 899 900
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
901
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
902
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
903
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
904
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
905
		tb_last_jiffy = get_tb();
906
	}
907 908

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
909
	tb_ticks_per_sec = ppc_tb_freq;
910 911
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
912
	calc_cputime_factors();
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
931 932 933 934 935 936 937
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
938
	 */
939 940
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
941 942 943 944 945
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
946

L
Linus Torvalds 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
965
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
966
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
967 968

	write_seqlock_irqsave(&xtime_lock, flags);
969 970 971 972 973 974 975

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
        }

L
Linus Torvalds 已提交
976 977
	do_gtod.varp = &do_gtod.vars[0];
	do_gtod.var_idx = 0;
978
	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
979
	__get_cpu_var(last_jiffy) = tb_last_jiffy;
980
	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
L
Linus Torvalds 已提交
981 982 983
	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
	do_gtod.varp->tb_to_xs = tb_to_xs;
	do_gtod.tb_to_us = tb_to_us;
984 985 986 987

	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
988
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
989
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
990 991 992 993 994

	time_freq = 0;

	write_sequnlock_irqrestore(&xtime_lock, flags);

995 996 997 998
	/* Register the clocksource, if we're not running on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		clocksource_init();

999
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
1000 1001 1002 1003 1004 1005 1006
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1007 1008
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

1026
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1027 1028 1029 1030

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1031
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1032 1033 1034 1035 1036

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1037
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1038
	 */
1039
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1040 1041 1042 1043

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1044
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1090 1091
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1092 1093 1094 1095 1096 1097
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1098 1099
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1109 1110 1111
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1112
        return mlt;
1113
}
L
Linus Torvalds 已提交
1114 1115 1116 1117 1118

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1119 1120
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1121
{
1122 1123 1124
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1125 1126 1127 1128 1129 1130

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1131 1132 1133 1134 1135
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1136

1137 1138 1139 1140 1141
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1142

1143 1144
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1145 1146

}