cpufreq_governor.c 9.5 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19
#include <asm/cputime.h>
20 21
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
22 23
#include <linux/export.h>
#include <linux/kernel_stat.h>
24
#include <linux/mutex.h>
25 26
#include <linux/tick.h>
#include <linux/types.h>
27 28 29 30
#include <linux/workqueue.h>

#include "cpufreq_governor.h"

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
{
	u64 idle_time;
	u64 cur_wall_time;
	u64 busy_time;

	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());

	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];

	idle_time = cur_wall_time - busy_time;
	if (wall)
48
		*wall = cputime_to_usecs(cur_wall_time);
49

50
	return cputime_to_usecs(idle_time);
51 52
}

53
u64 get_cpu_idle_time(unsigned int cpu, u64 *wall)
54 55 56 57 58 59 60 61 62 63 64
{
	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);
	else
		idle_time += get_cpu_iowait_time_us(cpu, wall);

	return idle_time;
}
EXPORT_SYMBOL_GPL(get_cpu_idle_time);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
	struct cpu_dbs_common_info *cdbs = dbs_data->get_cpu_cdbs(cpu);
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	struct cpufreq_policy *policy;
	unsigned int max_load = 0;
	unsigned int ignore_nice;
	unsigned int j;

	if (dbs_data->governor == GOV_ONDEMAND)
		ignore_nice = od_tuners->ignore_nice;
	else
		ignore_nice = cs_tuners->ignore_nice;

	policy = cdbs->cur_policy;

	/* Get Absolute Load (in terms of freq for ondemand gov) */
	for_each_cpu(j, policy->cpus) {
		struct cpu_dbs_common_info *j_cdbs;
86
		u64 cur_wall_time, cur_idle_time, cur_iowait_time;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
		unsigned int idle_time, wall_time, iowait_time;
		unsigned int load;

		j_cdbs = dbs_data->get_cpu_cdbs(j);

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (dbs_data->governor == GOV_ONDEMAND) {
			struct od_cpu_dbs_info_s *od_j_dbs_info =
				dbs_data->get_cpu_dbs_info_s(cpu);

			cur_iowait_time = get_cpu_iowait_time_us(j,
					&cur_wall_time);
			if (cur_iowait_time == -1ULL)
				cur_iowait_time = 0;

			iowait_time = (unsigned int) (cur_iowait_time -
					od_j_dbs_info->prev_cpu_iowait);
			od_j_dbs_info->prev_cpu_iowait = cur_iowait_time;

			/*
			 * For the purpose of ondemand, waiting for disk IO is
			 * an indication that you're performance critical, and
			 * not that the system is actually idle. So subtract the
			 * iowait time from the cpu idle time.
			 */
			if (od_tuners->io_is_busy && idle_time >= iowait_time)
				idle_time -= iowait_time;
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;

		if (dbs_data->governor == GOV_ONDEMAND) {
			int freq_avg = __cpufreq_driver_getavg(policy, j);
			if (freq_avg <= 0)
				freq_avg = policy->cur;

			load *= freq_avg;
		}

		if (load > max_load)
			max_load = load;
	}

	dbs_data->gov_check_cpu(cpu, max_load);
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

164 165 166 167 168 169 170 171
bool dbs_sw_coordinated_cpus(struct cpu_dbs_common_info *cdbs)
{
	struct cpufreq_policy *policy = cdbs->cur_policy;

	return cpumask_weight(policy->cpus) > 1;
}
EXPORT_SYMBOL_GPL(dbs_sw_coordinated_cpus);

172
static inline void dbs_timer_init(struct dbs_data *dbs_data,
173 174 175
				  struct cpu_dbs_common_info *cdbs,
				  unsigned int sampling_rate,
				  int cpu)
176 177
{
	int delay = delay_for_sampling_rate(sampling_rate);
178
	struct cpu_dbs_common_info *cdbs_local = dbs_data->get_cpu_cdbs(cpu);
179

180
	schedule_delayed_work_on(cpu, &cdbs_local->work, delay);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
}

static inline void dbs_timer_exit(struct cpu_dbs_common_info *cdbs)
{
	cancel_delayed_work_sync(&cdbs->work);
}

int cpufreq_governor_dbs(struct dbs_data *dbs_data,
		struct cpufreq_policy *policy, unsigned int event)
{
	struct od_cpu_dbs_info_s *od_dbs_info = NULL;
	struct cs_cpu_dbs_info_s *cs_dbs_info = NULL;
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	struct cpu_dbs_common_info *cpu_cdbs;
	unsigned int *sampling_rate, latency, ignore_nice, j, cpu = policy->cpu;
	int rc;

	cpu_cdbs = dbs_data->get_cpu_cdbs(cpu);

	if (dbs_data->governor == GOV_CONSERVATIVE) {
		cs_dbs_info = dbs_data->get_cpu_dbs_info_s(cpu);
		sampling_rate = &cs_tuners->sampling_rate;
		ignore_nice = cs_tuners->ignore_nice;
	} else {
		od_dbs_info = dbs_data->get_cpu_dbs_info_s(cpu);
		sampling_rate = &od_tuners->sampling_rate;
		ignore_nice = od_tuners->ignore_nice;
	}

	switch (event) {
	case CPUFREQ_GOV_START:
		if ((!cpu_online(cpu)) || (!policy->cur))
			return -EINVAL;

		mutex_lock(&dbs_data->mutex);

		dbs_data->enable++;
		cpu_cdbs->cpu = cpu;
		for_each_cpu(j, policy->cpus) {
			struct cpu_dbs_common_info *j_cdbs;
			j_cdbs = dbs_data->get_cpu_cdbs(j);

			j_cdbs->cur_policy = policy;
			j_cdbs->prev_cpu_idle = get_cpu_idle_time(j,
					&j_cdbs->prev_cpu_wall);
			if (ignore_nice)
				j_cdbs->prev_cpu_nice =
					kcpustat_cpu(j).cpustat[CPUTIME_NICE];
230 231 232 233

			mutex_init(&j_cdbs->timer_mutex);
			INIT_DEFERRABLE_WORK(&j_cdbs->work,
					     dbs_data->gov_dbs_timer);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		}

		/*
		 * Start the timerschedule work, when this governor is used for
		 * first time
		 */
		if (dbs_data->enable != 1)
			goto second_time;

		rc = sysfs_create_group(cpufreq_global_kobject,
				dbs_data->attr_group);
		if (rc) {
			mutex_unlock(&dbs_data->mutex);
			return rc;
		}

		/* policy latency is in nS. Convert it to uS first */
		latency = policy->cpuinfo.transition_latency / 1000;
		if (latency == 0)
			latency = 1;

		/*
		 * conservative does not implement micro like ondemand
		 * governor, thus we are bound to jiffes/HZ
		 */
		if (dbs_data->governor == GOV_CONSERVATIVE) {
			struct cs_ops *ops = dbs_data->gov_ops;

			cpufreq_register_notifier(ops->notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);

			dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
				jiffies_to_usecs(10);
		} else {
			struct od_ops *ops = dbs_data->gov_ops;

			od_tuners->io_is_busy = ops->io_busy();
		}

		/* Bring kernel and HW constraints together */
		dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
				MIN_LATENCY_MULTIPLIER * latency);
		*sampling_rate = max(dbs_data->min_sampling_rate, latency *
				LATENCY_MULTIPLIER);

second_time:
		if (dbs_data->governor == GOV_CONSERVATIVE) {
			cs_dbs_info->down_skip = 0;
			cs_dbs_info->enable = 1;
			cs_dbs_info->requested_freq = policy->cur;
		} else {
			struct od_ops *ops = dbs_data->gov_ops;
			od_dbs_info->rate_mult = 1;
			od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
			ops->powersave_bias_init_cpu(cpu);
		}
		mutex_unlock(&dbs_data->mutex);

292
		if (dbs_sw_coordinated_cpus(cpu_cdbs)) {
293 294 295
			/* Initiate timer time stamp */
			cpu_cdbs->time_stamp = ktime_get();

296 297 298 299 300 301 302 303 304 305
			for_each_cpu(j, policy->cpus) {
				struct cpu_dbs_common_info *j_cdbs;

				j_cdbs = dbs_data->get_cpu_cdbs(j);
				dbs_timer_init(dbs_data, j_cdbs,
					       *sampling_rate, j);
			}
		} else {
			dbs_timer_init(dbs_data, cpu_cdbs, *sampling_rate, cpu);
		}
306 307 308 309 310 311
		break;

	case CPUFREQ_GOV_STOP:
		if (dbs_data->governor == GOV_CONSERVATIVE)
			cs_dbs_info->enable = 0;

312 313 314 315 316 317 318 319 320 321
		if (dbs_sw_coordinated_cpus(cpu_cdbs)) {
			for_each_cpu(j, policy->cpus) {
				struct cpu_dbs_common_info *j_cdbs;

				j_cdbs = dbs_data->get_cpu_cdbs(j);
				dbs_timer_exit(j_cdbs);
			}
		} else {
			dbs_timer_exit(cpu_cdbs);
		}
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

		mutex_lock(&dbs_data->mutex);
		mutex_destroy(&cpu_cdbs->timer_mutex);
		dbs_data->enable--;
		if (!dbs_data->enable) {
			struct cs_ops *ops = dbs_data->gov_ops;

			sysfs_remove_group(cpufreq_global_kobject,
					dbs_data->attr_group);
			if (dbs_data->governor == GOV_CONSERVATIVE)
				cpufreq_unregister_notifier(ops->notifier_block,
						CPUFREQ_TRANSITION_NOTIFIER);
		}
		mutex_unlock(&dbs_data->mutex);

		break;

	case CPUFREQ_GOV_LIMITS:
		mutex_lock(&cpu_cdbs->timer_mutex);
		if (policy->max < cpu_cdbs->cur_policy->cur)
			__cpufreq_driver_target(cpu_cdbs->cur_policy,
					policy->max, CPUFREQ_RELATION_H);
		else if (policy->min > cpu_cdbs->cur_policy->cur)
			__cpufreq_driver_target(cpu_cdbs->cur_policy,
					policy->min, CPUFREQ_RELATION_L);
		dbs_check_cpu(dbs_data, cpu);
		mutex_unlock(&cpu_cdbs->timer_mutex);
		break;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);