cpufreq_governor.c 15.7 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19 20
#include <linux/export.h>
#include <linux/kernel_stat.h>
21
#include <linux/slab.h>
22 23 24

#include "cpufreq_governor.h"

25 26 27
DEFINE_MUTEX(dbs_data_mutex);
EXPORT_SYMBOL_GPL(dbs_data_mutex);

28
static struct attribute_group *get_sysfs_attr(struct dbs_governor *gov)
29
{
30 31
	return have_governor_per_policy() ?
		gov->attr_group_gov_pol : gov->attr_group_gov_sys;
32 33
}

34
void dbs_check_cpu(struct cpufreq_policy *policy, int cpu)
35
{
36 37 38
	struct dbs_governor *gov = dbs_governor_of(policy);
	struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
	struct dbs_data *dbs_data = policy->governor_data;
39 40
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
41
	unsigned int sampling_rate;
42 43 44 45
	unsigned int max_load = 0;
	unsigned int ignore_nice;
	unsigned int j;

46
	if (gov->governor == GOV_ONDEMAND) {
47
		struct od_cpu_dbs_info_s *od_dbs_info =
48
				gov->get_cpu_dbs_info_s(cpu);
49 50 51 52 53 54 55 56 57 58

		/*
		 * Sometimes, the ondemand governor uses an additional
		 * multiplier to give long delays. So apply this multiplier to
		 * the 'sampling_rate', so as to keep the wake-up-from-idle
		 * detection logic a bit conservative.
		 */
		sampling_rate = od_tuners->sampling_rate;
		sampling_rate *= od_dbs_info->rate_mult;

59
		ignore_nice = od_tuners->ignore_nice_load;
60 61
	} else {
		sampling_rate = cs_tuners->sampling_rate;
62
		ignore_nice = cs_tuners->ignore_nice_load;
63
	}
64

65
	/* Get Absolute Load */
66
	for_each_cpu(j, policy->cpus) {
67
		struct cpu_dbs_info *j_cdbs;
68 69
		u64 cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
70
		unsigned int load;
71
		int io_busy = 0;
72

73
		j_cdbs = gov->get_cpu_cdbs(j);
74

75 76 77 78 79 80
		/*
		 * For the purpose of ondemand, waiting for disk IO is
		 * an indication that you're performance critical, and
		 * not that the system is actually idle. So do not add
		 * the iowait time to the cpu idle time.
		 */
81
		if (gov->governor == GOV_ONDEMAND)
82 83
			io_busy = od_tuners->io_is_busy;
		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
84 85 86 87 88

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

89 90 91
		if (cur_idle_time < j_cdbs->prev_cpu_idle)
			cur_idle_time = j_cdbs->prev_cpu_idle;

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
		/*
		 * If the CPU had gone completely idle, and a task just woke up
		 * on this CPU now, it would be unfair to calculate 'load' the
		 * usual way for this elapsed time-window, because it will show
		 * near-zero load, irrespective of how CPU intensive that task
		 * actually is. This is undesirable for latency-sensitive bursty
		 * workloads.
		 *
		 * To avoid this, we reuse the 'load' from the previous
		 * time-window and give this task a chance to start with a
		 * reasonably high CPU frequency. (However, we shouldn't over-do
		 * this copy, lest we get stuck at a high load (high frequency)
		 * for too long, even when the current system load has actually
		 * dropped down. So we perform the copy only once, upon the
		 * first wake-up from idle.)
		 *
133 134 135 136
		 * Detecting this situation is easy: the governor's utilization
		 * update handler would not have run during CPU-idle periods.
		 * Hence, an unusually large 'wall_time' (as compared to the
		 * sampling rate) indicates this scenario.
137 138 139 140 141
		 *
		 * prev_load can be zero in two cases and we must recalculate it
		 * for both cases:
		 * - during long idle intervals
		 * - explicitly set to zero
142
		 */
143 144
		if (unlikely(wall_time > (2 * sampling_rate) &&
			     j_cdbs->prev_load)) {
145
			load = j_cdbs->prev_load;
146 147 148 149 150 151 152

			/*
			 * Perform a destructive copy, to ensure that we copy
			 * the previous load only once, upon the first wake-up
			 * from idle.
			 */
			j_cdbs->prev_load = 0;
153 154 155 156
		} else {
			load = 100 * (wall_time - idle_time) / wall_time;
			j_cdbs->prev_load = load;
		}
157 158 159 160 161

		if (load > max_load)
			max_load = load;
	}

162
	gov->gov_check_cpu(cpu, max_load);
163 164 165
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

166
void gov_set_update_util(struct policy_dbs_info *policy_dbs,
167
			 unsigned int delay_us)
168
{
169
	struct cpufreq_policy *policy = policy_dbs->policy;
170
	struct dbs_governor *gov = dbs_governor_of(policy);
171
	int cpu;
172

173 174
	gov_update_sample_delay(policy_dbs, delay_us);
	policy_dbs->last_sample_time = 0;
175

176
	for_each_cpu(cpu, policy->cpus) {
177
		struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
178 179

		cpufreq_set_update_util_data(cpu, &cdbs->update_util);
180 181
	}
}
182
EXPORT_SYMBOL_GPL(gov_set_update_util);
183

184
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
185 186
{
	int i;
187

188 189 190 191
	for_each_cpu(i, policy->cpus)
		cpufreq_set_update_util_data(i, NULL);

	synchronize_rcu();
192 193
}

194
static void gov_cancel_work(struct policy_dbs_info *policy_dbs)
195
{
196
	/* Tell dbs_update_util_handler() to skip queuing up work items. */
197
	atomic_inc(&policy_dbs->skip_work);
198
	/*
199 200 201
	 * If dbs_update_util_handler() is already running, it may not notice
	 * the incremented skip_work, so wait for it to complete to prevent its
	 * work item from being queued up after the cancel_work_sync() below.
202
	 */
203 204 205 206
	gov_clear_update_util(policy_dbs->policy);
	irq_work_sync(&policy_dbs->irq_work);
	cancel_work_sync(&policy_dbs->work);
	atomic_set(&policy_dbs->skip_work, 0);
207
}
208

209
static void dbs_work_handler(struct work_struct *work)
210
{
211
	struct policy_dbs_info *policy_dbs;
212
	struct cpufreq_policy *policy;
213
	struct dbs_governor *gov;
214
	unsigned int delay;
215

216 217
	policy_dbs = container_of(work, struct policy_dbs_info, work);
	policy = policy_dbs->policy;
218
	gov = dbs_governor_of(policy);
219

220
	/*
221 222
	 * Make sure cpufreq_governor_limits() isn't evaluating load or the
	 * ondemand governor isn't updating the sampling rate in parallel.
223
	 */
224
	mutex_lock(&policy_dbs->timer_mutex);
225
	delay = gov->gov_dbs_timer(policy);
226 227
	policy_dbs->sample_delay_ns = jiffies_to_nsecs(delay);
	mutex_unlock(&policy_dbs->timer_mutex);
228

229 230 231 232 233 234
	/*
	 * If the atomic operation below is reordered with respect to the
	 * sample delay modification, the utilization update handler may end
	 * up using a stale sample delay value.
	 */
	smp_mb__before_atomic();
235
	atomic_dec(&policy_dbs->skip_work);
236 237 238 239
}

static void dbs_irq_work(struct irq_work *irq_work)
{
240
	struct policy_dbs_info *policy_dbs;
241

242 243
	policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
	schedule_work(&policy_dbs->work);
244 245
}

246
static inline void gov_queue_irq_work(struct policy_dbs_info *policy_dbs)
247
{
248
#ifdef CONFIG_SMP
249
	irq_work_queue_on(&policy_dbs->irq_work, smp_processor_id());
250
#else
251
	irq_work_queue(&policy_dbs->irq_work);
252 253 254 255 256 257 258
#endif
}

static void dbs_update_util_handler(struct update_util_data *data, u64 time,
				    unsigned long util, unsigned long max)
{
	struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
259
	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
260 261

	/*
262 263 264 265 266
	 * The work may not be allowed to be queued up right now.
	 * Possible reasons:
	 * - Work has already been queued up or is in progress.
	 * - The governor is being stopped.
	 * - It is too early (too little time from the previous sample).
267
	 */
268
	if (atomic_inc_return(&policy_dbs->skip_work) == 1) {
269 270
		u64 delta_ns;

271 272 273 274
		delta_ns = time - policy_dbs->last_sample_time;
		if ((s64)delta_ns >= policy_dbs->sample_delay_ns) {
			policy_dbs->last_sample_time = time;
			gov_queue_irq_work(policy_dbs);
275 276 277
			return;
		}
	}
278
	atomic_dec(&policy_dbs->skip_work);
279
}
280

281
static void set_sampling_rate(struct dbs_data *dbs_data,
282 283
			      struct dbs_governor *gov,
			      unsigned int sampling_rate)
284
{
285
	if (gov->governor == GOV_CONSERVATIVE) {
286 287 288 289 290 291 292 293
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
		cs_tuners->sampling_rate = sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
		od_tuners->sampling_rate = sampling_rate;
	}
}

294
static int alloc_policy_dbs_info(struct cpufreq_policy *policy,
295
				 struct dbs_governor *gov)
296
{
297
	struct policy_dbs_info *policy_dbs;
298 299 300
	int j;

	/* Allocate memory for the common information for policy->cpus */
301 302
	policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
	if (!policy_dbs)
303 304
		return -ENOMEM;

305
	/* Set policy_dbs for all CPUs, online+offline */
306
	for_each_cpu(j, policy->related_cpus)
307
		gov->get_cpu_cdbs(j)->policy_dbs = policy_dbs;
308

309 310 311 312
	mutex_init(&policy_dbs->timer_mutex);
	atomic_set(&policy_dbs->skip_work, 0);
	init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
	INIT_WORK(&policy_dbs->work, dbs_work_handler);
313 314 315
	return 0;
}

316
static void free_policy_dbs_info(struct cpufreq_policy *policy,
317
				 struct dbs_governor *gov)
318
{
319
	struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
320
	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
321 322
	int j;

323
	mutex_destroy(&policy_dbs->timer_mutex);
324

325
	for_each_cpu(j, policy->cpus)
326
		gov->get_cpu_cdbs(j)->policy_dbs = NULL;
327

328
	kfree(policy_dbs);
329 330
}

331
static int cpufreq_governor_init(struct cpufreq_policy *policy)
332
{
333
	struct dbs_governor *gov = dbs_governor_of(policy);
334
	struct dbs_data *dbs_data = gov->gdbs_data;
335 336
	unsigned int latency;
	int ret;
337

338 339 340 341
	/* State should be equivalent to EXIT */
	if (policy->governor_data)
		return -EBUSY;

342 343 344
	if (dbs_data) {
		if (WARN_ON(have_governor_per_policy()))
			return -EINVAL;
345

346
		ret = alloc_policy_dbs_info(policy, gov);
347 348 349
		if (ret)
			return ret;

350 351 352 353
		dbs_data->usage_count++;
		policy->governor_data = dbs_data;
		return 0;
	}
354

355 356 357
	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
	if (!dbs_data)
		return -ENOMEM;
358

359
	ret = alloc_policy_dbs_info(policy, gov);
360 361 362
	if (ret)
		goto free_dbs_data;

363
	dbs_data->usage_count = 1;
364

365
	ret = gov->init(dbs_data, !policy->governor->initialized);
366
	if (ret)
367
		goto free_policy_dbs_info;
368

369 370 371 372
	/* policy latency is in ns. Convert it to us first */
	latency = policy->cpuinfo.transition_latency / 1000;
	if (latency == 0)
		latency = 1;
373

374 375 376
	/* Bring kernel and HW constraints together */
	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
					  MIN_LATENCY_MULTIPLIER * latency);
377
	set_sampling_rate(dbs_data, gov, max(dbs_data->min_sampling_rate,
378
					latency * LATENCY_MULTIPLIER));
379

380
	if (!have_governor_per_policy())
381
		gov->gdbs_data = dbs_data;
382

383 384
	policy->governor_data = dbs_data;

385
	ret = sysfs_create_group(get_governor_parent_kobj(policy),
386
				 get_sysfs_attr(gov));
387
	if (ret)
388
		goto reset_gdbs_data;
389

390
	return 0;
391

392
reset_gdbs_data:
393 394
	policy->governor_data = NULL;

395
	if (!have_governor_per_policy())
396 397
		gov->gdbs_data = NULL;
	gov->exit(dbs_data, !policy->governor->initialized);
398 399
free_policy_dbs_info:
	free_policy_dbs_info(policy, gov);
400 401 402 403
free_dbs_data:
	kfree(dbs_data);
	return ret;
}
404

405
static int cpufreq_governor_exit(struct cpufreq_policy *policy)
406
{
407
	struct dbs_governor *gov = dbs_governor_of(policy);
408
	struct dbs_data *dbs_data = policy->governor_data;
409
	struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
410 411

	/* State should be equivalent to INIT */
412
	if (!cdbs->policy_dbs || cdbs->policy_dbs->policy)
413
		return -EBUSY;
414

415 416
	if (!--dbs_data->usage_count) {
		sysfs_remove_group(get_governor_parent_kobj(policy),
417
				   get_sysfs_attr(gov));
418

419 420
		policy->governor_data = NULL;

421
		if (!have_governor_per_policy())
422
			gov->gdbs_data = NULL;
423

424
		gov->exit(dbs_data, policy->governor->initialized == 1);
425
		kfree(dbs_data);
426 427
	} else {
		policy->governor_data = NULL;
428
	}
429

430
	free_policy_dbs_info(policy, gov);
431
	return 0;
432
}
433

434
static int cpufreq_governor_start(struct cpufreq_policy *policy)
435
{
436
	struct dbs_governor *gov = dbs_governor_of(policy);
437
	struct dbs_data *dbs_data = policy->governor_data;
438
	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
439
	struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
440
	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
441 442 443 444 445
	int io_busy = 0;

	if (!policy->cur)
		return -EINVAL;

446
	/* State should be equivalent to INIT */
447
	if (!policy_dbs || policy_dbs->policy)
448 449
		return -EBUSY;

450
	if (gov->governor == GOV_CONSERVATIVE) {
451
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
452 453

		sampling_rate = cs_tuners->sampling_rate;
454
		ignore_nice = cs_tuners->ignore_nice_load;
455
	} else {
456 457
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

458
		sampling_rate = od_tuners->sampling_rate;
459
		ignore_nice = od_tuners->ignore_nice_load;
460
		io_busy = od_tuners->io_is_busy;
461 462
	}

463
	for_each_cpu(j, policy->cpus) {
464
		struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
465
		unsigned int prev_load;
466

467 468
		j_cdbs->prev_cpu_idle =
			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
469

470 471 472 473
		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
					    j_cdbs->prev_cpu_idle);
		j_cdbs->prev_load = 100 * prev_load /
				    (unsigned int)j_cdbs->prev_cpu_wall;
474

475 476
		if (ignore_nice)
			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
477

478
		j_cdbs->update_util.func = dbs_update_util_handler;
479
	}
480
	policy_dbs->policy = policy;
481

482
	if (gov->governor == GOV_CONSERVATIVE) {
483
		struct cs_cpu_dbs_info_s *cs_dbs_info =
484
			gov->get_cpu_dbs_info_s(cpu);
485

486 487 488
		cs_dbs_info->down_skip = 0;
		cs_dbs_info->requested_freq = policy->cur;
	} else {
489 490
		struct od_ops *od_ops = gov->gov_ops;
		struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu);
491

492 493 494 495
		od_dbs_info->rate_mult = 1;
		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
		od_ops->powersave_bias_init_cpu(cpu);
	}
496

497
	gov_set_update_util(policy_dbs, sampling_rate);
498 499 500
	return 0;
}

501
static int cpufreq_governor_stop(struct cpufreq_policy *policy)
502
{
503 504
	struct dbs_governor *gov = dbs_governor_of(policy);
	struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
505
	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
506

507
	/* State should be equivalent to START */
508
	if (!policy_dbs || !policy_dbs->policy)
509 510
		return -EBUSY;

511 512
	gov_cancel_work(policy_dbs);
	policy_dbs->policy = NULL;
513

514
	return 0;
515
}
516

517
static int cpufreq_governor_limits(struct cpufreq_policy *policy)
518
{
519
	struct dbs_governor *gov = dbs_governor_of(policy);
520
	unsigned int cpu = policy->cpu;
521
	struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
522

523
	/* State should be equivalent to START */
524
	if (!cdbs->policy_dbs || !cdbs->policy_dbs->policy)
525
		return -EBUSY;
526

527 528 529
	mutex_lock(&cdbs->policy_dbs->timer_mutex);
	if (policy->max < cdbs->policy_dbs->policy->cur)
		__cpufreq_driver_target(cdbs->policy_dbs->policy, policy->max,
530
					CPUFREQ_RELATION_H);
531 532
	else if (policy->min > cdbs->policy_dbs->policy->cur)
		__cpufreq_driver_target(cdbs->policy_dbs->policy, policy->min,
533
					CPUFREQ_RELATION_L);
534
	dbs_check_cpu(policy, cpu);
535
	mutex_unlock(&cdbs->policy_dbs->timer_mutex);
536 537

	return 0;
538
}
539

540
int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
541
{
542
	int ret = -EINVAL;
543

544
	/* Lock governor to block concurrent initialization of governor */
545
	mutex_lock(&dbs_data_mutex);
546

547
	if (event == CPUFREQ_GOV_POLICY_INIT) {
548
		ret = cpufreq_governor_init(policy);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	} else if (policy->governor_data) {
		switch (event) {
		case CPUFREQ_GOV_POLICY_EXIT:
			ret = cpufreq_governor_exit(policy);
			break;
		case CPUFREQ_GOV_START:
			ret = cpufreq_governor_start(policy);
			break;
		case CPUFREQ_GOV_STOP:
			ret = cpufreq_governor_stop(policy);
			break;
		case CPUFREQ_GOV_LIMITS:
			ret = cpufreq_governor_limits(policy);
			break;
		}
564
	}
565

566
	mutex_unlock(&dbs_data_mutex);
567
	return ret;
568 569
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);