time.c 30.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
64 65
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
66
#include <asm/smp.h>
67
#include <asm/vdso_datapage.h>
68
#ifdef CONFIG_PPC64
69
#include <asm/firmware.h>
70 71
#endif
#ifdef CONFIG_PPC_ISERIES
72
#include <asm/iseries/it_lp_queue.h>
73
#include <asm/iseries/hv_call_xm.h>
74
#endif
L
Linus Torvalds 已提交
75 76

#ifdef CONFIG_PPC_ISERIES
77 78
static unsigned long __initdata iSeries_recal_titan;
static signed long __initdata iSeries_recal_tb;
L
Linus Torvalds 已提交
79 80 81 82
#endif

#define XSEC_PER_SEC (1024*1024)

83 84 85 86 87 88 89
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
90 91 92 93
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
94
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
95 96
u64 tb_to_xs;
unsigned tb_to_us;
97

98
#define TICKLEN_SCALE	TICK_LENGTH_SHIFT
99 100 101 102 103 104 105
u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
u64 ticklen_to_xs;	/* 0.64 fraction */

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
106
DEFINE_SPINLOCK(rtc_lock);
107
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
108

109 110 111
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static unsigned long boot_tb __read_mostly;
L
Linus Torvalds 已提交
112 113 114 115

struct gettimeofday_struct do_gtod;

extern struct timezone sys_tz;
116
static long timezone_offset;
L
Linus Torvalds 已提交
117

118
unsigned long ppc_proc_freq;
119
EXPORT_SYMBOL(ppc_proc_freq);
120 121
unsigned long ppc_tb_freq;

122 123
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
124

125 126 127 128 129 130 131
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
132
EXPORT_SYMBOL(__cputime_jiffies_factor);
133
u64 __cputime_msec_factor;
134
EXPORT_SYMBOL(__cputime_msec_factor);
135
u64 __cputime_sec_factor;
136
EXPORT_SYMBOL(__cputime_sec_factor);
137
u64 __cputime_clockt_factor;
138
EXPORT_SYMBOL(__cputime_clockt_factor);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
	u64 now, delta;
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
	delta = now - get_paca()->startpurr;
	get_paca()->startpurr = now;
	if (!in_interrupt()) {
		delta += get_paca()->system_time;
		get_paca()->system_time = 0;
	}
	account_system_time(tsk, 0, delta);
	local_irq_restore(flags);
}

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
void account_process_vtime(struct task_struct *tsk)
{
	cputime_t utime;

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
	account_user_time(tsk, utime);
}

static void account_process_time(struct pt_regs *regs)
{
	int cpu = smp_processor_id();

	account_process_vtime(current);
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_mode(regs));
	scheduler_tick();
 	run_posix_cpu_timers(current);
}

/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
};

221 222 223 224 225 226 227
/*
 * Each entry in the cpu_purr_data array is manipulated only by its
 * "owner" cpu -- usually in the timer interrupt but also occasionally
 * in process context for cpu online.  As long as cpus do not touch
 * each others' cpu_purr_data, disabling local interrupts is
 * sufficient to serialize accesses.
 */
228 229 230 231
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
232
	unsigned long flags;
233 234
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

235
	local_irq_save(flags);
236
	p->tb = get_tb_or_rtc();
237
	p->purr = mfspr(SPRN_PURR);
238 239
	wmb();
	p->initialized = 1;
240
	local_irq_restore(flags);
241 242 243 244 245 246 247 248 249 250 251 252
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
}

253 254 255
/*
 * Must be called with interrupts disabled.
 */
256 257
void calculate_steal_time(void)
{
258
	u64 tb, purr;
259
	s64 stolen;
260
	struct cpu_purr_data *pme;
261 262 263

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
264
	pme = &per_cpu(cpu_purr_data, smp_processor_id());
265 266 267
	if (!pme->initialized)
		return;		/* this can happen in early boot */
	tb = mftb();
268 269 270
	purr = mfspr(SPRN_PURR);
	stolen = (tb - pme->tb) - (purr - pme->purr);
	if (stolen > 0)
271 272 273 274 275
		account_steal_time(current, stolen);
	pme->tb = tb;
	pme->purr = purr;
}

276
#ifdef CONFIG_PPC_SPLPAR
277 278 279 280 281 282
/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
283
	struct cpu_purr_data *pme;
284 285 286 287
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
288
	local_irq_save(flags);
289 290 291
	pme = &per_cpu(cpu_purr_data, smp_processor_id());
	pme->tb = mftb();
	pme->purr = mfspr(SPRN_PURR);
292
	pme->initialized = 1;
293
	local_irq_restore(flags);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define account_process_time(regs)	update_process_times(user_mode(regs))
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
314
	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
315 316 317
	snapshot_purr();
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
346 347 348
/*
 * This version of gettimeofday has microsecond resolution.
 */
349
static inline void __do_gettimeofday(struct timeval *tv)
L
Linus Torvalds 已提交
350
{
351 352 353 354
	unsigned long sec, usec;
	u64 tb_ticks, xsec;
	struct gettimeofday_vars *temp_varp;
	u64 temp_tb_to_xs, temp_stamp_xsec;
L
Linus Torvalds 已提交
355 356 357 358 359 360 361 362

	/*
	 * These calculations are faster (gets rid of divides)
	 * if done in units of 1/2^20 rather than microseconds.
	 * The conversion to microseconds at the end is done
	 * without a divide (and in fact, without a multiply)
	 */
	temp_varp = do_gtod.varp;
363 364 365 366 367 368

	/* Sampling the time base must be done after loading
	 * do_gtod.varp in order to avoid racing with update_gtod.
	 */
	data_barrier(temp_varp);
	tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
L
Linus Torvalds 已提交
369 370
	temp_tb_to_xs = temp_varp->tb_to_xs;
	temp_stamp_xsec = temp_varp->stamp_xsec;
371
	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
L
Linus Torvalds 已提交
372
	sec = xsec / XSEC_PER_SEC;
373 374
	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
	usec = SCALE_XSEC(usec, 1000000);
L
Linus Torvalds 已提交
375 376 377 378 379 380 381

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

void do_gettimeofday(struct timeval *tv)
{
382 383 384
	if (__USE_RTC()) {
		/* do this the old way */
		unsigned long flags, seq;
385
		unsigned int sec, nsec, usec;
386 387 388 389

		do {
			seq = read_seqbegin_irqsave(&xtime_lock, flags);
			sec = xtime.tv_sec;
390
			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
391
		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
392
		usec = nsec / 1000;
393 394 395 396 397 398 399 400
		while (usec >= 1000000) {
			usec -= 1000000;
			++sec;
		}
		tv->tv_sec = sec;
		tv->tv_usec = usec;
		return;
	}
401
	__do_gettimeofday(tv);
L
Linus Torvalds 已提交
402 403 404 405 406
}

EXPORT_SYMBOL(do_gettimeofday);

/*
407 408 409 410 411 412
 * There are two copies of tb_to_xs and stamp_xsec so that no
 * lock is needed to access and use these values in
 * do_gettimeofday.  We alternate the copies and as long as a
 * reasonable time elapses between changes, there will never
 * be inconsistent values.  ntpd has a minimum of one minute
 * between updates.
L
Linus Torvalds 已提交
413
 */
414
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
415
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
416 417
{
	unsigned temp_idx;
418
	struct gettimeofday_vars *temp_varp;
L
Linus Torvalds 已提交
419 420 421 422

	temp_idx = (do_gtod.var_idx == 0);
	temp_varp = &do_gtod.vars[temp_idx];

423 424
	temp_varp->tb_to_xs = new_tb_to_xs;
	temp_varp->tb_orig_stamp = new_tb_stamp;
L
Linus Torvalds 已提交
425
	temp_varp->stamp_xsec = new_stamp_xsec;
426
	smp_mb();
L
Linus Torvalds 已提交
427 428 429
	do_gtod.varp = temp_varp;
	do_gtod.var_idx = temp_idx;

430 431 432 433 434 435 436 437
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
438 439
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
440
	 */
441 442 443 444 445
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
446
	smp_wmb();
447
	++(vdso_data->tb_update_count);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
}

/*
 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
 * difference tb - tb_orig_stamp small enough to always fit inside a
 * 32 bits number. This is a requirement of our fast 32 bits userland
 * implementation in the vdso. If we "miss" a call to this function
 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
 * with a too big difference, then the vdso will fallback to calling
 * the syscall
 */
static __inline__ void timer_recalc_offset(u64 cur_tb)
{
	unsigned long offset;
	u64 new_stamp_xsec;
464
	u64 tlen, t2x;
465 466
	u64 tb, xsec_old, xsec_new;
	struct gettimeofday_vars *varp;
467

468 469
	if (__USE_RTC())
		return;
470
	tlen = current_tick_length();
471
	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
472 473
	if (tlen == last_tick_len && offset < 0x80000000u)
		return;
474 475 476 477 478 479 480 481
	if (tlen != last_tick_len) {
		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
		last_tick_len = tlen;
	} else
		t2x = do_gtod.varp->tb_to_xs;
	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(new_stamp_xsec, 1000000000);
	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

	++vdso_data->tb_update_count;
	smp_mb();

	/*
	 * Make sure time doesn't go backwards for userspace gettimeofday.
	 */
	tb = get_tb();
	varp = do_gtod.varp;
	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
		+ varp->stamp_xsec;
	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
	if (xsec_new < xsec_old)
		new_stamp_xsec += xsec_old - xsec_new;

497
	update_gtod(cur_tb, new_stamp_xsec, t2x);
L
Linus Torvalds 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
}

#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

521
static int __init iSeries_tb_recal(void)
L
Linus Torvalds 已提交
522 523 524
{
	struct div_result divres;
	unsigned long titan, tb;
525 526 527 528 529

	/* Make sure we only run on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		return -ENODEV;

L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
552
				calc_cputime_factors();
L
Linus Torvalds 已提交
553 554 555 556
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
				tb_to_xs = divres.result_low;
				do_gtod.varp->tb_to_xs = tb_to_xs;
557 558
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
559 560 561 562 563 564 565 566 567 568 569
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
570 571

	return 0;
L
Linus Torvalds 已提交
572
}
573 574 575 576 577 578 579 580 581
late_initcall(iSeries_tb_recal);

/* Called from platform early init */
void __init iSeries_time_init_early(void)
{
	iSeries_recal_tb = get_tb();
	iSeries_recal_titan = HvCallXm_loadTod();
}
#endif /* CONFIG_PPC_ISERIES */
L
Linus Torvalds 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
597
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
598
{
599
	struct pt_regs *old_regs;
L
Linus Torvalds 已提交
600
	int next_dec;
601 602
	int cpu = smp_processor_id();
	unsigned long ticks;
603
	u64 tb_next_jiffy;
604 605 606 607 608

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
609

610
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
611 612
	irq_enter();

613
	profile_tick(CPU_PROFILING);
614
	calculate_steal_time();
L
Linus Torvalds 已提交
615

616
#ifdef CONFIG_PPC_ISERIES
617 618
	if (firmware_has_feature(FW_FEATURE_ISERIES))
		get_lppaca()->int_dword.fields.decr_int = 0;
619 620 621 622 623 624 625 626 627
#endif

	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
	       >= tb_ticks_per_jiffy) {
		/* Update last_jiffy */
		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
		/* Handle RTCL overflow on 601 */
		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
			per_cpu(last_jiffy, cpu) -= 1000000000;
L
Linus Torvalds 已提交
628 629 630 631 632 633 634 635 636

		/*
		 * We cannot disable the decrementer, so in the period
		 * between this cpu's being marked offline in cpu_online_map
		 * and calling stop-self, it is taking timer interrupts.
		 * Avoid calling into the scheduler rebalancing code if this
		 * is the case.
		 */
		if (!cpu_is_offline(cpu))
637
			account_process_time(regs);
638

L
Linus Torvalds 已提交
639 640 641 642
		/*
		 * No need to check whether cpu is offline here; boot_cpuid
		 * should have been fixed up by now.
		 */
643 644 645 646
		if (cpu != boot_cpuid)
			continue;

		write_seqlock(&xtime_lock);
647
		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
648 649
		if (__USE_RTC() && tb_next_jiffy >= 1000000000)
			tb_next_jiffy -= 1000000000;
650 651
		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
			tb_last_jiffy = tb_next_jiffy;
652
			do_timer(1);
653 654
			timer_recalc_offset(tb_last_jiffy);
		}
655
		write_sequnlock(&xtime_lock);
L
Linus Torvalds 已提交
656 657
	}
	
658
	next_dec = tb_ticks_per_jiffy - ticks;
L
Linus Torvalds 已提交
659 660 661
	set_dec(next_dec);

#ifdef CONFIG_PPC_ISERIES
662
	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
O
Olaf Hering 已提交
663
		process_hvlpevents();
L
Linus Torvalds 已提交
664 665
#endif

666
#ifdef CONFIG_PPC64
667
	/* collect purr register values often, for accurate calculations */
668
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
669 670 671
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
672
#endif
L
Linus Torvalds 已提交
673 674

	irq_exit();
675
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
676 677
}

678 679
void wakeup_decrementer(void)
{
680
	unsigned long ticks;
681 682

	/*
683 684
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
685
	 */
686 687 688 689 690 691
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
692 693
}

694
#ifdef CONFIG_SMP
695 696 697
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
698
	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
699

700 701
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
702

703
	for_each_possible_cpu(i) {
704 705
		if (i == boot_cpuid)
			continue;
706
		per_cpu(last_jiffy, i) = previous_tb;
707 708 709 710
	}
}
#endif

L
Linus Torvalds 已提交
711 712 713 714 715 716 717 718 719
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
720 721
	if (__USE_RTC())
		return get_rtc();
722
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
723 724 725 726 727 728 729
}

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, new_sec = tv->tv_sec;
	long wtm_nsec, new_nsec = tv->tv_nsec;
	unsigned long flags;
730 731
	u64 new_xsec;
	unsigned long tb_delta;
L
Linus Torvalds 已提交
732 733 734 735 736

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);
737 738 739 740 741

	/*
	 * Updating the RTC is not the job of this code. If the time is
	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
	 * is cleared.  Tools like clock/hwclock either copy the RTC
L
Linus Torvalds 已提交
742 743 744 745
	 * to the system time, in which case there is no point in writing
	 * to the RTC again, or write to the RTC but then they don't call
	 * settimeofday to perform this operation.
	 */
746

747 748 749 750
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

751 752 753 754
	/*
	 * Subtract off the number of nanoseconds since the
	 * beginning of the last tick.
	 */
755
	tb_delta = tb_ticks_since(tb_last_jiffy);
756 757
	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
L
Linus Torvalds 已提交
758 759 760 761 762 763 764

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);

 	set_normalized_timespec(&xtime, new_sec, new_nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

J
john stultz 已提交
765
	ntp_clear();
L
Linus Torvalds 已提交
766

767 768 769
	new_xsec = xtime.tv_nsec;
	if (new_xsec != 0) {
		new_xsec *= XSEC_PER_SEC;
770 771
		do_div(new_xsec, NSEC_PER_SEC);
	}
772
	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
773
	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
L
Linus Torvalds 已提交
774

775 776
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
L
Linus Torvalds 已提交
777 778 779 780 781 782 783 784

	write_sequnlock_irqrestore(&xtime_lock, flags);
	clock_was_set();
	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

785
static int __init get_freq(char *name, int cells, unsigned long *val)
786 787
{
	struct device_node *cpu;
788
	const unsigned int *fp;
789
	int found = 0;
790

791
	/* The cpu node should have timebase and clock frequency properties */
792 793
	cpu = of_find_node_by_type(NULL, "cpu");

794
	if (cpu) {
795
		fp = of_get_property(cpu, name, NULL);
796
		if (fp) {
797
			found = 1;
798
			*val = of_read_ulong(fp, cells);
799
		}
800 801

		of_node_put(cpu);
802
	}
803 804 805 806 807 808 809 810 811 812 813

	return found;
}

void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

814 815
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
816
	}
817

818 819 820 821 822 823 824
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
825
	}
826

J
Josh Boyer 已提交
827
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
828 829 830 831 832 833 834 835 836 837
	/* Set the time base to zero */
	mtspr(SPRN_TBWL, 0);
	mtspr(SPRN_TBWU, 0);

	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
838 839
}

840
int update_persistent_clock(struct timespec now)
841 842 843
{
	struct rtc_time tm;

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

unsigned long read_persistent_clock(void)
{
	struct rtc_time tm;
	static int first = 1;

	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
		if (ppc_md.get_boot_time)
			return ppc_md.get_boot_time() -timezone_offset;
	}
869 870 871 872 873 874 875 876
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
877 878 879 880
void __init time_init(void)
{
	unsigned long flags;
	struct div_result res;
881
	u64 scale, x;
882 883
	unsigned shift;

884 885 886
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
887
		tb_last_jiffy = get_rtcl();
888 889 890
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
891
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
892
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
893
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
894
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
895
		tb_last_jiffy = get_tb();
896
	}
897 898

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
899
	tb_ticks_per_sec = ppc_tb_freq;
900 901
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
902
	calc_cputime_factors();
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
921 922 923 924 925 926 927
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
928
	 */
929 930
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
931 932 933 934 935
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
936

L
Linus Torvalds 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
955
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
956
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
957 958

	write_seqlock_irqsave(&xtime_lock, flags);
959 960 961 962 963 964 965

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
        }

L
Linus Torvalds 已提交
966 967
	do_gtod.varp = &do_gtod.vars[0];
	do_gtod.var_idx = 0;
968
	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
969
	__get_cpu_var(last_jiffy) = tb_last_jiffy;
970
	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
L
Linus Torvalds 已提交
971 972 973
	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
	do_gtod.varp->tb_to_xs = tb_to_xs;
	do_gtod.tb_to_us = tb_to_us;
974 975 976 977

	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
978
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
979
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
980 981 982 983 984 985 986 987 988 989 990 991 992 993

	time_freq = 0;

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* Not exact, but the timer interrupt takes care of this */
	set_dec(tb_ticks_per_jiffy);
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
994 995
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

1013
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1014 1015 1016 1017

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1018
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1019 1020 1021 1022 1023

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1024
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1025
	 */
1026
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1027 1028 1029 1030

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1031
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1077 1078
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1079 1080 1081 1082 1083 1084
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1085 1086
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1096 1097 1098
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1099
        return mlt;
1100
}
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1106 1107
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1108
{
1109 1110 1111
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1112 1113 1114 1115 1116 1117

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1118 1119 1120 1121 1122
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1123

1124 1125 1126 1127 1128
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1129

1130 1131
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1132 1133

}