cpufreq_governor.c 12.2 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19 20
#include <linux/export.h>
#include <linux/kernel_stat.h>
21
#include <linux/slab.h>
22 23 24

#include "cpufreq_governor.h"

25 26 27 28 29 30 31 32
static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
{
	if (have_governor_per_policy())
		return dbs_data->cdata->attr_group_gov_pol;
	else
		return dbs_data->cdata->attr_group_gov_sys;
}

33 34
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
35
	struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 37 38
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	struct cpufreq_policy *policy;
39
	unsigned int sampling_rate;
40 41 42 43
	unsigned int max_load = 0;
	unsigned int ignore_nice;
	unsigned int j;

44 45 46 47 48 49 50 51 52 53 54 55 56
	if (dbs_data->cdata->governor == GOV_ONDEMAND) {
		struct od_cpu_dbs_info_s *od_dbs_info =
				dbs_data->cdata->get_cpu_dbs_info_s(cpu);

		/*
		 * Sometimes, the ondemand governor uses an additional
		 * multiplier to give long delays. So apply this multiplier to
		 * the 'sampling_rate', so as to keep the wake-up-from-idle
		 * detection logic a bit conservative.
		 */
		sampling_rate = od_tuners->sampling_rate;
		sampling_rate *= od_dbs_info->rate_mult;

57
		ignore_nice = od_tuners->ignore_nice_load;
58 59
	} else {
		sampling_rate = cs_tuners->sampling_rate;
60
		ignore_nice = cs_tuners->ignore_nice_load;
61
	}
62 63 64

	policy = cdbs->cur_policy;

65
	/* Get Absolute Load */
66 67
	for_each_cpu(j, policy->cpus) {
		struct cpu_dbs_common_info *j_cdbs;
68 69
		u64 cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
70
		unsigned int load;
71
		int io_busy = 0;
72

73
		j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
74

75 76 77 78 79 80 81 82 83
		/*
		 * For the purpose of ondemand, waiting for disk IO is
		 * an indication that you're performance critical, and
		 * not that the system is actually idle. So do not add
		 * the iowait time to the cpu idle time.
		 */
		if (dbs_data->cdata->governor == GOV_ONDEMAND)
			io_busy = od_tuners->io_is_busy;
		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
		/*
		 * If the CPU had gone completely idle, and a task just woke up
		 * on this CPU now, it would be unfair to calculate 'load' the
		 * usual way for this elapsed time-window, because it will show
		 * near-zero load, irrespective of how CPU intensive that task
		 * actually is. This is undesirable for latency-sensitive bursty
		 * workloads.
		 *
		 * To avoid this, we reuse the 'load' from the previous
		 * time-window and give this task a chance to start with a
		 * reasonably high CPU frequency. (However, we shouldn't over-do
		 * this copy, lest we get stuck at a high load (high frequency)
		 * for too long, even when the current system load has actually
		 * dropped down. So we perform the copy only once, upon the
		 * first wake-up from idle.)
		 *
		 * Detecting this situation is easy: the governor's deferrable
		 * timer would not have fired during CPU-idle periods. Hence
		 * an unusually large 'wall_time' (as compared to the sampling
		 * rate) indicates this scenario.
		 */
		if (unlikely(wall_time > (2 * sampling_rate)) &&
						j_cdbs->copy_prev_load) {
			load = j_cdbs->prev_load;
			j_cdbs->copy_prev_load = false;
		} else {
			load = 100 * (wall_time - idle_time) / wall_time;
			j_cdbs->prev_load = load;
			j_cdbs->copy_prev_load = true;
		}
144 145 146 147 148

		if (load > max_load)
			max_load = load;
	}

149
	dbs_data->cdata->gov_check_cpu(cpu, max_load);
150 151 152
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

153 154
static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
		unsigned int delay)
155
{
156
	struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
157

158
	mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
159 160
}

161 162
void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
		unsigned int delay, bool all_cpus)
163
{
164 165
	int i;

166
	mutex_lock(&cpufreq_governor_lock);
167
	if (!policy->governor_enabled)
168
		goto out_unlock;
169

170
	if (!all_cpus) {
171 172 173 174 175 176 177 178
		/*
		 * Use raw_smp_processor_id() to avoid preemptible warnings.
		 * We know that this is only called with all_cpus == false from
		 * works that have been queued with *_work_on() functions and
		 * those works are canceled during CPU_DOWN_PREPARE so they
		 * can't possibly run on any other CPU.
		 */
		__gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
179 180 181 182
	} else {
		for_each_cpu(i, policy->cpus)
			__gov_queue_work(i, dbs_data, delay);
	}
183 184 185

out_unlock:
	mutex_unlock(&cpufreq_governor_lock);
186 187 188 189 190 191 192 193
}
EXPORT_SYMBOL_GPL(gov_queue_work);

static inline void gov_cancel_work(struct dbs_data *dbs_data,
		struct cpufreq_policy *policy)
{
	struct cpu_dbs_common_info *cdbs;
	int i;
194

195 196 197 198
	for_each_cpu(i, policy->cpus) {
		cdbs = dbs_data->cdata->get_cpu_cdbs(i);
		cancel_delayed_work_sync(&cdbs->work);
	}
199 200
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/* Will return if we need to evaluate cpu load again or not */
bool need_load_eval(struct cpu_dbs_common_info *cdbs,
		unsigned int sampling_rate)
{
	if (policy_is_shared(cdbs->cur_policy)) {
		ktime_t time_now = ktime_get();
		s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);

		/* Do nothing if we recently have sampled */
		if (delta_us < (s64)(sampling_rate / 2))
			return false;
		else
			cdbs->time_stamp = time_now;
	}

	return true;
}
EXPORT_SYMBOL_GPL(need_load_eval);

220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void set_sampling_rate(struct dbs_data *dbs_data,
		unsigned int sampling_rate)
{
	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
		cs_tuners->sampling_rate = sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
		od_tuners->sampling_rate = sampling_rate;
	}
}

int cpufreq_governor_dbs(struct cpufreq_policy *policy,
		struct common_dbs_data *cdata, unsigned int event)
234
{
235
	struct dbs_data *dbs_data;
236 237
	struct od_cpu_dbs_info_s *od_dbs_info = NULL;
	struct cs_cpu_dbs_info_s *cs_dbs_info = NULL;
238
	struct od_ops *od_ops = NULL;
239 240
	struct od_dbs_tuners *od_tuners = NULL;
	struct cs_dbs_tuners *cs_tuners = NULL;
241
	struct cpu_dbs_common_info *cpu_cdbs;
242
	unsigned int sampling_rate, latency, ignore_nice, j, cpu = policy->cpu;
243
	int io_busy = 0;
244 245
	int rc;

246 247 248 249 250 251 252 253 254 255 256 257
	if (have_governor_per_policy())
		dbs_data = policy->governor_data;
	else
		dbs_data = cdata->gdbs_data;

	WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT));

	switch (event) {
	case CPUFREQ_GOV_POLICY_INIT:
		if (have_governor_per_policy()) {
			WARN_ON(dbs_data);
		} else if (dbs_data) {
258
			dbs_data->usage_count++;
259 260 261 262 263 264 265 266 267 268 269
			policy->governor_data = dbs_data;
			return 0;
		}

		dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
		if (!dbs_data) {
			pr_err("%s: POLICY_INIT: kzalloc failed\n", __func__);
			return -ENOMEM;
		}

		dbs_data->cdata = cdata;
270
		dbs_data->usage_count = 1;
271 272 273 274 275 276 277
		rc = cdata->init(dbs_data);
		if (rc) {
			pr_err("%s: POLICY_INIT: init() failed\n", __func__);
			kfree(dbs_data);
			return rc;
		}

278 279 280
		if (!have_governor_per_policy())
			WARN_ON(cpufreq_get_global_kobject());

281 282 283 284 285 286 287 288 289 290
		rc = sysfs_create_group(get_governor_parent_kobj(policy),
				get_sysfs_attr(dbs_data));
		if (rc) {
			cdata->exit(dbs_data);
			kfree(dbs_data);
			return rc;
		}

		policy->governor_data = dbs_data;

291
		/* policy latency is in ns. Convert it to us first */
292 293 294 295 296 297 298 299 300 301
		latency = policy->cpuinfo.transition_latency / 1000;
		if (latency == 0)
			latency = 1;

		/* Bring kernel and HW constraints together */
		dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
				MIN_LATENCY_MULTIPLIER * latency);
		set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
					latency * LATENCY_MULTIPLIER));

302 303
		if ((cdata->governor == GOV_CONSERVATIVE) &&
				(!policy->governor->initialized)) {
304 305 306 307 308 309 310 311 312 313 314
			struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;

			cpufreq_register_notifier(cs_ops->notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);
		}

		if (!have_governor_per_policy())
			cdata->gdbs_data = dbs_data;

		return 0;
	case CPUFREQ_GOV_POLICY_EXIT:
315
		if (!--dbs_data->usage_count) {
316 317 318
			sysfs_remove_group(get_governor_parent_kobj(policy),
					get_sysfs_attr(dbs_data));

319 320 321
			if (!have_governor_per_policy())
				cpufreq_put_global_kobject();

322 323
			if ((dbs_data->cdata->governor == GOV_CONSERVATIVE) &&
				(policy->governor->initialized == 1)) {
324 325 326 327 328 329 330 331 332 333
				struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;

				cpufreq_unregister_notifier(cs_ops->notifier_block,
						CPUFREQ_TRANSITION_NOTIFIER);
			}

			cdata->exit(dbs_data);
			kfree(dbs_data);
			cdata->gdbs_data = NULL;
		}
334

335 336 337 338 339 340 341 342 343 344
		policy->governor_data = NULL;
		return 0;
	}

	cpu_cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);

	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		cs_tuners = dbs_data->tuners;
		cs_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
		sampling_rate = cs_tuners->sampling_rate;
345
		ignore_nice = cs_tuners->ignore_nice_load;
346
	} else {
347 348 349
		od_tuners = dbs_data->tuners;
		od_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
		sampling_rate = od_tuners->sampling_rate;
350
		ignore_nice = od_tuners->ignore_nice_load;
351
		od_ops = dbs_data->cdata->gov_ops;
352
		io_busy = od_tuners->io_is_busy;
353 354 355 356
	}

	switch (event) {
	case CPUFREQ_GOV_START:
357
		if (!policy->cur)
358 359 360 361 362
			return -EINVAL;

		mutex_lock(&dbs_data->mutex);

		for_each_cpu(j, policy->cpus) {
363
			struct cpu_dbs_common_info *j_cdbs =
364
				dbs_data->cdata->get_cpu_cdbs(j);
365
			unsigned int prev_load;
366

367
			j_cdbs->cpu = j;
368 369
			j_cdbs->cur_policy = policy;
			j_cdbs->prev_cpu_idle = get_cpu_idle_time(j,
370
					       &j_cdbs->prev_cpu_wall, io_busy);
371 372 373 374 375 376 377

			prev_load = (unsigned int)
				(j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle);
			j_cdbs->prev_load = 100 * prev_load /
					(unsigned int) j_cdbs->prev_cpu_wall;
			j_cdbs->copy_prev_load = true;

378 379 380
			if (ignore_nice)
				j_cdbs->prev_cpu_nice =
					kcpustat_cpu(j).cpustat[CPUTIME_NICE];
381 382 383

			mutex_init(&j_cdbs->timer_mutex);
			INIT_DEFERRABLE_WORK(&j_cdbs->work,
384
					     dbs_data->cdata->gov_dbs_timer);
385 386
		}

387
		if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
388 389 390
			cs_dbs_info->down_skip = 0;
			cs_dbs_info->enable = 1;
			cs_dbs_info->requested_freq = policy->cur;
391
		} else {
392 393 394
			od_dbs_info->rate_mult = 1;
			od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
			od_ops->powersave_bias_init_cpu(cpu);
395 396 397 398
		}

		mutex_unlock(&dbs_data->mutex);

399 400
		/* Initiate timer time stamp */
		cpu_cdbs->time_stamp = ktime_get();
401

402 403
		gov_queue_work(dbs_data, policy,
				delay_for_sampling_rate(sampling_rate), true);
404 405 406
		break;

	case CPUFREQ_GOV_STOP:
407
		if (dbs_data->cdata->governor == GOV_CONSERVATIVE)
408 409
			cs_dbs_info->enable = 0;

410
		gov_cancel_work(dbs_data, policy);
411 412 413

		mutex_lock(&dbs_data->mutex);
		mutex_destroy(&cpu_cdbs->timer_mutex);
414
		cpu_cdbs->cur_policy = NULL;
415

416 417 418 419 420
		mutex_unlock(&dbs_data->mutex);

		break;

	case CPUFREQ_GOV_LIMITS:
421 422 423 424 425
		mutex_lock(&dbs_data->mutex);
		if (!cpu_cdbs->cur_policy) {
			mutex_unlock(&dbs_data->mutex);
			break;
		}
426 427 428 429 430 431 432 433 434
		mutex_lock(&cpu_cdbs->timer_mutex);
		if (policy->max < cpu_cdbs->cur_policy->cur)
			__cpufreq_driver_target(cpu_cdbs->cur_policy,
					policy->max, CPUFREQ_RELATION_H);
		else if (policy->min > cpu_cdbs->cur_policy->cur)
			__cpufreq_driver_target(cpu_cdbs->cur_policy,
					policy->min, CPUFREQ_RELATION_L);
		dbs_check_cpu(dbs_data, cpu);
		mutex_unlock(&cpu_cdbs->timer_mutex);
435
		mutex_unlock(&dbs_data->mutex);
436 437 438 439 440
		break;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);