cpufreq_governor.c 14.8 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19 20
#include <linux/export.h>
#include <linux/kernel_stat.h>
21
#include <linux/slab.h>
22 23 24

#include "cpufreq_governor.h"

25 26 27 28 29 30 31 32
static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
{
	if (have_governor_per_policy())
		return dbs_data->cdata->attr_group_gov_pol;
	else
		return dbs_data->cdata->attr_group_gov_sys;
}

33 34
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
35
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 37
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38
	struct cpufreq_policy *policy = cdbs->shared->policy;
39
	unsigned int sampling_rate;
40 41 42 43
	unsigned int max_load = 0;
	unsigned int ignore_nice;
	unsigned int j;

44 45 46 47 48 49 50 51 52 53 54 55 56
	if (dbs_data->cdata->governor == GOV_ONDEMAND) {
		struct od_cpu_dbs_info_s *od_dbs_info =
				dbs_data->cdata->get_cpu_dbs_info_s(cpu);

		/*
		 * Sometimes, the ondemand governor uses an additional
		 * multiplier to give long delays. So apply this multiplier to
		 * the 'sampling_rate', so as to keep the wake-up-from-idle
		 * detection logic a bit conservative.
		 */
		sampling_rate = od_tuners->sampling_rate;
		sampling_rate *= od_dbs_info->rate_mult;

57
		ignore_nice = od_tuners->ignore_nice_load;
58 59
	} else {
		sampling_rate = cs_tuners->sampling_rate;
60
		ignore_nice = cs_tuners->ignore_nice_load;
61
	}
62

63
	/* Get Absolute Load */
64
	for_each_cpu(j, policy->cpus) {
65
		struct cpu_dbs_info *j_cdbs;
66 67
		u64 cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
68
		unsigned int load;
69
		int io_busy = 0;
70

71
		j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72

73 74 75 76 77 78 79 80 81
		/*
		 * For the purpose of ondemand, waiting for disk IO is
		 * an indication that you're performance critical, and
		 * not that the system is actually idle. So do not add
		 * the iowait time to the cpu idle time.
		 */
		if (dbs_data->cdata->governor == GOV_ONDEMAND)
			io_busy = od_tuners->io_is_busy;
		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
		/*
		 * If the CPU had gone completely idle, and a task just woke up
		 * on this CPU now, it would be unfair to calculate 'load' the
		 * usual way for this elapsed time-window, because it will show
		 * near-zero load, irrespective of how CPU intensive that task
		 * actually is. This is undesirable for latency-sensitive bursty
		 * workloads.
		 *
		 * To avoid this, we reuse the 'load' from the previous
		 * time-window and give this task a chance to start with a
		 * reasonably high CPU frequency. (However, we shouldn't over-do
		 * this copy, lest we get stuck at a high load (high frequency)
		 * for too long, even when the current system load has actually
		 * dropped down. So we perform the copy only once, upon the
		 * first wake-up from idle.)
		 *
		 * Detecting this situation is easy: the governor's deferrable
		 * timer would not have fired during CPU-idle periods. Hence
		 * an unusually large 'wall_time' (as compared to the sampling
		 * rate) indicates this scenario.
132 133 134 135 136
		 *
		 * prev_load can be zero in two cases and we must recalculate it
		 * for both cases:
		 * - during long idle intervals
		 * - explicitly set to zero
137
		 */
138 139
		if (unlikely(wall_time > (2 * sampling_rate) &&
			     j_cdbs->prev_load)) {
140
			load = j_cdbs->prev_load;
141 142 143 144 145 146 147

			/*
			 * Perform a destructive copy, to ensure that we copy
			 * the previous load only once, upon the first wake-up
			 * from idle.
			 */
			j_cdbs->prev_load = 0;
148 149 150 151
		} else {
			load = 100 * (wall_time - idle_time) / wall_time;
			j_cdbs->prev_load = load;
		}
152 153 154 155 156

		if (load > max_load)
			max_load = load;
	}

157
	dbs_data->cdata->gov_check_cpu(cpu, max_load);
158 159 160
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

161 162
static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
		unsigned int delay)
163
{
164
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
165

166
	mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
167 168
}

169 170
void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
		unsigned int delay, bool all_cpus)
171
{
172 173
	int i;

174
	mutex_lock(&cpufreq_governor_lock);
175
	if (!policy->governor_enabled)
176
		goto out_unlock;
177

178
	if (!all_cpus) {
179 180 181 182 183 184 185 186
		/*
		 * Use raw_smp_processor_id() to avoid preemptible warnings.
		 * We know that this is only called with all_cpus == false from
		 * works that have been queued with *_work_on() functions and
		 * those works are canceled during CPU_DOWN_PREPARE so they
		 * can't possibly run on any other CPU.
		 */
		__gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
187 188 189 190
	} else {
		for_each_cpu(i, policy->cpus)
			__gov_queue_work(i, dbs_data, delay);
	}
191 192 193

out_unlock:
	mutex_unlock(&cpufreq_governor_lock);
194 195 196 197 198 199
}
EXPORT_SYMBOL_GPL(gov_queue_work);

static inline void gov_cancel_work(struct dbs_data *dbs_data,
		struct cpufreq_policy *policy)
{
200
	struct cpu_dbs_info *cdbs;
201
	int i;
202

203 204
	for_each_cpu(i, policy->cpus) {
		cdbs = dbs_data->cdata->get_cpu_cdbs(i);
205
		cancel_delayed_work_sync(&cdbs->dwork);
206
	}
207 208
}

209
/* Will return if we need to evaluate cpu load again or not */
210 211
static bool need_load_eval(struct cpu_common_dbs_info *shared,
			   unsigned int sampling_rate)
212
{
213
	if (policy_is_shared(shared->policy)) {
214
		ktime_t time_now = ktime_get();
215
		s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
216 217 218 219 220

		/* Do nothing if we recently have sampled */
		if (delta_us < (s64)(sampling_rate / 2))
			return false;
		else
221
			shared->time_stamp = time_now;
222 223 224 225
	}

	return true;
}
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

static void dbs_timer(struct work_struct *work)
{
	struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info,
						 dwork.work);
	struct cpu_common_dbs_info *shared = cdbs->shared;
	struct cpufreq_policy *policy = shared->policy;
	struct dbs_data *dbs_data = policy->governor_data;
	unsigned int sampling_rate, delay;
	bool modify_all = true;

	mutex_lock(&shared->timer_mutex);

	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;

		sampling_rate = cs_tuners->sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

		sampling_rate = od_tuners->sampling_rate;
	}

	if (!need_load_eval(cdbs->shared, sampling_rate))
		modify_all = false;

	delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all);
	gov_queue_work(dbs_data, policy, delay, modify_all);

	mutex_unlock(&shared->timer_mutex);
}
257

258 259 260 261 262 263 264 265 266 267 268 269
static void set_sampling_rate(struct dbs_data *dbs_data,
		unsigned int sampling_rate)
{
	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
		cs_tuners->sampling_rate = sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
		od_tuners->sampling_rate = sampling_rate;
	}
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static int alloc_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_common_dbs_info *shared;
	int j;

	/* Allocate memory for the common information for policy->cpus */
	shared = kzalloc(sizeof(*shared), GFP_KERNEL);
	if (!shared)
		return -ENOMEM;

	/* Set shared for all CPUs, online+offline */
	for_each_cpu(j, policy->related_cpus)
		cdata->get_cpu_cdbs(j)->shared = shared;

	return 0;
}

static void free_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
	struct cpu_common_dbs_info *shared = cdbs->shared;
	int j;

	for_each_cpu(j, policy->cpus)
		cdata->get_cpu_cdbs(j)->shared = NULL;

	kfree(shared);
}

301 302 303
static int cpufreq_governor_init(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data,
				 struct common_dbs_data *cdata)
304
{
305 306
	unsigned int latency;
	int ret;
307

308 309 310
	if (dbs_data) {
		if (WARN_ON(have_governor_per_policy()))
			return -EINVAL;
311 312 313 314 315

		ret = alloc_common_dbs_info(policy, cdata);
		if (ret)
			return ret;

316 317 318 319
		dbs_data->usage_count++;
		policy->governor_data = dbs_data;
		return 0;
	}
320

321 322 323
	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
	if (!dbs_data)
		return -ENOMEM;
324

325 326 327 328
	ret = alloc_common_dbs_info(policy, cdata);
	if (ret)
		goto free_dbs_data;

329 330
	dbs_data->cdata = cdata;
	dbs_data->usage_count = 1;
331

332 333
	ret = cdata->init(dbs_data, !policy->governor->initialized);
	if (ret)
334
		goto free_common_dbs_info;
335

336 337 338 339
	/* policy latency is in ns. Convert it to us first */
	latency = policy->cpuinfo.transition_latency / 1000;
	if (latency == 0)
		latency = 1;
340

341 342 343 344 345
	/* Bring kernel and HW constraints together */
	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
					  MIN_LATENCY_MULTIPLIER * latency);
	set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
					latency * LATENCY_MULTIPLIER));
346

347 348 349 350
	if (!have_governor_per_policy()) {
		if (WARN_ON(cpufreq_get_global_kobject())) {
			ret = -EINVAL;
			goto cdata_exit;
351
		}
352 353
		cdata->gdbs_data = dbs_data;
	}
354

355 356 357 358
	ret = sysfs_create_group(get_governor_parent_kobj(policy),
				 get_sysfs_attr(dbs_data));
	if (ret)
		goto put_kobj;
359

360
	policy->governor_data = dbs_data;
361

362
	return 0;
363

364 365 366 367 368 369 370
put_kobj:
	if (!have_governor_per_policy()) {
		cdata->gdbs_data = NULL;
		cpufreq_put_global_kobject();
	}
cdata_exit:
	cdata->exit(dbs_data, !policy->governor->initialized);
371 372
free_common_dbs_info:
	free_common_dbs_info(policy, cdata);
373 374 375 376
free_dbs_data:
	kfree(dbs_data);
	return ret;
}
377

378 379 380 381
static void cpufreq_governor_exit(struct cpufreq_policy *policy,
				  struct dbs_data *dbs_data)
{
	struct common_dbs_data *cdata = dbs_data->cdata;
382

383 384 385 386
	policy->governor_data = NULL;
	if (!--dbs_data->usage_count) {
		sysfs_remove_group(get_governor_parent_kobj(policy),
				   get_sysfs_attr(dbs_data));
387

388
		if (!have_governor_per_policy()) {
389
			cdata->gdbs_data = NULL;
390
			cpufreq_put_global_kobject();
391
		}
392

393 394
		cdata->exit(dbs_data, policy->governor->initialized == 1);
		kfree(dbs_data);
395
	}
396 397

	free_common_dbs_info(policy, cdata);
398
}
399

400 401 402 403 404
static int cpufreq_governor_start(struct cpufreq_policy *policy,
				  struct dbs_data *dbs_data)
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
405
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
406
	struct cpu_common_dbs_info *shared = cdbs->shared;
407 408 409 410 411 412 413
	int io_busy = 0;

	if (!policy->cur)
		return -EINVAL;

	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
414 415

		sampling_rate = cs_tuners->sampling_rate;
416
		ignore_nice = cs_tuners->ignore_nice_load;
417
	} else {
418 419
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

420
		sampling_rate = od_tuners->sampling_rate;
421
		ignore_nice = od_tuners->ignore_nice_load;
422
		io_busy = od_tuners->io_is_busy;
423 424
	}

425 426 427 428
	shared->policy = policy;
	shared->time_stamp = ktime_get();
	mutex_init(&shared->timer_mutex);

429
	for_each_cpu(j, policy->cpus) {
430
		struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
431
		unsigned int prev_load;
432

433 434
		j_cdbs->prev_cpu_idle =
			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
435

436 437 438 439
		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
					    j_cdbs->prev_cpu_idle);
		j_cdbs->prev_load = 100 * prev_load /
				    (unsigned int)j_cdbs->prev_cpu_wall;
440

441 442
		if (ignore_nice)
			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
443

444
		INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer);
445
	}
446

447 448 449
	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_cpu_dbs_info_s *cs_dbs_info =
			cdata->get_cpu_dbs_info_s(cpu);
450

451 452 453 454 455 456
		cs_dbs_info->down_skip = 0;
		cs_dbs_info->enable = 1;
		cs_dbs_info->requested_freq = policy->cur;
	} else {
		struct od_ops *od_ops = cdata->gov_ops;
		struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
457

458 459 460 461
		od_dbs_info->rate_mult = 1;
		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
		od_ops->powersave_bias_init_cpu(cpu);
	}
462

463 464 465 466 467 468 469 470 471 472
	gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
		       true);
	return 0;
}

static void cpufreq_governor_stop(struct cpufreq_policy *policy,
				  struct dbs_data *dbs_data)
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int cpu = policy->cpu;
473
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
474 475 476
	struct cpu_common_dbs_info *shared = cdbs->shared;

	gov_cancel_work(dbs_data, policy);
477 478 479 480

	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_cpu_dbs_info_s *cs_dbs_info =
			cdata->get_cpu_dbs_info_s(cpu);
481

482 483 484
		cs_dbs_info->enable = 0;
	}

485 486
	shared->policy = NULL;
	mutex_destroy(&shared->timer_mutex);
487
}
488

489 490 491 492 493
static void cpufreq_governor_limits(struct cpufreq_policy *policy,
				    struct dbs_data *dbs_data)
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int cpu = policy->cpu;
494
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
495

496
	if (!cdbs->shared || !cdbs->shared->policy)
497
		return;
498

499 500 501
	mutex_lock(&cdbs->shared->timer_mutex);
	if (policy->max < cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->max,
502
					CPUFREQ_RELATION_H);
503 504
	else if (policy->min > cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->min,
505 506
					CPUFREQ_RELATION_L);
	dbs_check_cpu(dbs_data, cpu);
507
	mutex_unlock(&cdbs->shared->timer_mutex);
508
}
509

510 511 512 513 514 515
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
			 struct common_dbs_data *cdata, unsigned int event)
{
	struct dbs_data *dbs_data;
	int ret = 0;

516 517 518
	/* Lock governor to block concurrent initialization of governor */
	mutex_lock(&cdata->mutex);

519 520 521 522 523
	if (have_governor_per_policy())
		dbs_data = policy->governor_data;
	else
		dbs_data = cdata->gdbs_data;

524 525 526 527
	if (WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT))) {
		ret = -EINVAL;
		goto unlock;
	}
528 529 530 531 532 533 534 535 536 537 538 539 540 541

	switch (event) {
	case CPUFREQ_GOV_POLICY_INIT:
		ret = cpufreq_governor_init(policy, dbs_data, cdata);
		break;
	case CPUFREQ_GOV_POLICY_EXIT:
		cpufreq_governor_exit(policy, dbs_data);
		break;
	case CPUFREQ_GOV_START:
		ret = cpufreq_governor_start(policy, dbs_data);
		break;
	case CPUFREQ_GOV_STOP:
		cpufreq_governor_stop(policy, dbs_data);
		break;
542
	case CPUFREQ_GOV_LIMITS:
543
		cpufreq_governor_limits(policy, dbs_data);
544 545
		break;
	}
546

547 548 549
unlock:
	mutex_unlock(&cdata->mutex);

550
	return ret;
551 552
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);