mmu.c 38.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
25
#include <asm/sections.h>
26
#include <asm/setup.h>
27
#include <asm/smp_plat.h>
28
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
29
#include <asm/highmem.h>
30
#include <asm/system_info.h>
31
#include <asm/traps.h>
32 33
#include <asm/procinfo.h>
#include <asm/memory.h>
34 35 36

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
37
#include <asm/mach/pci.h>
38 39

#include "mm.h"
40
#include "tcm.h"
41 42 43 44 45 46

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
47
EXPORT_SYMBOL(empty_zero_page);
48 49 50 51 52 53

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

54 55 56 57 58 59 60 61
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
62
pgprot_t pgprot_user;
63
pgprot_t pgprot_kernel;
64 65 66
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
67

68
EXPORT_SYMBOL(pgprot_user);
69 70 71 72 73
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
74
	pmdval_t	pmd;
75
	pteval_t	pte;
76
	pteval_t	pte_s2;
77 78
};

79 80 81 82 83 84
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

85 86 87 88 89
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
90
		.pte		= L_PTE_MT_UNCACHED,
91
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
92 93 94 95
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
96
		.pte		= L_PTE_MT_BUFFERABLE,
97
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
98 99 100 101
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
102
		.pte		= L_PTE_MT_WRITETHROUGH,
103
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 105 106 107
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
108
		.pte		= L_PTE_MT_WRITEBACK,
109
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
110 111 112 113
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
114
		.pte		= L_PTE_MT_WRITEALLOC,
115
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
116 117 118
	}
};

119
#ifdef CONFIG_CPU_CP15
120
/*
S
Simon Arlott 已提交
121
 * These are useful for identifying cache coherency
122 123 124 125
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
126
static int __init early_cachepolicy(char *p)
127 128 129 130 131 132
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

133
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 135 136 137 138 139 140 141
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
142 143 144 145 146 147 148
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
149 150 151 152
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
153 154
	flush_cache_all();
	set_cr(cr_alignment);
155
	return 0;
156
}
157
early_param("cachepolicy", early_cachepolicy);
158

159
static int __init early_nocache(char *__unused)
160 161 162
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 164
	early_cachepolicy(p);
	return 0;
165
}
166
early_param("nocache", early_nocache);
167

168
static int __init early_nowrite(char *__unused)
169 170 171
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 173
	early_cachepolicy(p);
	return 0;
174
}
175
early_param("nowb", early_nowrite);
176

177
#ifndef CONFIG_ARM_LPAE
178
static int __init early_ecc(char *p)
179
{
180
	if (memcmp(p, "on", 2) == 0)
181
		ecc_mask = PMD_PROTECTION;
182
	else if (memcmp(p, "off", 3) == 0)
183
		ecc_mask = 0;
184
	return 0;
185
}
186
early_param("ecc", early_ecc);
187
#endif
188 189 190 191 192 193 194 195 196 197

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
	pr_warning("noalign kernel parameter not supported without cp15\n");
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

234
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
236

237
static struct mem_type mem_types[] = {
238
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
239 240
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
241
		.prot_l1	= PMD_TYPE_TABLE,
242
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
243 244 245
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
246
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
247
		.prot_l1	= PMD_TYPE_TABLE,
248
		.prot_sect	= PROT_SECT_DEVICE,
249 250 251
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
252
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
253 254 255
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
256
	},
257
	[MT_DEVICE_WC] = {	/* ioremap_wc */
258
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
259
		.prot_l1	= PMD_TYPE_TABLE,
260
		.prot_sect	= PROT_SECT_DEVICE,
261
		.domain		= DOMAIN_IO,
262
	},
263 264 265 266 267 268
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
269
	[MT_CACHECLEAN] = {
270
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271 272
		.domain    = DOMAIN_KERNEL,
	},
273
#ifndef CONFIG_ARM_LPAE
274
	[MT_MINICLEAN] = {
275
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
276 277
		.domain    = DOMAIN_KERNEL,
	},
278
#endif
279 280
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
281
				L_PTE_RDONLY,
282 283 284 285 286
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
287
				L_PTE_USER | L_PTE_RDONLY,
288 289 290
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
291
	[MT_MEMORY_RWX] = {
292
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293
		.prot_l1   = PMD_TYPE_TABLE,
294
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295 296
		.domain    = DOMAIN_KERNEL,
	},
297 298 299 300 301 302 303
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
304
	[MT_ROM] = {
305
		.prot_sect = PMD_TYPE_SECT,
306 307
		.domain    = DOMAIN_KERNEL,
	},
308
	[MT_MEMORY_RWX_NONCACHED] = {
309
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310
				L_PTE_MT_BUFFERABLE,
311
		.prot_l1   = PMD_TYPE_TABLE,
312 313 314
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
315
	[MT_MEMORY_RW_DTCM] = {
316
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
317
				L_PTE_XN,
318 319 320
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
321
	},
322
	[MT_MEMORY_RWX_ITCM] = {
323
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
324
		.prot_l1   = PMD_TYPE_TABLE,
325
		.domain    = DOMAIN_KERNEL,
326
	},
327
	[MT_MEMORY_RW_SO] = {
328
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329
				L_PTE_MT_UNCACHED | L_PTE_XN,
330 331 332 333 334
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
335 336 337 338 339
	[MT_MEMORY_DMA_READY] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
340 341
};

342 343 344 345
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
346
EXPORT_SYMBOL(get_mem_type);
347

348 349 350 351 352 353 354
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
355
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
356
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
357 358 359
	int cpu_arch = cpu_architecture();
	int i;

360
	if (cpu_arch < CPU_ARCH_ARMv6) {
361
#if defined(CONFIG_CPU_DCACHE_DISABLE)
362 363
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
364
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
365 366
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
367
#endif
368
	}
369 370 371 372 373
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
374 375
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
376

377
	/*
378 379 380
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
381
	 */
382 383 384 385 386 387
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
388 389

	/*
390 391 392
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
393
	 */
394
	if (cpu_is_xscale() || cpu_is_xsc3()) {
395
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
396
			mem_types[i].prot_sect &= ~PMD_BIT4;
397 398 399 400
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
401 402
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
403 404 405 406
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
407

408 409 410 411 412 413 414 415 416 417 418 419 420
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
421 422 423

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
469
	cp = &cache_policies[cachepolicy];
470
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
471 472
	s2_pgprot = cp->pte_s2;
	hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
473

474 475 476 477
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
478
#ifndef CONFIG_ARM_LPAE
479 480 481 482 483 484 485
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
486
#endif
487

488 489 490 491 492 493 494 495
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
496
			s2_pgprot |= L_PTE_SHARED;
497 498 499 500
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
501 502
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
503 504
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
505
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
506 507
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
508
		}
509 510
	}

511 512 513 514 515 516 517
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
518
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
519 520 521
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
522
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
523 524 525
				PMD_SECT_TEX(1);
		}
	} else {
526
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
527 528
	}

529 530 531 532 533 534
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
535 536
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
537 538 539 540 541
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

542
	for (i = 0; i < 16; i++) {
543
		pteval_t v = pgprot_val(protection_map[i]);
544
		protection_map[i] = __pgprot(v | user_pgprot);
545 546
	}

547 548
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
549

550
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
551
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
552
				 L_PTE_DIRTY | kern_pgprot);
553 554 555
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
556 557 558

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
559 560
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
561 562
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
563
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
564
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
565 566 567 568 569 570 571 572 573 574 575
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
576 577
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
578 579 580 581 582 583 584 585

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
586 587
}

588 589 590 591 592 593 594 595 596 597 598 599 600
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

601 602
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

603
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
604
{
605
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
606 607
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
608 609
}

610 611 612 613 614
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
615
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
616
{
617
	if (pmd_none(*pmd)) {
618
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
619
		__pmd_populate(pmd, __pa(pte), prot);
620
	}
R
Russell King 已提交
621 622 623
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
624

R
Russell King 已提交
625 626 627 628 629
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
630
	do {
631
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
632 633
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
634 635
}

636
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
637 638
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
639
{
640 641
	pmd_t *p = pmd;

642
#ifndef CONFIG_ARM_LPAE
643
	/*
644 645 646 647 648 649 650
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
651
	 */
652 653
	if (addr & SECTION_SIZE)
		pmd++;
654
#endif
655 656 657 658
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
659

660
	flush_pmd_entry(p);
661
}
662

663 664 665 666 667 668 669 670
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
671
		/*
672 673
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
674
		 */
675 676 677 678 679 680 681 682
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
683
			__map_init_section(pmd, addr, next, phys, type);
684 685 686 687 688 689 690 691
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
692 693
}

694
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
695 696
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
697 698 699 700 701 702
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
703
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
704 705 706 707
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

708
#ifndef CONFIG_ARM_LPAE
709 710 711
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
712 713
	unsigned long addr, length, end;
	phys_addr_t phys;
714 715 716
	pgd_t *pgd;

	addr = md->virtual;
717
	phys = __pfn_to_phys(md->pfn);
718 719 720 721 722
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
723
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
724 725 726 727 728 729 730 731 732 733 734 735
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
736
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
737 738 739 740
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
741 742 743
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
744 745 746 747 748 749 750 751 752 753 754 755
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
756 757
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
758 759 760 761 762 763 764 765 766 767
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
768
#endif	/* !CONFIG_ARM_LPAE */
769

770 771 772 773 774 775 776
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
777
static void __init create_mapping(struct map_desc *md)
778
{
779 780
	unsigned long addr, length, end;
	phys_addr_t phys;
781
	const struct mem_type *type;
782
	pgd_t *pgd;
783 784

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
785 786 787
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
788 789 790 791
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
792 793
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
794
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
795
		       " at 0x%08lx out of vmalloc space\n",
796
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
797 798
	}

799
	type = &mem_types[md->type];
800

801
#ifndef CONFIG_ARM_LPAE
802 803 804
	/*
	 * Catch 36-bit addresses
	 */
805 806 807
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
808
	}
809
#endif
810

811
	addr = md->virtual & PAGE_MASK;
812
	phys = __pfn_to_phys(md->pfn);
813
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
814

815
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
816
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
817
		       "be mapped using pages, ignoring.\n",
818
		       (long long)__pfn_to_phys(md->pfn), addr);
819 820 821
		return;
	}

822 823 824 825
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
826

R
Russell King 已提交
827
		alloc_init_pud(pgd, addr, next, phys, type);
828

829 830 831
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
832 833 834 835 836 837 838
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
839 840
	struct map_desc *md;
	struct vm_struct *vm;
841
	struct static_vm *svm;
842 843 844

	if (!nr)
		return;
845

846
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
847 848 849

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
850 851

		vm = &svm->vm;
852 853
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
854 855
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
856
		vm->flags |= VM_ARM_MTYPE(md->type);
857
		vm->caller = iotable_init;
858
		add_static_vm_early(svm++);
859
	}
860 861
}

R
Rob Herring 已提交
862 863 864 865
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
866 867 868
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
869

870
	vm = &svm->vm;
R
Rob Herring 已提交
871 872
	vm->addr = (void *)addr;
	vm->size = size;
873
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
874
	vm->caller = caller;
875
	add_static_vm_early(svm);
R
Rob Herring 已提交
876 877
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
895
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
896 897 898 899
}

static void __init fill_pmd_gaps(void)
{
900
	struct static_vm *svm;
901 902 903 904
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

905 906
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
943 944 945
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
946
	struct static_vm *svm;
R
Rob Herring 已提交
947

948 949 950
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
951 952 953 954 955 956 957

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
958 959 960 961 962 963 964 965 966 967 968 969
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
970
	iotable_init(&map, 1);
R
Rob Herring 已提交
971 972 973
}
#endif

974 975
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
976 977 978 979

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
980
 * area - the default is 240m.
981
 */
982
static int __init early_vmalloc(char *arg)
983
{
R
Russell King 已提交
984
	unsigned long vmalloc_reserve = memparse(arg, NULL);
985 986 987 988 989 990 991

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
992 993 994 995 996 997 998

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
999 1000

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1001
	return 0;
1002
}
1003
early_param("vmalloc", early_vmalloc);
1004

1005
phys_addr_t arm_lowmem_limit __initdata = 0;
1006

1007
void __init sanity_check_meminfo(void)
1008
{
1009
	phys_addr_t memblock_limit = 0;
R
Russell King 已提交
1010
	int i, j, highmem = 0;
1011
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1012

1013
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1014
		struct membank *bank = &meminfo.bank[j];
1015
		phys_addr_t size_limit;
1016

1017
		*bank = meminfo.bank[i];
1018
		size_limit = bank->size;
1019

1020
		if (bank->start >= vmalloc_limit)
R
Russell King 已提交
1021
			highmem = 1;
1022 1023
		else
			size_limit = vmalloc_limit - bank->start;
R
Russell King 已提交
1024 1025 1026

		bank->highmem = highmem;

1027
#ifdef CONFIG_HIGHMEM
1028 1029 1030 1031
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
1032
		if (!highmem && bank->size > size_limit) {
1033 1034 1035 1036 1037 1038 1039 1040
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
1041
				bank[1].size -= size_limit;
1042
				bank[1].start = vmalloc_limit;
R
Russell King 已提交
1043
				bank[1].highmem = highmem = 1;
1044 1045
				j++;
			}
1046
			bank->size = size_limit;
1047 1048
		}
#else
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

1060 1061 1062 1063
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
1064
		if (bank->size > size_limit) {
1065 1066 1067 1068
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
1069 1070
			       (unsigned long long)bank->start + size_limit - 1);
			bank->size = size_limit;
1071 1072
		}
#endif
1073 1074
		if (!bank->highmem) {
			phys_addr_t bank_end = bank->start + bank->size;
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
			if (bank_end > arm_lowmem_limit)
				arm_lowmem_limit = bank_end;

			/*
			 * Find the first non-section-aligned page, and point
			 * memblock_limit at it. This relies on rounding the
			 * limit down to be section-aligned, which happens at
			 * the end of this function.
			 *
			 * With this algorithm, the start or end of almost any
			 * bank can be non-section-aligned. The only exception
			 * is that the start of the bank 0 must be section-
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
					memblock_limit = bank->start;
				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
					memblock_limit = bank_end;
			}
		}
1099
		j++;
1100
	}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
1121
	meminfo.nr_banks = j;
1122
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

	/*
	 * Round the memblock limit down to a section size.  This
	 * helps to ensure that we will allocate memory from the
	 * last full section, which should be mapped.
	 */
	if (memblock_limit)
		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1135 1136
}

1137
static inline void prepare_page_table(void)
1138 1139
{
	unsigned long addr;
1140
	phys_addr_t end;
1141 1142 1143 1144

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1145
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1146 1147 1148 1149
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1150
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1151
#endif
1152
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1153 1154
		pmd_clear(pmd_off_k(addr));

1155 1156 1157 1158
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1159 1160
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1161

1162 1163
	/*
	 * Clear out all the kernel space mappings, except for the first
1164
	 * memory bank, up to the vmalloc region.
1165
	 */
1166
	for (addr = __phys_to_virt(end);
1167
	     addr < VMALLOC_START; addr += PMD_SIZE)
1168 1169 1170
		pmd_clear(pmd_off_k(addr));
}

1171 1172 1173 1174 1175
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1176
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1177
#endif
1178

1179
/*
R
Russell King 已提交
1180
 * Reserve the special regions of memory
1181
 */
R
Russell King 已提交
1182
void __init arm_mm_memblock_reserve(void)
1183 1184 1185 1186 1187
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1188
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1189 1190 1191 1192 1193 1194

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1195
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1196 1197 1198 1199
#endif
}

/*
1200 1201
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1202 1203 1204 1205
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
1206
static void __init devicemaps_init(const struct machine_desc *mdesc)
1207 1208 1209
{
	struct map_desc map;
	unsigned long addr;
1210
	void *vectors;
1211 1212 1213 1214

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1215
	vectors = early_alloc(PAGE_SIZE * 2);
1216 1217

	early_trap_init(vectors);
1218

1219
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1220 1221 1222 1223 1224 1225 1226 1227
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1228
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1229
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1257
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1258 1259
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1260
#ifdef CONFIG_KUSER_HELPERS
1261
	map.type = MT_HIGH_VECTORS;
1262 1263 1264
#else
	map.type = MT_LOW_VECTORS;
#endif
1265 1266 1267 1268
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1269
		map.length = PAGE_SIZE * 2;
1270 1271 1272 1273
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1274 1275 1276 1277 1278 1279 1280
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1281 1282 1283 1284 1285
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1286 1287
	else
		debug_ll_io_init();
1288
	fill_pmd_gaps();
1289

R
Rob Herring 已提交
1290 1291 1292
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1303 1304 1305
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1306 1307
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1308 1309 1310
#endif
}

1311 1312
static void __init map_lowmem(void)
{
1313
	struct memblock_region *reg;
1314 1315
	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1316 1317

	/* Map all the lowmem memory banks. */
1318 1319 1320 1321 1322
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1323 1324
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1325 1326 1327
		if (start >= end)
			break;

1328 1329 1330 1331 1332
		if (end < kernel_x_start || start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1362 1363 1364
	}
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
#ifdef CONFIG_ARM_LPAE
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
	unsigned long map_start, map_end;
	pgd_t *pgd0, *pgdk;
	pud_t *pud0, *pudk, *pud_start;
	pmd_t *pmd0, *pmdk;
	phys_addr_t phys;
	int i;

	if (!(mdesc->init_meminfo))
		return;

	/* remap kernel code and data */
	map_start = init_mm.start_code;
	map_end   = init_mm.brk;

	/* get a handle on things... */
	pgd0 = pgd_offset_k(0);
	pud_start = pud0 = pud_offset(pgd0, 0);
	pmd0 = pmd_offset(pud0, 0);

	pgdk = pgd_offset_k(map_start);
	pudk = pud_offset(pgdk, map_start);
	pmdk = pmd_offset(pudk, map_start);

	mdesc->init_meminfo();

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
	 * Cache cleaning operations for self-modifying code
	 * We should clean the entries by MVA but running a
	 * for loop over every pv_table entry pointer would
	 * just complicate the code.
	 */
	flush_cache_louis();
	dsb();
	isb();

	/* remap level 1 table */
	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
		set_pud(pud0,
			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
		pmd0 += PTRS_PER_PMD;
	}

	/* remap pmds for kernel mapping */
	phys = __pa(map_start) & PMD_MASK;
	do {
		*pmdk++ = __pmd(phys | pmdprot);
		phys += PMD_SIZE;
	} while (phys < map_end);

	flush_cache_all();
	cpu_switch_mm(pgd0, &init_mm);
	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
	local_flush_bp_all();
	local_flush_tlb_all();
}

#else

void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	if (mdesc->init_meminfo)
		mdesc->init_meminfo();
}

#endif

1445 1446 1447 1448
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1449
void __init paging_init(const struct machine_desc *mdesc)
1450 1451 1452 1453
{
	void *zero_page;

	build_mem_type_table();
1454
	prepare_page_table();
1455
	map_lowmem();
1456
	dma_contiguous_remap();
1457
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1458
	kmap_init();
1459
	tcm_init();
1460 1461 1462

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1463 1464
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1465

1466
	bootmem_init();
R
Russell King 已提交
1467

1468
	empty_zero_page = virt_to_page(zero_page);
1469
	__flush_dcache_page(NULL, empty_zero_page);
1470
}