cpufreq_governor.c 14.9 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19 20
#include <linux/export.h>
#include <linux/kernel_stat.h>
21
#include <linux/slab.h>
22 23 24

#include "cpufreq_governor.h"

25 26 27
DEFINE_MUTEX(dbs_data_mutex);
EXPORT_SYMBOL_GPL(dbs_data_mutex);

28
static struct attribute_group *get_sysfs_attr(struct dbs_governor *gov)
29
{
30 31
	return have_governor_per_policy() ?
		gov->attr_group_gov_pol : gov->attr_group_gov_sys;
32 33
}

34
void dbs_check_cpu(struct cpufreq_policy *policy)
35
{
36
	int cpu = policy->cpu;
37
	struct dbs_governor *gov = dbs_governor_of(policy);
38 39
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
40
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
41 42
	unsigned int sampling_rate = dbs_data->sampling_rate;
	unsigned int ignore_nice = dbs_data->ignore_nice_load;
43 44 45
	unsigned int max_load = 0;
	unsigned int j;

46
	if (gov->governor == GOV_ONDEMAND) {
47
		struct od_cpu_dbs_info_s *od_dbs_info =
48
				gov->get_cpu_dbs_info_s(cpu);
49 50 51 52 53 54 55 56 57 58

		/*
		 * Sometimes, the ondemand governor uses an additional
		 * multiplier to give long delays. So apply this multiplier to
		 * the 'sampling_rate', so as to keep the wake-up-from-idle
		 * detection logic a bit conservative.
		 */
		sampling_rate *= od_dbs_info->rate_mult;

	}
59

60
	/* Get Absolute Load */
61
	for_each_cpu(j, policy->cpus) {
62
		struct cpu_dbs_info *j_cdbs;
63 64
		u64 cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
65
		unsigned int load;
66
		int io_busy = 0;
67

68
		j_cdbs = gov->get_cpu_cdbs(j);
69

70 71 72 73 74 75
		/*
		 * For the purpose of ondemand, waiting for disk IO is
		 * an indication that you're performance critical, and
		 * not that the system is actually idle. So do not add
		 * the iowait time to the cpu idle time.
		 */
76
		if (gov->governor == GOV_ONDEMAND)
77 78
			io_busy = od_tuners->io_is_busy;
		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
79 80 81 82 83

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

84 85 86
		if (cur_idle_time < j_cdbs->prev_cpu_idle)
			cur_idle_time = j_cdbs->prev_cpu_idle;

87 88 89 90 91
		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
92
			struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
		/*
		 * If the CPU had gone completely idle, and a task just woke up
		 * on this CPU now, it would be unfair to calculate 'load' the
		 * usual way for this elapsed time-window, because it will show
		 * near-zero load, irrespective of how CPU intensive that task
		 * actually is. This is undesirable for latency-sensitive bursty
		 * workloads.
		 *
		 * To avoid this, we reuse the 'load' from the previous
		 * time-window and give this task a chance to start with a
		 * reasonably high CPU frequency. (However, we shouldn't over-do
		 * this copy, lest we get stuck at a high load (high frequency)
		 * for too long, even when the current system load has actually
		 * dropped down. So we perform the copy only once, upon the
		 * first wake-up from idle.)
		 *
129 130 131 132
		 * Detecting this situation is easy: the governor's utilization
		 * update handler would not have run during CPU-idle periods.
		 * Hence, an unusually large 'wall_time' (as compared to the
		 * sampling rate) indicates this scenario.
133 134 135 136 137
		 *
		 * prev_load can be zero in two cases and we must recalculate it
		 * for both cases:
		 * - during long idle intervals
		 * - explicitly set to zero
138
		 */
139 140
		if (unlikely(wall_time > (2 * sampling_rate) &&
			     j_cdbs->prev_load)) {
141
			load = j_cdbs->prev_load;
142 143 144 145 146 147 148

			/*
			 * Perform a destructive copy, to ensure that we copy
			 * the previous load only once, upon the first wake-up
			 * from idle.
			 */
			j_cdbs->prev_load = 0;
149 150 151 152
		} else {
			load = 100 * (wall_time - idle_time) / wall_time;
			j_cdbs->prev_load = load;
		}
153 154 155 156 157

		if (load > max_load)
			max_load = load;
	}

158
	gov->gov_check_cpu(cpu, max_load);
159 160 161
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

162
void gov_set_update_util(struct policy_dbs_info *policy_dbs,
163
			 unsigned int delay_us)
164
{
165
	struct cpufreq_policy *policy = policy_dbs->policy;
166
	struct dbs_governor *gov = dbs_governor_of(policy);
167
	int cpu;
168

169 170
	gov_update_sample_delay(policy_dbs, delay_us);
	policy_dbs->last_sample_time = 0;
171

172
	for_each_cpu(cpu, policy->cpus) {
173
		struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
174 175

		cpufreq_set_update_util_data(cpu, &cdbs->update_util);
176 177
	}
}
178
EXPORT_SYMBOL_GPL(gov_set_update_util);
179

180
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
181 182
{
	int i;
183

184 185 186 187
	for_each_cpu(i, policy->cpus)
		cpufreq_set_update_util_data(i, NULL);

	synchronize_rcu();
188 189
}

190
static void gov_cancel_work(struct policy_dbs_info *policy_dbs)
191
{
192
	/* Tell dbs_update_util_handler() to skip queuing up work items. */
193
	atomic_inc(&policy_dbs->work_count);
194
	/*
195
	 * If dbs_update_util_handler() is already running, it may not notice
196
	 * the incremented work_count, so wait for it to complete to prevent its
197
	 * work item from being queued up after the cancel_work_sync() below.
198
	 */
199 200 201
	gov_clear_update_util(policy_dbs->policy);
	irq_work_sync(&policy_dbs->irq_work);
	cancel_work_sync(&policy_dbs->work);
202
	atomic_set(&policy_dbs->work_count, 0);
203
}
204

205
static void dbs_work_handler(struct work_struct *work)
206
{
207
	struct policy_dbs_info *policy_dbs;
208
	struct cpufreq_policy *policy;
209
	struct dbs_governor *gov;
210
	unsigned int delay;
211

212 213
	policy_dbs = container_of(work, struct policy_dbs_info, work);
	policy = policy_dbs->policy;
214
	gov = dbs_governor_of(policy);
215

216
	/*
217 218
	 * Make sure cpufreq_governor_limits() isn't evaluating load or the
	 * ondemand governor isn't updating the sampling rate in parallel.
219
	 */
220
	mutex_lock(&policy_dbs->timer_mutex);
221
	delay = gov->gov_dbs_timer(policy);
222 223
	policy_dbs->sample_delay_ns = jiffies_to_nsecs(delay);
	mutex_unlock(&policy_dbs->timer_mutex);
224

225 226 227 228 229 230
	/*
	 * If the atomic operation below is reordered with respect to the
	 * sample delay modification, the utilization update handler may end
	 * up using a stale sample delay value.
	 */
	smp_mb__before_atomic();
231
	atomic_dec(&policy_dbs->work_count);
232 233 234 235
}

static void dbs_irq_work(struct irq_work *irq_work)
{
236
	struct policy_dbs_info *policy_dbs;
237

238 239
	policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
	schedule_work(&policy_dbs->work);
240 241
}

242
static inline void gov_queue_irq_work(struct policy_dbs_info *policy_dbs)
243
{
244
#ifdef CONFIG_SMP
245
	irq_work_queue_on(&policy_dbs->irq_work, smp_processor_id());
246
#else
247
	irq_work_queue(&policy_dbs->irq_work);
248 249 250 251 252 253 254
#endif
}

static void dbs_update_util_handler(struct update_util_data *data, u64 time,
				    unsigned long util, unsigned long max)
{
	struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
255
	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
256 257

	/*
258 259 260 261 262
	 * The work may not be allowed to be queued up right now.
	 * Possible reasons:
	 * - Work has already been queued up or is in progress.
	 * - The governor is being stopped.
	 * - It is too early (too little time from the previous sample).
263
	 */
264
	if (atomic_inc_return(&policy_dbs->work_count) == 1) {
265 266
		u64 delta_ns;

267 268 269 270
		delta_ns = time - policy_dbs->last_sample_time;
		if ((s64)delta_ns >= policy_dbs->sample_delay_ns) {
			policy_dbs->last_sample_time = time;
			gov_queue_irq_work(policy_dbs);
271 272 273
			return;
		}
	}
274
	atomic_dec(&policy_dbs->work_count);
275
}
276

277 278
static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
						     struct dbs_governor *gov)
279
{
280
	struct policy_dbs_info *policy_dbs;
281 282 283
	int j;

	/* Allocate memory for the common information for policy->cpus */
284 285
	policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
	if (!policy_dbs)
286
		return NULL;
287

288
	mutex_init(&policy_dbs->timer_mutex);
289
	atomic_set(&policy_dbs->work_count, 0);
290 291
	init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
	INIT_WORK(&policy_dbs->work, dbs_work_handler);
292 293 294 295 296 297 298 299

	/* Set policy_dbs for all CPUs, online+offline */
	for_each_cpu(j, policy->related_cpus) {
		struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);

		j_cdbs->policy_dbs = policy_dbs;
		j_cdbs->update_util.func = dbs_update_util_handler;
	}
300
	return policy_dbs;
301 302
}

303
static void free_policy_dbs_info(struct cpufreq_policy *policy,
304
				 struct dbs_governor *gov)
305
{
306
	struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
307
	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
308 309
	int j;

310
	mutex_destroy(&policy_dbs->timer_mutex);
311

312 313
	for_each_cpu(j, policy->related_cpus) {
		struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
314

315 316 317
		j_cdbs->policy_dbs = NULL;
		j_cdbs->update_util.func = NULL;
	}
318
	kfree(policy_dbs);
319 320
}

321
static int cpufreq_governor_init(struct cpufreq_policy *policy)
322
{
323
	struct dbs_governor *gov = dbs_governor_of(policy);
324
	struct dbs_data *dbs_data = gov->gdbs_data;
325
	struct policy_dbs_info *policy_dbs;
326 327
	unsigned int latency;
	int ret;
328

329 330 331 332
	/* State should be equivalent to EXIT */
	if (policy->governor_data)
		return -EBUSY;

333 334 335
	policy_dbs = alloc_policy_dbs_info(policy, gov);
	if (!policy_dbs)
		return -ENOMEM;
336

337 338 339 340 341
	if (dbs_data) {
		if (WARN_ON(have_governor_per_policy())) {
			ret = -EINVAL;
			goto free_policy_dbs_info;
		}
342
		dbs_data->usage_count++;
343 344
		policy_dbs->dbs_data = dbs_data;
		policy->governor_data = policy_dbs;
345 346
		return 0;
	}
347

348
	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
349 350 351 352
	if (!dbs_data) {
		ret = -ENOMEM;
		goto free_policy_dbs_info;
	}
353

354
	dbs_data->usage_count = 1;
355

356
	ret = gov->init(dbs_data, !policy->governor->initialized);
357
	if (ret)
358
		goto free_policy_dbs_info;
359

360 361 362 363
	/* policy latency is in ns. Convert it to us first */
	latency = policy->cpuinfo.transition_latency / 1000;
	if (latency == 0)
		latency = 1;
364

365 366 367
	/* Bring kernel and HW constraints together */
	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
					  MIN_LATENCY_MULTIPLIER * latency);
368 369
	dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
				      LATENCY_MULTIPLIER * latency);
370

371
	if (!have_governor_per_policy())
372
		gov->gdbs_data = dbs_data;
373

374 375
	policy_dbs->dbs_data = dbs_data;
	policy->governor_data = policy_dbs;
376

377
	ret = sysfs_create_group(get_governor_parent_kobj(policy),
378
				 get_sysfs_attr(gov));
379 380
	if (!ret)
		return 0;
381

382
	/* Failure, so roll back. */
383

384 385
	policy->governor_data = NULL;

386
	if (!have_governor_per_policy())
387 388
		gov->gdbs_data = NULL;
	gov->exit(dbs_data, !policy->governor->initialized);
389 390
	kfree(dbs_data);

391 392
free_policy_dbs_info:
	free_policy_dbs_info(policy, gov);
393 394
	return ret;
}
395

396
static int cpufreq_governor_exit(struct cpufreq_policy *policy)
397
{
398
	struct dbs_governor *gov = dbs_governor_of(policy);
399 400
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
401 402

	/* State should be equivalent to INIT */
403
	if (policy_dbs->policy)
404
		return -EBUSY;
405

406 407
	if (!--dbs_data->usage_count) {
		sysfs_remove_group(get_governor_parent_kobj(policy),
408
				   get_sysfs_attr(gov));
409

410 411
		policy->governor_data = NULL;

412
		if (!have_governor_per_policy())
413
			gov->gdbs_data = NULL;
414

415
		gov->exit(dbs_data, policy->governor->initialized == 1);
416
		kfree(dbs_data);
417 418
	} else {
		policy->governor_data = NULL;
419
	}
420

421
	free_policy_dbs_info(policy, gov);
422
	return 0;
423
}
424

425
static int cpufreq_governor_start(struct cpufreq_policy *policy)
426
{
427
	struct dbs_governor *gov = dbs_governor_of(policy);
428 429
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
430 431 432 433 434 435
	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
	int io_busy = 0;

	if (!policy->cur)
		return -EINVAL;

436
	/* State should be equivalent to INIT */
437
	if (policy_dbs->policy)
438 439
		return -EBUSY;

440 441
	sampling_rate = dbs_data->sampling_rate;
	ignore_nice = dbs_data->ignore_nice_load;
442

443
	if (gov->governor == GOV_ONDEMAND) {
444 445
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

446
		io_busy = od_tuners->io_is_busy;
447 448
	}

449
	for_each_cpu(j, policy->cpus) {
450
		struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
451
		unsigned int prev_load;
452

453 454
		j_cdbs->prev_cpu_idle =
			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
455

456 457 458 459
		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
					    j_cdbs->prev_cpu_idle);
		j_cdbs->prev_load = 100 * prev_load /
				    (unsigned int)j_cdbs->prev_cpu_wall;
460

461 462 463
		if (ignore_nice)
			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
	}
464
	policy_dbs->policy = policy;
465

466
	if (gov->governor == GOV_CONSERVATIVE) {
467
		struct cs_cpu_dbs_info_s *cs_dbs_info =
468
			gov->get_cpu_dbs_info_s(cpu);
469

470 471 472
		cs_dbs_info->down_skip = 0;
		cs_dbs_info->requested_freq = policy->cur;
	} else {
473 474
		struct od_ops *od_ops = gov->gov_ops;
		struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu);
475

476 477 478 479
		od_dbs_info->rate_mult = 1;
		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
		od_ops->powersave_bias_init_cpu(cpu);
	}
480

481
	gov_set_update_util(policy_dbs, sampling_rate);
482 483 484
	return 0;
}

485
static int cpufreq_governor_stop(struct cpufreq_policy *policy)
486
{
487
	struct policy_dbs_info *policy_dbs = policy->governor_data;
488

489
	/* State should be equivalent to START */
490
	if (!policy_dbs->policy)
491 492
		return -EBUSY;

493 494
	gov_cancel_work(policy_dbs);
	policy_dbs->policy = NULL;
495

496
	return 0;
497
}
498

499
static int cpufreq_governor_limits(struct cpufreq_policy *policy)
500
{
501
	struct policy_dbs_info *policy_dbs = policy->governor_data;
502

503
	/* State should be equivalent to START */
504
	if (!policy_dbs->policy)
505
		return -EBUSY;
506

507 508 509 510 511
	mutex_lock(&policy_dbs->timer_mutex);
	if (policy->max < policy->cur)
		__cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
	else if (policy->min > policy->cur)
		__cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
512
	dbs_check_cpu(policy);
513
	mutex_unlock(&policy_dbs->timer_mutex);
514 515

	return 0;
516
}
517

518
int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
519
{
520
	int ret = -EINVAL;
521

522
	/* Lock governor to block concurrent initialization of governor */
523
	mutex_lock(&dbs_data_mutex);
524

525
	if (event == CPUFREQ_GOV_POLICY_INIT) {
526
		ret = cpufreq_governor_init(policy);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	} else if (policy->governor_data) {
		switch (event) {
		case CPUFREQ_GOV_POLICY_EXIT:
			ret = cpufreq_governor_exit(policy);
			break;
		case CPUFREQ_GOV_START:
			ret = cpufreq_governor_start(policy);
			break;
		case CPUFREQ_GOV_STOP:
			ret = cpufreq_governor_stop(policy);
			break;
		case CPUFREQ_GOV_LIMITS:
			ret = cpufreq_governor_limits(policy);
			break;
		}
542
	}
543

544
	mutex_unlock(&dbs_data_mutex);
545
	return ret;
546 547
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);