ohci.c 79.6 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172
	unsigned quirks;
173
	unsigned int pri_req_max;
174
	unsigned int features;
175
	u32 bus_time;
176
	bool is_root;
177

178 179 180 181
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
182 183 184 185
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
186 187
	struct context at_request_ctx;
	struct context at_response_ctx;
188 189 190

	u32 it_context_mask;
	struct iso_context *it_context_list;
191
	u64 ir_context_channels;
192 193
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
194 195 196 197 198 199 200 201 202 203 204 205

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
206 207
};

A
Adrian Bunk 已提交
208
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
209 210 211 212
{
	return container_of(card, struct fw_ohci, card);
}

213 214 215 216 217 218
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
219 220 221 222 223 224

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

225
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
226 227 228 229 230 231 232
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
233
#define OHCI_TCODE_PHY_PACKET		0x0e
234
#define OHCI_VERSION_1_1		0x010010
235

236 237
static char ohci_driver_name[] = KBUILD_MODNAME;

238
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
239 240
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

241 242 243
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
244
#define QUIRK_NO_1394A			8
245
#define QUIRK_NO_MSI			16
246 247 248 249 250

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
251
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
252 253
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
254 255
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
256
	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
257 258 259 260 261
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

262 263 264 265 266 267 268
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
269
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
270
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
271 272
	")");

273
#define OHCI_PARAM_DEBUG_AT_AR		1
274
#define OHCI_PARAM_DEBUG_SELFIDS	2
275 276
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
277

278 279
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

280 281 282 283
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
284 285 286
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
287 288 289 290
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
291 292 293 294 295 296
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
297 298
		return;

299
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
300 301 302 303 304 305 306 307 308
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
309
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
310
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
311 312 313 314 315 316
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
317 318
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
319
		    OHCI1394_regAccessFail | OHCI1394_busReset)
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

337
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
338 339 340 341
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

342 343
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
344 345 346

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
347 348 349 350 351 352
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
353
		else
354 355 356 357
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

405
	if (evt == OHCI1394_evt_bus_reset) {
406 407
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
408 409 410
		return;
	}

411
	if (header[0] == ~header[1]) {
412 413
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
432
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
433 434
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
435 436 437 438 439 440
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
441 442
		break;
	default:
443 444 445 446 447 448
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
449 450 451 452 453
	}
}

#else

454 455 456 457
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
458 459 460

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
461
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
462 463 464 465
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
466
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
467 468 469 470
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
471
static inline void flush_writes(const struct fw_ohci *ohci)
472 473 474 475 476
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

477
static int read_phy_reg(struct fw_ohci *ohci, int addr)
478
{
479
	u32 val;
480
	int i;
481 482

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
483
	for (i = 0; i < 3 + 100; i++) {
484 485 486 487
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

488 489 490 491 492 493
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
494
	}
495
	fw_error("failed to read phy reg\n");
496

497 498
	return -EBUSY;
}
499

500 501 502 503 504 505
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;

	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, val));
506
	for (i = 0; i < 3 + 100; i++) {
507 508 509 510
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;

511 512
		if (i >= 3)
			msleep(1);
513 514 515 516
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
517 518 519 520 521 522
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
523
	int ret;
524

525 526 527
	ret = read_phy_reg(ohci, addr);
	if (ret < 0)
		return ret;
528

529 530 531 532 533 534 535
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

536
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
537 538
}

539
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
540
{
541
	int ret;
542

543 544 545
	ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
	if (ret < 0)
		return ret;
546

547
	return read_phy_reg(ohci, addr);
548 549
}

550
static int ar_context_add_page(struct ar_context *ctx)
551
{
552 553
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
554
	dma_addr_t uninitialized_var(ab_bus);
555 556
	size_t offset;

557
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
558 559 560
	if (ab == NULL)
		return -ENOMEM;

561
	ab->next = NULL;
562
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
563 564 565
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
566 567 568 569 570 571
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

572
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
573 574 575
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

576
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
577
	flush_writes(ctx->ohci);
578 579

	return 0;
580 581
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

597 598
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
599
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
600 601 602 603
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

604
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
605 606
{
	struct fw_ohci *ohci = ctx->ohci;
607 608
	struct fw_packet p;
	u32 status, length, tcode;
609
	int evt;
610

611 612 613
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
614 615 616 617 618

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
619
		p.header[3] = (__force __u32) buffer[3];
620
		p.header_length = 16;
621
		p.payload_length = 0;
622 623 624
		break;

	case TCODE_READ_BLOCK_REQUEST :
625
		p.header[3] = cond_le32_to_cpu(buffer[3]);
626 627 628 629 630
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
631 632 633
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
634
		p.header[3] = cond_le32_to_cpu(buffer[3]);
635
		p.header_length = 16;
636
		p.payload_length = p.header[3] >> 16;
637 638 639 640
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
641
	case OHCI_TCODE_PHY_PACKET:
642
		p.header_length = 12;
643
		p.payload_length = 0;
644
		break;
645 646 647 648 649

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
650
	}
651

652 653 654 655
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
656
	status = cond_le32_to_cpu(buffer[length]);
657
	evt    = (status >> 16) & 0x1f;
658

659
	p.ack        = evt - 16;
660 661 662
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
663

664
	log_ar_at_event('R', p.speed, p.header, evt);
665

666 667
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
668 669 670 671 672
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
673
	 * request.
674 675 676 677
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
678
	 */
679
	if (evt == OHCI1394_evt_bus_reset) {
680
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
681 682
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
683
		fw_core_handle_request(&ohci->card, &p);
684
	} else {
685
		fw_core_handle_response(&ohci->card, &p);
686
	}
687

688 689
	return buffer + length + 1;
}
690

691 692 693 694 695 696 697 698 699 700 701 702 703
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
704 705
		dma_addr_t start_bus;
		void *start;
706

707 708
		/*
		 * This descriptor is finished and we may have a
709
		 * packet split across this and the next buffer. We
710 711
		 * reuse the page for reassembling the split packet.
		 */
712 713

		offset = offsetof(struct ar_buffer, data);
714 715
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
716 717 718 719 720 721 722 723 724 725 726 727 728 729

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

730
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
731
				  start, start_bus);
732 733 734 735 736 737 738 739 740
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
741 742
}

743 744
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
745
{
746
	struct ar_buffer ab;
747

748 749 750
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
751 752
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

753 754 755 756 757
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

758 759 760 761 762 763 764 765 766 767
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
768
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
769 770

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
771
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
772
	flush_writes(ctx->ohci);
773
}
S
Stefan Richter 已提交
774

775
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
776 777 778 779 780 781 782 783 784 785 786 787 788
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

789 790 791 792 793 794
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
795
	struct descriptor_buffer *desc;
796

797 798 799
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
800
	while (last->branch_address != 0) {
801
		struct descriptor_buffer *old_desc = desc;
802 803
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
804 805 806 807 808 809 810 811 812
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
813
		last = find_branch_descriptor(d, z);
814 815 816 817

		if (!ctx->callback(ctx, d, last))
			break;

818 819 820 821 822 823 824 825 826 827
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
828 829 830
	}
}

831 832 833 834
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
835
static int context_add_buffer(struct context *ctx)
836 837
{
	struct descriptor_buffer *desc;
838
	dma_addr_t uninitialized_var(bus_addr);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

864 865
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
866 867 868
{
	ctx->ohci = ohci;
	ctx->regs = regs;
869 870 871 872
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
873 874
		return -ENOMEM;

875 876 877
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

878 879 880
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

881 882
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
883
	 * branch address and looks like it's been sent.  That way we
884
	 * have a descriptor to append DMA programs to.
885
	 */
886 887 888 889 890 891
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
892 893 894 895

	return 0;
}

896
static void context_release(struct context *ctx)
897 898
{
	struct fw_card *card = &ctx->ohci->card;
899
	struct descriptor_buffer *desc, *tmp;
900

901 902 903 904
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
905 906
}

907
/* Must be called with ohci->lock held */
908 909
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
910
{
911 912 913 914 915 916 917 918 919
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
920

921 922 923 924 925 926 927 928 929 930
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
931

932
	d = desc->buffer + desc->used / sizeof(*d);
933
	memset(d, 0, z * sizeof(*d));
934
	*d_bus = desc->buffer_bus + desc->used;
935 936 937 938

	return d;
}

939
static void context_run(struct context *ctx, u32 extra)
940 941 942
{
	struct fw_ohci *ohci = ctx->ohci;

943
	reg_write(ohci, COMMAND_PTR(ctx->regs),
944
		  le32_to_cpu(ctx->last->branch_address));
945 946
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
947 948 949 950 951 952 953
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
954
	struct descriptor_buffer *desc = ctx->buffer_tail;
955

956
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
957

958 959 960
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
961

962
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
963 964 965 966 967 968
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
969
	int i;
970

971
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
972
	flush_writes(ctx->ohci);
973

974
	for (i = 0; i < 10; i++) {
975
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
976
		if ((reg & CONTEXT_ACTIVE) == 0)
977
			return;
978

979
		mdelay(1);
980
	}
981
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
982
}
983

984 985 986
struct driver_data {
	struct fw_packet *packet;
};
987

988 989
/*
 * This function apppends a packet to the DMA queue for transmission.
990
 * Must always be called with the ochi->lock held to ensure proper
991 992
 * generation handling and locking around packet queue manipulation.
 */
993 994
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
995 996
{
	struct fw_ohci *ohci = ctx->ohci;
997
	dma_addr_t d_bus, uninitialized_var(payload_bus);
998 999 1000
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1001
	int z, tcode;
1002
	u32 reg;
1003

1004 1005 1006 1007
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1008 1009
	}

1010
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1011 1012
	d[0].res_count = cpu_to_le16(packet->timestamp);

1013 1014
	/*
	 * The DMA format for asyncronous link packets is different
1015 1016
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1017 1018
	 * which we need to prepend an extra quadlet.
	 */
1019 1020

	header = (__le32 *) &d[1];
1021 1022 1023
	switch (packet->header_length) {
	case 16:
	case 12:
1024 1025 1026 1027 1028
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1029 1030 1031

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1032
			header[3] = cpu_to_le32(packet->header[3]);
1033
		else
1034 1035 1036
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1037 1038 1039
		break;

	case 8:
1040 1041 1042 1043 1044
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1058 1059
	}

1060 1061
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1062
	packet->driver_data = driver_data;
1063

1064 1065 1066 1067
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1068
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1069 1070 1071
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1072 1073
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1074 1075 1076 1077 1078

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1079
	} else {
1080 1081
		last = &d[0];
		z = 2;
1082 1083
	}

1084 1085 1086
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1101
		if (packet->payload_mapped)
1102 1103
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1104 1105 1106 1107 1108
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1109

1110
	/* If the context isn't already running, start it up. */
1111
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1112
	if ((reg & CONTEXT_RUN) == 0)
1113 1114 1115
		context_run(ctx, 0);

	return 0;
1116 1117
}

1118 1119 1120
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1121
{
1122
	struct driver_data *driver_data;
1123
	struct fw_packet *packet;
1124
	struct fw_ohci *ohci = context->ohci;
1125 1126
	int evt;

1127 1128 1129
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1130

1131 1132 1133 1134 1135
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1136

1137
	if (packet->payload_mapped)
1138
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1139 1140
				 packet->payload_length, DMA_TO_DEVICE);

1141 1142
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1143

1144 1145
	log_ar_at_event('T', packet->speed, packet->header, evt);

1146 1147 1148 1149 1150
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1151

1152
	case OHCI1394_evt_flushed:
1153 1154 1155 1156
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1157 1158
		packet->ack = RCODE_GENERATION;
		break;
1159

1160
	case OHCI1394_evt_missing_ack:
1161 1162 1163 1164
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1165 1166
		packet->ack = RCODE_NO_ACK;
		break;
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1177

1178 1179 1180 1181
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1182

1183
	packet->callback(packet, &ohci->card, packet->ack);
1184

1185
	return 1;
1186 1187
}

1188 1189 1190 1191 1192
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1193

1194 1195
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1196 1197 1198 1199
{
	struct fw_packet response;
	int tcode, length, i;

1200
	tcode = HEADER_GET_TCODE(packet->header[0]);
1201
	if (TCODE_IS_BLOCK_PACKET(tcode))
1202
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1221 1222
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1223 1224 1225 1226 1227 1228
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1229 1230
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1231
	payload = packet->payload;
1232
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1258
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1259 1260 1261 1262
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1263
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1264 1265 1266 1267
{
	u64 offset;
	u32 csr;

1268 1269 1270 1271
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1272 1273 1274

	offset =
		((unsigned long long)
1275
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1296 1297 1298 1299 1300

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1301
}
1302

1303
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1304 1305
{
	unsigned long flags;
1306
	int ret;
1307 1308 1309

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1310
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1311
	    ctx->ohci->generation == packet->generation) {
1312 1313 1314
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1315
	}
1316

1317
	ret = at_context_queue_packet(ctx, packet);
1318 1319
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1320
	if (ret < 0)
1321
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1322

1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1397 1398 1399
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1400
	int self_id_count, i, j, reg;
1401 1402
	int generation, new_generation;
	unsigned long flags;
1403 1404
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1405
	bool is_new_root;
1406 1407 1408

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1409
		fw_notify("node ID not valid, new bus reset in progress\n");
1410 1411
		return;
	}
1412 1413 1414 1415 1416 1417
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1418

1419 1420 1421 1422 1423 1424
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1425 1426 1427 1428 1429
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1430 1431
	/*
	 * The count in the SelfIDCount register is the number of
1432 1433
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1434 1435
	 * bit extra to get the actual number of self IDs.
	 */
1436 1437
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1438 1439 1440
		fw_notify("inconsistent self IDs\n");
		return;
	}
1441
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1442
	rmb();
1443 1444

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1445 1446 1447 1448
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1449 1450
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1451
	}
1452
	rmb();
1453

1454 1455
	/*
	 * Check the consistency of the self IDs we just read.  The
1456 1457 1458 1459 1460 1461 1462 1463 1464
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1465 1466
	 * of self IDs.
	 */
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1479 1480
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1481 1482
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1483
	if (ohci->quirks & QUIRK_RESET_PACKET)
1484 1485
		ohci->request_generation = generation;

1486 1487
	/*
	 * This next bit is unrelated to the AT context stuff but we
1488 1489 1490 1491
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1492 1493
	 * next_config_rom pointer so a new udpate can take place.
	 */
1494 1495

	if (ohci->next_config_rom != NULL) {
1496 1497 1498 1499
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1500 1501 1502 1503
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1504 1505
		/*
		 * Restore config_rom image and manually update
1506 1507
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1508 1509
		 * do that last.
		 */
1510 1511
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1512 1513 1514
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1515 1516
	}

1517 1518 1519 1520 1521
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1522 1523
	spin_unlock_irqrestore(&ohci->lock, flags);

1524 1525 1526 1527
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1528 1529
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1530

1531
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1532 1533 1534 1535 1536 1537
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1538
	u32 event, iso_event;
1539 1540 1541 1542
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1543
	if (!event || !~event)
1544 1545
		return IRQ_NONE;

1546 1547
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1548
	log_irqs(event);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1565
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1566 1567 1568 1569
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1570
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1571 1572 1573
		iso_event &= ~(1 << i);
	}

1574
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1575 1576 1577 1578
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1579
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1580 1581 1582
		iso_event &= ~(1 << i);
	}

1583 1584 1585 1586
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1587 1588 1589
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1590 1591 1592 1593 1594 1595 1596
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1608 1609 1610 1611 1612 1613
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
	}

1614 1615 1616
	return IRQ_HANDLED;
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1633 1634 1635 1636 1637 1638 1639 1640 1641
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1642 1643 1644
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1645
	int ret, clear, set, offset;
1646 1647 1648 1649 1650 1651 1652 1653

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1654 1655 1656 1657 1658 1659 1660 1661
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1676 1677 1678
	ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
	if (ret < 0)
		return ret;
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1693 1694
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1695 1696 1697
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1698
	u32 lps, seconds, version, irqs;
1699
	int i, ret;
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1711 1712
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1713 1714 1715 1716 1717
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1729 1730 1731 1732

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1733
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1734 1735
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1736 1737 1738 1739 1740 1741 1742 1743
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1744 1745
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
1746

1747 1748 1749 1750
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

1751 1752 1753 1754 1755 1756 1757
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
		ohci->features |= FEATURE_CHANNEL_31_ALLOCATED;
	}

1758 1759 1760 1761
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
1762 1763
	if (ohci->pri_req_max != 0)
		ohci->features |= FEATURE_PRIORITY_BUDGET;
1764

1765 1766 1767 1768 1769 1770 1771
	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1772 1773 1774
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1775

1776
	/* Activate link_on bit and contender bit in our self ID packets.*/
1777 1778 1779
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1780

1781 1782
	/*
	 * When the link is not yet enabled, the atomic config rom
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1800 1801 1802 1803 1804 1805 1806
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1807

1808
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1809 1810 1811 1812 1813 1814 1815 1816
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1817

1818
	ohci->next_header = ohci->next_config_rom[0];
1819 1820
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1821 1822
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1823 1824 1825 1826
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1827 1828
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1829
	if (request_irq(dev->irq, irq_handler,
1830 1831 1832 1833
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1834 1835 1836 1837 1838
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1839 1840 1841 1842 1843 1844
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
1845
		OHCI1394_cycle64Seconds |
1846 1847 1848 1849 1850 1851
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1852 1853 1854 1855 1856
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1857 1858 1859 1860
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1861 1862 1863 1864 1865 1866

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1867
static int ohci_set_config_rom(struct fw_card *card,
1868
			       const __be32 *config_rom, size_t length)
1869 1870 1871
{
	struct fw_ohci *ohci;
	unsigned long flags;
1872
	int ret = -EBUSY;
1873
	__be32 *next_config_rom;
1874
	dma_addr_t uninitialized_var(next_config_rom_bus);
1875 1876 1877

	ohci = fw_ohci(card);

1878 1879
	/*
	 * When the OHCI controller is enabled, the config rom update
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1917
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1918 1919 1920 1921 1922 1923

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1924
		ret = 0;
1925 1926 1927 1928
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1929 1930
	/*
	 * Now initiate a bus reset to have the changes take
1931 1932 1933
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1934 1935
	 * takes effect.
	 */
1936
	if (ret == 0)
1937
		fw_core_initiate_bus_reset(&ohci->card, 1);
1938 1939 1940
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1941

1942
	return ret;
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1959 1960 1961
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1962 1963
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1964
	int ret = -ENOENT;
1965

1966
	tasklet_disable(&ctx->tasklet);
1967

1968 1969
	if (packet->ack != 0)
		goto out;
1970

1971
	if (packet->payload_mapped)
1972 1973 1974
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1975
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1976 1977 1978
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1979
	ret = 0;
1980 1981
 out:
	tasklet_enable(&ctx->tasklet);
1982

1983
	return ret;
1984 1985
}

1986 1987
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1988
{
1989 1990 1991
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1992 1993
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1994
	int n, ret = 0;
1995

1996 1997 1998 1999
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2000 2001 2002 2003

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2004
		ret = -ESTALE;
2005 2006 2007
		goto out;
	}

2008 2009 2010 2011
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2012 2013 2014 2015 2016 2017 2018

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2019 2020
	flush_writes(ohci);
 out:
2021
	spin_unlock_irqrestore(&ohci->lock, flags);
2022 2023

	return ret;
2024
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2025
}
S
Stefan Richter 已提交
2026

2027 2028 2029
static u32 ohci_read_csr_reg(struct fw_card *card, int csr_offset)
{
	struct fw_ohci *ohci = fw_ohci(card);
2030 2031
	unsigned long flags;
	u32 value;
2032 2033

	switch (csr_offset) {
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		/* the controller driver handles only the cmstr bit */
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
			return CSR_STATE_BIT_CMSTR;
		else
			return 0;

2044 2045 2046
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2047 2048 2049
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2061 2062 2063 2064
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2065 2066 2067 2068
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2069 2070 2071 2072 2073 2074
	default:
		WARN_ON(1);
		return 0;
	}
}

2075 2076 2077
static void ohci_write_csr_reg(struct fw_card *card, int csr_offset, u32 value)
{
	struct fw_ohci *ohci = fw_ohci(card);
2078
	unsigned long flags;
2079 2080

	switch (csr_offset) {
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	case CSR_STATE_CLEAR:
		/* the controller driver handles only the cmstr bit */
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
		break;

	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
		break;

2098 2099 2100 2101 2102
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2103 2104 2105 2106 2107 2108 2109
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2110 2111 2112 2113 2114 2115
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2116 2117 2118 2119 2120 2121 2122
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2123 2124 2125 2126 2127
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2128 2129 2130 2131 2132 2133
	default:
		WARN_ON(1);
		break;
	}
}

2134 2135 2136 2137
static unsigned int ohci_get_features(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);

2138
	return ohci->features;
2139 2140
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2163 2164 2165 2166 2167 2168
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2169
	struct descriptor *pd;
2170
	__le32 *ir_header;
2171
	void *p;
2172

2173 2174 2175 2176 2177
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
2178 2179 2180
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2181 2182
	p = last + 1;
	copy_iso_headers(ctx, p);
2183

2184 2185
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

2196 2197 2198
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2199
{
2200 2201
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2202 2203
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2204

2205 2206 2207 2208 2209
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2210 2211
		return 0;

2212 2213 2214 2215 2216 2217 2218 2219 2220
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2221
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2222 2223 2224 2225
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
2226
	return 1;
2227 2228
}

2229
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2230
				int type, int channel, size_t header_size)
2231 2232 2233
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
2234
	descriptor_callback_t callback;
2235
	u64 *channels, dont_care = ~0ULL;
2236
	u32 *mask, regs;
2237
	unsigned long flags;
2238
	int index, ret = -ENOMEM;
2239 2240

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2241
		channels = &dont_care;
2242 2243
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2244
		callback = handle_it_packet;
2245
	} else {
2246
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2247 2248
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2249
		callback = handle_ir_packet_per_buffer;
2250 2251 2252
	}

	spin_lock_irqsave(&ohci->lock, flags);
2253 2254 2255
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2256
		*mask &= ~(1 << index);
2257
	}
2258 2259 2260 2261 2262
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2263 2264 2265 2266 2267
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2268
	ctx = &list[index];
2269
	memset(ctx, 0, sizeof(*ctx));
2270 2271 2272 2273 2274
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2275 2276
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2277
		goto out_with_header;
2278 2279

	return &ctx->base;
2280 2281 2282 2283 2284 2285 2286 2287

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2288
	return ERR_PTR(ret);
2289 2290
}

2291 2292
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2293
{
S
Stefan Richter 已提交
2294
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2295
	struct fw_ohci *ohci = ctx->context.ohci;
2296
	u32 control, match;
2297 2298
	int index;

2299 2300
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2301 2302 2303
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2304
				(cycle & 0x7fff) << 16;
2305

2306 2307
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2308
		context_run(&ctx->context, match);
2309 2310
	} else {
		index = ctx - ohci->ir_context_list;
2311
		control = IR_CONTEXT_ISOCH_HEADER;
2312 2313 2314 2315 2316
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2317

2318 2319
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2320
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2321
		context_run(&ctx->context, control);
2322
	}
2323 2324 2325 2326

	return 0;
}

2327 2328 2329
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2330
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2346 2347 2348
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2349
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2350 2351 2352
	unsigned long flags;
	int index;

2353 2354
	ohci_stop_iso(base);
	context_release(&ctx->context);
2355
	free_page((unsigned long)ctx->header);
2356

2357 2358 2359 2360 2361 2362 2363 2364
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2365
		ohci->ir_context_channels |= 1ULL << base->channel;
2366 2367 2368 2369 2370
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2371 2372 2373 2374
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2375
{
S
Stefan Richter 已提交
2376
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2377
	struct descriptor *d, *last, *pd;
2378 2379
	struct fw_iso_packet *p;
	__le32 *header;
2380
	dma_addr_t d_bus, page_bus;
2381 2382
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2383
	int page, end_page, i, length, offset;
2384 2385

	p = packet;
2386
	payload_index = payload;
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2405
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2406

2407 2408 2409
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2410 2411

	if (!p->skip) {
2412
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2413
		d[0].req_count = cpu_to_le16(8);
2414 2415 2416 2417 2418 2419 2420 2421
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2422 2423

		header = (__le32 *) &d[1];
2424 2425 2426 2427 2428
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2429
		header[1] =
2430
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2431 2432 2433 2434 2435
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2436
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2449 2450 2451

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2452 2453 2454 2455 2456

		payload_index += length;
	}

	if (p->interrupt)
2457
		irq = DESCRIPTOR_IRQ_ALWAYS;
2458
	else
2459
		irq = DESCRIPTOR_NO_IRQ;
2460

2461
	last = z == 2 ? d : d + z - 1;
2462 2463 2464
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2465
				     irq);
2466

2467
	context_append(&ctx->context, d, z, header_z);
2468 2469 2470

	return 0;
}
S
Stefan Richter 已提交
2471

2472 2473 2474 2475
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2476 2477
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2478
	struct descriptor *d, *pd;
2479
	struct fw_iso_packet *p = packet;
2480 2481
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2482 2483
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2484 2485

	/*
2486 2487
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2488 2489
	 */
	packet_count = p->header_length / ctx->base.header_size;
2490
	header_size  = max(ctx->base.header_size, (size_t)8);
2491 2492 2493 2494 2495

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2496
	payload_per_buffer = p->payload_length / packet_count;
2497 2498 2499

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2500
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2501
		d = context_get_descriptors(&ctx->context,
2502
				z + header_z, &d_bus);
2503 2504 2505
		if (d == NULL)
			return -ENOMEM;

2506 2507 2508 2509
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2510 2511
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2512
		d->transfer_status = 0;
2513 2514
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2515
		rest = payload_per_buffer;
2516
		pd = d;
2517
		for (j = 1; j < z; j++) {
2518
			pd++;
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2538 2539 2540
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2541
		if (p->interrupt && i == packet_count - 1)
2542 2543 2544 2545 2546 2547 2548 2549
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2550 2551 2552 2553
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2554
{
2555
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2556
	unsigned long flags;
2557
	int ret;
2558

2559
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2560
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2561
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2562
	else
2563 2564
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2565 2566
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2567
	return ret;
2568 2569
}

2570
static const struct fw_card_driver ohci_driver = {
2571 2572 2573 2574 2575
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2576
	.cancel_packet		= ohci_cancel_packet,
2577
	.enable_phys_dma	= ohci_enable_phys_dma,
2578
	.read_csr_reg		= ohci_read_csr_reg,
2579
	.write_csr_reg		= ohci_write_csr_reg,
2580
	.get_features		= ohci_get_features,
2581 2582 2583 2584

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2585
	.start_iso		= ohci_start_iso,
2586
	.stop_iso		= ohci_stop_iso,
2587 2588
};

2589
#ifdef CONFIG_PPC_PMAC
2590
static void pmac_ohci_on(struct pci_dev *dev)
2591
{
2592 2593 2594 2595 2596 2597 2598 2599
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2600 2601
}

2602
static void pmac_ohci_off(struct pci_dev *dev)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2614 2615
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2616 2617
#endif /* CONFIG_PPC_PMAC */

2618 2619
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2620 2621
{
	struct fw_ohci *ohci;
2622
	u32 bus_options, max_receive, link_speed, version, link_enh;
2623
	u64 guid;
2624
	int i, err, n_ir, n_it;
2625 2626
	size_t size;

2627
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2628
	if (ohci == NULL) {
2629 2630
		err = -ENOMEM;
		goto fail;
2631 2632 2633 2634
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2635
	pmac_ohci_on(dev);
2636

2637 2638
	err = pci_enable_device(dev);
	if (err) {
2639
		fw_error("Failed to enable OHCI hardware\n");
2640
		goto fail_free;
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2652 2653
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2654
		fw_error("MMIO resource unavailable\n");
2655
		goto fail_disable;
2656 2657 2658 2659 2660
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2661 2662
		err = -ENXIO;
		goto fail_iomem;
2663 2664
	}

2665 2666 2667 2668 2669 2670 2671
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2672 2673
	if (param_quirks)
		ohci->quirks = param_quirks;
2674

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
	if (dev->vendor == PCI_VENDOR_ID_TI) {
		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);

		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
		link_enh |= TI_LinkEnh_atx_thresh_1_7K;

		/* use priority arbitration for asynchronous responses */
		link_enh |= TI_LinkEnh_enab_unfair;

		/* required for aPhyEnhanceEnable to work */
		link_enh |= TI_LinkEnh_enab_accel;

		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
	}

2692 2693 2694 2695 2696 2697
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2698
	context_init(&ohci->at_request_ctx, ohci,
2699
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2700

2701
	context_init(&ohci->at_response_ctx, ohci,
2702
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2703 2704

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2705 2706
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2707
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2708 2709
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2710
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2711 2712

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2713
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2714
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2715 2716
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2717
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2718 2719

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2720
		err = -ENOMEM;
2721
		goto fail_contexts;
2722 2723 2724 2725 2726 2727 2728 2729
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2730
		err = -ENOMEM;
2731
		goto fail_contexts;
2732 2733 2734 2735 2736 2737 2738 2739
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2740
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2741
	if (err)
2742
		goto fail_self_id;
2743

2744 2745 2746 2747 2748
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2749

2750
	return 0;
2751 2752 2753 2754

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2755
 fail_contexts:
2756
	kfree(ohci->ir_context_list);
2757 2758 2759 2760 2761
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2762 2763 2764 2765 2766
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2767 2768
 fail_free:
	kfree(&ohci->card);
2769
	pmac_ohci_off(dev);
2770 2771 2772
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2773 2774

	return err;
2775 2776 2777 2778 2779 2780 2781
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2782 2783
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2784 2785
	fw_core_remove_card(&ohci->card);

2786 2787 2788 2789
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2790 2791 2792

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2793 2794 2795 2796 2797 2798 2799

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2800 2801
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2802 2803 2804 2805
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2806 2807
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
2808
	pci_disable_msi(dev);
2809 2810 2811
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2812
	kfree(&ohci->card);
2813
	pmac_ohci_off(dev);
2814

2815 2816 2817
	fw_notify("Removed fw-ohci device.\n");
}

2818
#ifdef CONFIG_PM
2819
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2820
{
2821
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2822 2823 2824
	int err;

	software_reset(ohci);
2825
	free_irq(dev->irq, ohci);
2826
	pci_disable_msi(dev);
2827
	err = pci_save_state(dev);
2828
	if (err) {
2829
		fw_error("pci_save_state failed\n");
2830 2831
		return err;
	}
2832
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2833 2834
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2835
	pmac_ohci_off(dev);
2836

2837 2838 2839
	return 0;
}

2840
static int pci_resume(struct pci_dev *dev)
2841
{
2842
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2843 2844
	int err;

2845
	pmac_ohci_on(dev);
2846 2847 2848
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2849
	if (err) {
2850
		fw_error("pci_enable_device failed\n");
2851 2852 2853
		return err;
	}

2854
	return ohci_enable(&ohci->card, NULL, 0);
2855 2856 2857
}
#endif

2858
static const struct pci_device_id pci_table[] = {
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2870 2871 2872 2873
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2874 2875 2876 2877 2878 2879
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2880 2881 2882 2883 2884
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);