spi-pl022.c 68.2 KB
Newer Older
1 2 3
/*
 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
 *
4
 * Copyright (C) 2008-2012 ST-Ericsson AB
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
 *
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * Initial version inspired by:
 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
 * Initial adoption to PL022 by:
 *      Sachin Verma <sachin.verma@st.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/amba/bus.h>
#include <linux/amba/pl022.h>
#include <linux/io.h>
38
#include <linux/slab.h>
39 40 41
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
R
Rabin Vincent 已提交
42
#include <linux/pm_runtime.h>
43
#include <linux/gpio.h>
44
#include <linux/of_gpio.h>
45
#include <linux/pinctrl/consumer.h>
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

/*
 * This macro is used to define some register default values.
 * reg is masked with mask, the OR:ed with an (again masked)
 * val shifted sb steps to the left.
 */
#define SSP_WRITE_BITS(reg, val, mask, sb) \
 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))

/*
 * This macro is also used to define some default values.
 * It will just shift val by sb steps to the left and mask
 * the result with mask.
 */
#define GEN_MASK_BITS(val, mask, sb) \
 (((val)<<(sb)) & (mask))

#define DRIVE_TX		0
#define DO_NOT_DRIVE_TX		1

#define DO_NOT_QUEUE_DMA	0
#define QUEUE_DMA		1

#define RX_TRANSFER		1
#define TX_TRANSFER		2

/*
 * Macros to access SSP Registers with their offsets
 */
#define SSP_CR0(r)	(r + 0x000)
#define SSP_CR1(r)	(r + 0x004)
#define SSP_DR(r)	(r + 0x008)
#define SSP_SR(r)	(r + 0x00C)
#define SSP_CPSR(r)	(r + 0x010)
#define SSP_IMSC(r)	(r + 0x014)
#define SSP_RIS(r)	(r + 0x018)
#define SSP_MIS(r)	(r + 0x01C)
#define SSP_ICR(r)	(r + 0x020)
#define SSP_DMACR(r)	(r + 0x024)
85
#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
#define SSP_ITCR(r)	(r + 0x080)
#define SSP_ITIP(r)	(r + 0x084)
#define SSP_ITOP(r)	(r + 0x088)
#define SSP_TDR(r)	(r + 0x08C)

#define SSP_PID0(r)	(r + 0xFE0)
#define SSP_PID1(r)	(r + 0xFE4)
#define SSP_PID2(r)	(r + 0xFE8)
#define SSP_PID3(r)	(r + 0xFEC)

#define SSP_CID0(r)	(r + 0xFF0)
#define SSP_CID1(r)	(r + 0xFF4)
#define SSP_CID2(r)	(r + 0xFF8)
#define SSP_CID3(r)	(r + 0xFFC)

/*
 * SSP Control Register 0  - SSP_CR0
 */
104 105
#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
#define SSP_CR0_MASK_FRF	(0x3UL << 4)
106 107 108
#define SSP_CR0_MASK_SPO	(0x1UL << 6)
#define SSP_CR0_MASK_SPH	(0x1UL << 7)
#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
109 110 111 112 113 114 115 116 117 118

/*
 * The ST version of this block moves som bits
 * in SSP_CR0 and extends it to 32 bits
 */
#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)

119 120 121 122 123 124 125 126 127
/*
 * SSP Control Register 0  - SSP_CR1
 */
#define SSP_CR1_MASK_LBM	(0x1UL << 0)
#define SSP_CR1_MASK_SSE	(0x1UL << 1)
#define SSP_CR1_MASK_MS		(0x1UL << 2)
#define SSP_CR1_MASK_SOD	(0x1UL << 3)

/*
128 129
 * The ST version of this block adds some bits
 * in SSP_CR1
130
 */
131 132 133 134 135
#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136 137
/* This one is only in the PL023 variant */
#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138 139 140 141 142 143 144

/*
 * SSP Status Register - SSP_SR
 */
#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
145
#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */

/*
 * SSP Clock Prescale Register  - SSP_CPSR
 */
#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)

/*
 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 */
#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */

/*
 * SSP Raw Interrupt Status Register - SSP_RIS
 */
/* Receive Overrun Raw Interrupt status */
#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
/* Receive Timeout Raw Interrupt status */
#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
/* Receive FIFO Raw Interrupt status */
#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
/* Transmit FIFO Raw Interrupt status */
#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)

/*
 * SSP Masked Interrupt Status Register - SSP_MIS
 */
/* Receive Overrun Masked Interrupt status */
#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
/* Receive Timeout Masked Interrupt status */
#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
/* Receive FIFO Masked Interrupt status */
#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
/* Transmit FIFO Masked Interrupt status */
#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)

/*
 * SSP Interrupt Clear Register - SSP_ICR
 */
/* Receive Overrun Raw Clear Interrupt bit */
#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
/* Receive Timeout Clear Interrupt bit */
#define SSP_ICR_MASK_RTIC		(0x1UL << 1)

/*
 * SSP DMA Control Register - SSP_DMACR
 */
/* Receive DMA Enable bit */
#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
/* Transmit DMA Enable bit */
#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)

201 202 203 204 205 206
/*
 * SSP Chip Select Control Register - SSP_CSR
 * (vendor extension)
 */
#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * SSP Integration Test control Register - SSP_ITCR
 */
#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)

/*
 * SSP Integration Test Input Register - SSP_ITIP
 */
#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)

/*
 * SSP Integration Test output Register - SSP_ITOP
 */
#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
#define ITOP_MASK_RORINTR		 (0x1UL << 5)
#define ITOP_MASK_RTINTR		 (0x1UL << 6)
#define ITOP_MASK_RXINTR		 (0x1UL << 7)
#define ITOP_MASK_TXINTR		 (0x1UL << 8)
#define ITOP_MASK_INTR			 (0x1UL << 9)
#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)

/*
 * SSP Test Data Register - SSP_TDR
 */
244
#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
245 246 247 248 249 250 251

/*
 * Message State
 * we use the spi_message.state (void *) pointer to
 * hold a single state value, that's why all this
 * (void *) casting is done here.
 */
252 253 254 255
#define STATE_START			((void *) 0)
#define STATE_RUNNING			((void *) 1)
#define STATE_DONE			((void *) 2)
#define STATE_ERROR			((void *) -1)
256 257 258 259

/*
 * SSP State - Whether Enabled or Disabled
 */
260 261
#define SSP_DISABLED			(0)
#define SSP_ENABLED			(1)
262 263 264 265

/*
 * SSP DMA State - Whether DMA Enabled or Disabled
 */
266 267
#define SSP_DMA_DISABLED		(0)
#define SSP_DMA_ENABLED			(1)
268 269 270 271

/*
 * SSP Clock Defaults
 */
272 273
#define SSP_DEFAULT_CLKRATE 0x2
#define SSP_DEFAULT_PRESCALE 0x40
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

/*
 * SSP Clock Parameter ranges
 */
#define CPSDVR_MIN 0x02
#define CPSDVR_MAX 0xFE
#define SCR_MIN 0x00
#define SCR_MAX 0xFF

/*
 * SSP Interrupt related Macros
 */
#define DEFAULT_SSP_REG_IMSC  0x0UL
#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)

#define CLEAR_ALL_INTERRUPTS  0x3

292 293
#define SPI_POLLING_TIMEOUT 1000

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
/*
 * The type of reading going on on this chip
 */
enum ssp_reading {
	READING_NULL,
	READING_U8,
	READING_U16,
	READING_U32
};

/**
 * The type of writing going on on this chip
 */
enum ssp_writing {
	WRITING_NULL,
	WRITING_U8,
	WRITING_U16,
	WRITING_U32
};

/**
 * struct vendor_data - vendor-specific config parameters
 * for PL022 derivates
 * @fifodepth: depth of FIFOs (both)
 * @max_bpw: maximum number of bits per word
 * @unidir: supports unidirection transfers
320 321
 * @extended_cr: 32 bit wide control register 0 with extra
 * features and extra features in CR1 as found in the ST variants
322
 * @pl023: supports a subset of the ST extensions called "PL023"
323
 * @internal_cs_ctrl: supports chip select control register
324 325 326 327 328
 */
struct vendor_data {
	int fifodepth;
	int max_bpw;
	bool unidir;
329
	bool extended_cr;
330
	bool pl023;
331
	bool loopback;
332
	bool internal_cs_ctrl;
333 334 335 336 337
};

/**
 * struct pl022 - This is the private SSP driver data structure
 * @adev: AMBA device model hookup
338 339 340 341
 * @vendor: vendor data for the IP block
 * @phybase: the physical memory where the SSP device resides
 * @virtbase: the virtual memory where the SSP is mapped
 * @clk: outgoing clock "SPICLK" for the SPI bus
342 343
 * @master: SPI framework hookup
 * @master_info: controller-specific data from machine setup
344 345 346
 * @kworker: thread struct for message pump
 * @kworker_task: pointer to task for message pump kworker thread
 * @pump_messages: work struct for scheduling work to the message pump
347 348
 * @queue_lock: spinlock to syncronise access to message queue
 * @queue: message queue
349 350
 * @busy: message pump is busy
 * @running: message pump is running
351 352 353 354
 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 * @cur_msg: Pointer to current spi_message being processed
 * @cur_transfer: Pointer to current spi_transfer
 * @cur_chip: pointer to current clients chip(assigned from controller_state)
355 356 357 358
 * @next_msg_cs_active: the next message in the queue has been examined
 *  and it was found that it uses the same chip select as the previous
 *  message, so we left it active after the previous transfer, and it's
 *  active already.
359 360 361 362
 * @tx: current position in TX buffer to be read
 * @tx_end: end position in TX buffer to be read
 * @rx: current position in RX buffer to be written
 * @rx_end: end position in RX buffer to be written
363 364 365 366 367 368 369 370
 * @read: the type of read currently going on
 * @write: the type of write currently going on
 * @exp_fifo_level: expected FIFO level
 * @dma_rx_channel: optional channel for RX DMA
 * @dma_tx_channel: optional channel for TX DMA
 * @sgt_rx: scattertable for the RX transfer
 * @sgt_tx: scattertable for the TX transfer
 * @dummypage: a dummy page used for driving data on the bus with DMA
371 372
 * @cur_cs: current chip select (gpio)
 * @chipselects: list of chipselects (gpios)
373 374 375 376 377 378 379 380 381
 */
struct pl022 {
	struct amba_device		*adev;
	struct vendor_data		*vendor;
	resource_size_t			phybase;
	void __iomem			*virtbase;
	struct clk			*clk;
	struct spi_master		*master;
	struct pl022_ssp_controller	*master_info;
382
	/* Message per-transfer pump */
383 384 385 386
	struct tasklet_struct		pump_transfers;
	struct spi_message		*cur_msg;
	struct spi_transfer		*cur_transfer;
	struct chip_data		*cur_chip;
387
	bool				next_msg_cs_active;
388 389 390 391 392 393
	void				*tx;
	void				*tx_end;
	void				*rx;
	void				*rx_end;
	enum ssp_reading		read;
	enum ssp_writing		write;
394
	u32				exp_fifo_level;
395 396
	enum ssp_rx_level_trig		rx_lev_trig;
	enum ssp_tx_level_trig		tx_lev_trig;
397 398 399 400 401 402 403
	/* DMA settings */
#ifdef CONFIG_DMA_ENGINE
	struct dma_chan			*dma_rx_channel;
	struct dma_chan			*dma_tx_channel;
	struct sg_table			sgt_rx;
	struct sg_table			sgt_tx;
	char				*dummypage;
404
	bool				dma_running;
405
#endif
406 407
	int cur_cs;
	int *chipselects;
408 409 410 411
};

/**
 * struct chip_data - To maintain runtime state of SSP for each client chip
412 413
 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 *       register is 32 bits wide rather than just 16
414 415 416 417 418 419
 * @cr1: Value of control register CR1 of SSP
 * @dmacr: Value of DMA control Register of SSP
 * @cpsr: Value of Clock prescale register
 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 * @enable_dma: Whether to enable DMA or not
 * @read: function ptr to be used to read when doing xfer for this chip
420
 * @write: function ptr to be used to write when doing xfer for this chip
421 422 423 424 425 426 427
 * @cs_control: chip select callback provided by chip
 * @xfer_type: polling/interrupt/DMA
 *
 * Runtime state of the SSP controller, maintained per chip,
 * This would be set according to the current message that would be served
 */
struct chip_data {
428
	u32 cr0;
429 430 431 432
	u16 cr1;
	u16 dmacr;
	u16 cpsr;
	u8 n_bytes;
433
	bool enable_dma;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	enum ssp_reading read;
	enum ssp_writing write;
	void (*cs_control) (u32 command);
	int xfer_type;
};

/**
 * null_cs_control - Dummy chip select function
 * @command: select/delect the chip
 *
 * If no chip select function is provided by client this is used as dummy
 * chip select
 */
static void null_cs_control(u32 command)
{
	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * internal_cs_control - Control chip select signals via SSP_CSR.
 * @pl022: SSP driver private data structure
 * @command: select/delect the chip
 *
 * Used on controller with internal chip select control via SSP_CSR register
 * (vendor extension). Each of the 5 LSB in the register controls one chip
 * select signal.
 */
static void internal_cs_control(struct pl022 *pl022, u32 command)
{
	u32 tmp;

	tmp = readw(SSP_CSR(pl022->virtbase));
	if (command == SSP_CHIP_SELECT)
		tmp &= ~BIT(pl022->cur_cs);
	else
		tmp |= BIT(pl022->cur_cs);
	writew(tmp, SSP_CSR(pl022->virtbase));
}

473 474
static void pl022_cs_control(struct pl022 *pl022, u32 command)
{
475 476 477
	if (pl022->vendor->internal_cs_ctrl)
		internal_cs_control(pl022, command);
	else if (gpio_is_valid(pl022->cur_cs))
478 479 480 481 482
		gpio_set_value(pl022->cur_cs, command);
	else
		pl022->cur_chip->cs_control(command);
}

483 484 485 486 487 488 489 490 491
/**
 * giveback - current spi_message is over, schedule next message and call
 * callback of this message. Assumes that caller already
 * set message->status; dma and pio irqs are blocked
 * @pl022: SSP driver private data structure
 */
static void giveback(struct pl022 *pl022)
{
	struct spi_transfer *last_transfer;
492
	pl022->next_msg_cs_active = false;
493

494 495
	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
					struct spi_transfer, transfer_list);
496 497 498 499 500 501 502 503 504

	/* Delay if requested before any change in chip select */
	if (last_transfer->delay_usecs)
		/*
		 * FIXME: This runs in interrupt context.
		 * Is this really smart?
		 */
		udelay(last_transfer->delay_usecs);

505
	if (!last_transfer->cs_change) {
506 507
		struct spi_message *next_msg;

508 509 510 511
		/*
		 * cs_change was not set. We can keep the chip select
		 * enabled if there is message in the queue and it is
		 * for the same spi device.
512 513 514 515 516 517 518
		 *
		 * We cannot postpone this until pump_messages, because
		 * after calling msg->complete (below) the driver that
		 * sent the current message could be unloaded, which
		 * could invalidate the cs_control() callback...
		 */
		/* get a pointer to the next message, if any */
519
		next_msg = spi_get_next_queued_message(pl022->master);
520

521 522 523
		/*
		 * see if the next and current messages point
		 * to the same spi device.
524
		 */
525
		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
526
			next_msg = NULL;
527
		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
528
			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
529 530
		else
			pl022->next_msg_cs_active = true;
531

532
	}
533 534 535 536

	pl022->cur_msg = NULL;
	pl022->cur_transfer = NULL;
	pl022->cur_chip = NULL;
537
	spi_finalize_current_message(pl022->master);
538 539 540 541 542

	/* disable the SPI/SSP operation */
	writew((readw(SSP_CR1(pl022->virtbase)) &
		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
}

/**
 * flush - flush the FIFO to reach a clean state
 * @pl022: SSP driver private data structure
 */
static int flush(struct pl022 *pl022)
{
	unsigned long limit = loops_per_jiffy << 1;

	dev_dbg(&pl022->adev->dev, "flush\n");
	do {
		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
			readw(SSP_DR(pl022->virtbase));
	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
558 559 560

	pl022->exp_fifo_level = 0;

561 562 563 564 565 566 567 568 569 570 571
	return limit;
}

/**
 * restore_state - Load configuration of current chip
 * @pl022: SSP driver private data structure
 */
static void restore_state(struct pl022 *pl022)
{
	struct chip_data *chip = pl022->cur_chip;

572 573 574 575
	if (pl022->vendor->extended_cr)
		writel(chip->cr0, SSP_CR0(pl022->virtbase));
	else
		writew(chip->cr0, SSP_CR0(pl022->virtbase));
576 577 578 579 580 581 582 583 584 585 586 587
	writew(chip->cr1, SSP_CR1(pl022->virtbase));
	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/*
 * Default SSP Register Values
 */
#define DEFAULT_SSP_REG_CR0 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
588 589 590 591 592 593 594 595 596 597
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

/* ST versions have slightly different bit layout */
#define DEFAULT_SSP_REG_CR0_ST ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
598
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
599
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
600 601 602
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
603 604
)

605 606 607 608 609 610 611 612
/* The PL023 version is slightly different again */
#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

613 614 615 616
#define DEFAULT_SSP_REG_CR1 ( \
	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
617
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
618 619
)

620 621 622 623 624 625 626 627 628 629
/* ST versions extend this register to use all 16 bits */
#define DEFAULT_SSP_REG_CR1_ST ( \
	DEFAULT_SSP_REG_CR1 | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
)

630 631 632 633 634 635 636 637 638 639 640 641 642 643
/*
 * The PL023 variant has further differences: no loopback mode, no microwire
 * support, and a new clock feedback delay setting.
 */
#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
)
644

645
#define DEFAULT_SSP_REG_CPSR ( \
646
	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
647 648 649 650 651 652 653
)

#define DEFAULT_SSP_REG_DMACR (\
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
)

654 655 656 657
/**
 * load_ssp_default_config - Load default configuration for SSP
 * @pl022: SSP driver private data structure
 */
658 659
static void load_ssp_default_config(struct pl022 *pl022)
{
660 661 662 663
	if (pl022->vendor->pl023) {
		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
	} else if (pl022->vendor->extended_cr) {
664 665 666 667 668 669
		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
	} else {
		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
	}
670 671 672 673 674 675 676 677 678 679 680 681 682 683
	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/**
 * This will write to TX and read from RX according to the parameters
 * set in pl022.
 */
static void readwriter(struct pl022 *pl022)
{

	/*
L
Lucas De Marchi 已提交
684
	 * The FIFO depth is different between primecell variants.
685 686 687 688
	 * I believe filling in too much in the FIFO might cause
	 * errons in 8bit wide transfers on ARM variants (just 8 words
	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
	 *
689 690 691
	 * To prevent this issue, the TX FIFO is only filled to the
	 * unused RX FIFO fill length, regardless of what the TX
	 * FIFO status flag indicates.
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	 */
	dev_dbg(&pl022->adev->dev,
		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);

	/* Read as much as you can */
	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
	       && (pl022->rx < pl022->rx_end)) {
		switch (pl022->read) {
		case READING_NULL:
			readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U8:
			*(u8 *) (pl022->rx) =
				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
			break;
		case READING_U16:
			*(u16 *) (pl022->rx) =
				(u16) readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U32:
			*(u32 *) (pl022->rx) =
				readl(SSP_DR(pl022->virtbase));
			break;
		}
		pl022->rx += (pl022->cur_chip->n_bytes);
718
		pl022->exp_fifo_level--;
719 720
	}
	/*
721
	 * Write as much as possible up to the RX FIFO size
722
	 */
723
	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	       && (pl022->tx < pl022->tx_end)) {
		switch (pl022->write) {
		case WRITING_NULL:
			writew(0x0, SSP_DR(pl022->virtbase));
			break;
		case WRITING_U8:
			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U16:
			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U32:
			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		}
		pl022->tx += (pl022->cur_chip->n_bytes);
740
		pl022->exp_fifo_level++;
741 742 743 744
		/*
		 * This inner reader takes care of things appearing in the RX
		 * FIFO as we're transmitting. This will happen a lot since the
		 * clock starts running when you put things into the TX FIFO,
L
Lucas De Marchi 已提交
745
		 * and then things are continuously clocked into the RX FIFO.
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		 */
		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
		       && (pl022->rx < pl022->rx_end)) {
			switch (pl022->read) {
			case READING_NULL:
				readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U8:
				*(u8 *) (pl022->rx) =
					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
				break;
			case READING_U16:
				*(u16 *) (pl022->rx) =
					(u16) readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U32:
				*(u32 *) (pl022->rx) =
					readl(SSP_DR(pl022->virtbase));
				break;
			}
			pl022->rx += (pl022->cur_chip->n_bytes);
767
			pl022->exp_fifo_level--;
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
		}
	}
	/*
	 * When we exit here the TX FIFO should be full and the RX FIFO
	 * should be empty
	 */
}

/**
 * next_transfer - Move to the Next transfer in the current spi message
 * @pl022: SSP driver private data structure
 *
 * This function moves though the linked list of spi transfers in the
 * current spi message and returns with the state of current spi
 * message i.e whether its last transfer is done(STATE_DONE) or
 * Next transfer is ready(STATE_RUNNING)
 */
static void *next_transfer(struct pl022 *pl022)
{
	struct spi_message *msg = pl022->cur_msg;
	struct spi_transfer *trans = pl022->cur_transfer;

	/* Move to next transfer */
	if (trans->transfer_list.next != &msg->transfers) {
		pl022->cur_transfer =
		    list_entry(trans->transfer_list.next,
			       struct spi_transfer, transfer_list);
		return STATE_RUNNING;
	}
	return STATE_DONE;
}
799 800 801 802 803 804 805 806 807

/*
 * This DMA functionality is only compiled in if we have
 * access to the generic DMA devices/DMA engine.
 */
#ifdef CONFIG_DMA_ENGINE
static void unmap_free_dma_scatter(struct pl022 *pl022)
{
	/* Unmap and free the SG tables */
808
	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
809
		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
810
	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
	sg_free_table(&pl022->sgt_rx);
	sg_free_table(&pl022->sgt_tx);
}

static void dma_callback(void *data)
{
	struct pl022 *pl022 = data;
	struct spi_message *msg = pl022->cur_msg;

	BUG_ON(!pl022->sgt_rx.sgl);

#ifdef VERBOSE_DEBUG
	/*
	 * Optionally dump out buffers to inspect contents, this is
	 * good if you want to convince yourself that the loopback
	 * read/write contents are the same, when adopting to a new
	 * DMA engine.
	 */
	{
		struct scatterlist *sg;
		unsigned int i;

		dma_sync_sg_for_cpu(&pl022->adev->dev,
				    pl022->sgt_rx.sgl,
				    pl022->sgt_rx.nents,
				    DMA_FROM_DEVICE);

		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
			print_hex_dump(KERN_ERR, "SPI RX: ",
				       DUMP_PREFIX_OFFSET,
				       16,
				       1,
				       sg_virt(sg),
				       sg_dma_len(sg),
				       1);
		}
		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
			print_hex_dump(KERN_ERR, "SPI TX: ",
				       DUMP_PREFIX_OFFSET,
				       16,
				       1,
				       sg_virt(sg),
				       sg_dma_len(sg),
				       1);
		}
	}
#endif

	unmap_free_dma_scatter(pl022);

L
Lucas De Marchi 已提交
864
	/* Update total bytes transferred */
865 866
	msg->actual_length += pl022->cur_transfer->len;
	if (pl022->cur_transfer->cs_change)
867
		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931

	/* Move to next transfer */
	msg->state = next_transfer(pl022);
	tasklet_schedule(&pl022->pump_transfers);
}

static void setup_dma_scatter(struct pl022 *pl022,
			      void *buffer,
			      unsigned int length,
			      struct sg_table *sgtab)
{
	struct scatterlist *sg;
	int bytesleft = length;
	void *bufp = buffer;
	int mapbytes;
	int i;

	if (buffer) {
		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
			/*
			 * If there are less bytes left than what fits
			 * in the current page (plus page alignment offset)
			 * we just feed in this, else we stuff in as much
			 * as we can.
			 */
			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
				mapbytes = bytesleft;
			else
				mapbytes = PAGE_SIZE - offset_in_page(bufp);
			sg_set_page(sg, virt_to_page(bufp),
				    mapbytes, offset_in_page(bufp));
			bufp += mapbytes;
			bytesleft -= mapbytes;
			dev_dbg(&pl022->adev->dev,
				"set RX/TX target page @ %p, %d bytes, %d left\n",
				bufp, mapbytes, bytesleft);
		}
	} else {
		/* Map the dummy buffer on every page */
		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
			if (bytesleft < PAGE_SIZE)
				mapbytes = bytesleft;
			else
				mapbytes = PAGE_SIZE;
			sg_set_page(sg, virt_to_page(pl022->dummypage),
				    mapbytes, 0);
			bytesleft -= mapbytes;
			dev_dbg(&pl022->adev->dev,
				"set RX/TX to dummy page %d bytes, %d left\n",
				mapbytes, bytesleft);

		}
	}
	BUG_ON(bytesleft);
}

/**
 * configure_dma - configures the channels for the next transfer
 * @pl022: SSP driver's private data structure
 */
static int configure_dma(struct pl022 *pl022)
{
	struct dma_slave_config rx_conf = {
		.src_addr = SSP_DR(pl022->phybase),
932
		.direction = DMA_DEV_TO_MEM,
933
		.device_fc = false,
934 935 936
	};
	struct dma_slave_config tx_conf = {
		.dst_addr = SSP_DR(pl022->phybase),
937
		.direction = DMA_MEM_TO_DEV,
938
		.device_fc = false,
939 940 941
	};
	unsigned int pages;
	int ret;
942
	int rx_sglen, tx_sglen;
943 944 945 946 947 948 949 950 951
	struct dma_chan *rxchan = pl022->dma_rx_channel;
	struct dma_chan *txchan = pl022->dma_tx_channel;
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;

	/* Check that the channels are available */
	if (!rxchan || !txchan)
		return -ENODEV;

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	/*
	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
	 * Notice that the DMA engine uses one-to-one mapping. Since we can
	 * not trigger on 2 elements this needs explicit mapping rather than
	 * calculation.
	 */
	switch (pl022->rx_lev_trig) {
	case SSP_RX_1_OR_MORE_ELEM:
		rx_conf.src_maxburst = 1;
		break;
	case SSP_RX_4_OR_MORE_ELEM:
		rx_conf.src_maxburst = 4;
		break;
	case SSP_RX_8_OR_MORE_ELEM:
		rx_conf.src_maxburst = 8;
		break;
	case SSP_RX_16_OR_MORE_ELEM:
		rx_conf.src_maxburst = 16;
		break;
	case SSP_RX_32_OR_MORE_ELEM:
		rx_conf.src_maxburst = 32;
		break;
	default:
		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
		break;
	}

	switch (pl022->tx_lev_trig) {
	case SSP_TX_1_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 1;
		break;
	case SSP_TX_4_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 4;
		break;
	case SSP_TX_8_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 8;
		break;
	case SSP_TX_16_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 16;
		break;
	case SSP_TX_32_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 32;
		break;
	default:
		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
		break;
	}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	switch (pl022->read) {
	case READING_NULL:
		/* Use the same as for writing */
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
		break;
	case READING_U8:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		break;
	case READING_U16:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		break;
	case READING_U32:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		break;
	}

	switch (pl022->write) {
	case WRITING_NULL:
		/* Use the same as for reading */
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
		break;
	case WRITING_U8:
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		break;
	case WRITING_U16:
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		break;
	case WRITING_U32:
1028
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		break;
	}

	/* SPI pecularity: we need to read and write the same width */
	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
		rx_conf.src_addr_width = tx_conf.dst_addr_width;
	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
		tx_conf.dst_addr_width = rx_conf.src_addr_width;
	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);

1039 1040
	dmaengine_slave_config(rxchan, &rx_conf);
	dmaengine_slave_config(txchan, &tx_conf);
1041 1042

	/* Create sglists for the transfers */
1043
	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1044 1045
	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);

1046
	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1047 1048 1049
	if (ret)
		goto err_alloc_rx_sg;

1050
	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (ret)
		goto err_alloc_tx_sg;

	/* Fill in the scatterlists for the RX+TX buffers */
	setup_dma_scatter(pl022, pl022->rx,
			  pl022->cur_transfer->len, &pl022->sgt_rx);
	setup_dma_scatter(pl022, pl022->tx,
			  pl022->cur_transfer->len, &pl022->sgt_tx);

	/* Map DMA buffers */
1061
	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1062
			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1063
	if (!rx_sglen)
1064 1065
		goto err_rx_sgmap;

1066
	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1067
			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1068
	if (!tx_sglen)
1069 1070 1071
		goto err_tx_sgmap;

	/* Send both scatterlists */
1072
	rxdesc = dmaengine_prep_slave_sg(rxchan,
1073
				      pl022->sgt_rx.sgl,
1074
				      rx_sglen,
1075
				      DMA_DEV_TO_MEM,
1076 1077 1078 1079
				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxdesc)
		goto err_rxdesc;

1080
	txdesc = dmaengine_prep_slave_sg(txchan,
1081
				      pl022->sgt_tx.sgl,
1082
				      tx_sglen,
1083
				      DMA_MEM_TO_DEV,
1084 1085 1086 1087 1088 1089 1090 1091 1092
				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!txdesc)
		goto err_txdesc;

	/* Put the callback on the RX transfer only, that should finish last */
	rxdesc->callback = dma_callback;
	rxdesc->callback_param = pl022;

	/* Submit and fire RX and TX with TX last so we're ready to read! */
1093 1094 1095 1096
	dmaengine_submit(rxdesc);
	dmaengine_submit(txdesc);
	dma_async_issue_pending(rxchan);
	dma_async_issue_pending(txchan);
1097
	pl022->dma_running = true;
1098 1099 1100 1101

	return 0;

err_txdesc:
1102
	dmaengine_terminate_all(txchan);
1103
err_rxdesc:
1104
	dmaengine_terminate_all(rxchan);
1105
	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1106 1107
		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
err_tx_sgmap:
1108
	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1109 1110 1111 1112 1113 1114 1115 1116 1117
		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
err_rx_sgmap:
	sg_free_table(&pl022->sgt_tx);
err_alloc_tx_sg:
	sg_free_table(&pl022->sgt_rx);
err_alloc_rx_sg:
	return -ENOMEM;
}

1118
static int pl022_dma_probe(struct pl022 *pl022)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
{
	dma_cap_mask_t mask;

	/* Try to acquire a generic DMA engine slave channel */
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	/*
	 * We need both RX and TX channels to do DMA, else do none
	 * of them.
	 */
	pl022->dma_rx_channel = dma_request_channel(mask,
					    pl022->master_info->dma_filter,
					    pl022->master_info->dma_rx_param);
	if (!pl022->dma_rx_channel) {
1133
		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1134 1135 1136 1137 1138 1139 1140
		goto err_no_rxchan;
	}

	pl022->dma_tx_channel = dma_request_channel(mask,
					    pl022->master_info->dma_filter,
					    pl022->master_info->dma_tx_param);
	if (!pl022->dma_tx_channel) {
1141
		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1142 1143 1144 1145
		goto err_no_txchan;
	}

	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1146
	if (!pl022->dummypage)
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		goto err_no_dummypage;

	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
		 dma_chan_name(pl022->dma_rx_channel),
		 dma_chan_name(pl022->dma_tx_channel));

	return 0;

err_no_dummypage:
	dma_release_channel(pl022->dma_tx_channel);
err_no_txchan:
	dma_release_channel(pl022->dma_rx_channel);
	pl022->dma_rx_channel = NULL;
err_no_rxchan:
1161 1162
	dev_err(&pl022->adev->dev,
			"Failed to work in dma mode, work without dma!\n");
1163 1164 1165
	return -ENODEV;
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static int pl022_dma_autoprobe(struct pl022 *pl022)
{
	struct device *dev = &pl022->adev->dev;

	/* automatically configure DMA channels from platform, normally using DT */
	pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx");
	if (!pl022->dma_rx_channel)
		goto err_no_rxchan;

	pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx");
	if (!pl022->dma_tx_channel)
		goto err_no_txchan;

	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!pl022->dummypage)
		goto err_no_dummypage;

	return 0;

err_no_dummypage:
	dma_release_channel(pl022->dma_tx_channel);
	pl022->dma_tx_channel = NULL;
err_no_txchan:
	dma_release_channel(pl022->dma_rx_channel);
	pl022->dma_rx_channel = NULL;
err_no_rxchan:
	return -ENODEV;
}
		
1195 1196 1197 1198 1199
static void terminate_dma(struct pl022 *pl022)
{
	struct dma_chan *rxchan = pl022->dma_rx_channel;
	struct dma_chan *txchan = pl022->dma_tx_channel;

1200 1201
	dmaengine_terminate_all(rxchan);
	dmaengine_terminate_all(txchan);
1202
	unmap_free_dma_scatter(pl022);
1203
	pl022->dma_running = false;
1204 1205 1206 1207
}

static void pl022_dma_remove(struct pl022 *pl022)
{
1208
	if (pl022->dma_running)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		terminate_dma(pl022);
	if (pl022->dma_tx_channel)
		dma_release_channel(pl022->dma_tx_channel);
	if (pl022->dma_rx_channel)
		dma_release_channel(pl022->dma_rx_channel);
	kfree(pl022->dummypage);
}

#else
static inline int configure_dma(struct pl022 *pl022)
{
	return -ENODEV;
}

1223 1224 1225 1226 1227
static inline int pl022_dma_autoprobe(struct pl022 *pl022)
{
	return 0;
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static inline int pl022_dma_probe(struct pl022 *pl022)
{
	return 0;
}

static inline void pl022_dma_remove(struct pl022 *pl022)
{
}
#endif

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
/**
 * pl022_interrupt_handler - Interrupt handler for SSP controller
 *
 * This function handles interrupts generated for an interrupt based transfer.
 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
 * current message's state as STATE_ERROR and schedule the tasklet
 * pump_transfers which will do the postprocessing of the current message by
 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
 * more data, and writes data in TX FIFO till it is not full. If we complete
 * the transfer we move to the next transfer and schedule the tasklet.
 */
static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
{
	struct pl022 *pl022 = dev_id;
	struct spi_message *msg = pl022->cur_msg;
	u16 irq_status = 0;
	u16 flag = 0;

	if (unlikely(!msg)) {
		dev_err(&pl022->adev->dev,
			"bad message state in interrupt handler");
		/* Never fail */
		return IRQ_HANDLED;
	}

	/* Read the Interrupt Status Register */
	irq_status = readw(SSP_MIS(pl022->virtbase));

	if (unlikely(!irq_status))
		return IRQ_NONE;

1269 1270 1271 1272 1273
	/*
	 * This handles the FIFO interrupts, the timeout
	 * interrupts are flatly ignored, they cannot be
	 * trusted.
	 */
1274 1275 1276 1277 1278
	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
		/*
		 * Overrun interrupt - bail out since our Data has been
		 * corrupted
		 */
1279
		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
			dev_err(&pl022->adev->dev,
				"RXFIFO is full\n");
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
			dev_err(&pl022->adev->dev,
				"TXFIFO is full\n");

		/*
		 * Disable and clear interrupts, disable SSP,
		 * mark message with bad status so it can be
		 * retried.
		 */
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		writew((readw(SSP_CR1(pl022->virtbase)) &
			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
		msg->state = STATE_ERROR;

		/* Schedule message queue handler */
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	readwriter(pl022);

	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
		flag = 1;
1308 1309 1310
		/* Disable Transmit interrupt, enable receive interrupt */
		writew((readw(SSP_IMSC(pl022->virtbase)) &
		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		       SSP_IMSC(pl022->virtbase));
	}

	/*
	 * Since all transactions must write as much as shall be read,
	 * we can conclude the entire transaction once RX is complete.
	 * At this point, all TX will always be finished.
	 */
	if (pl022->rx >= pl022->rx_end) {
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		if (unlikely(pl022->rx > pl022->rx_end)) {
			dev_warn(&pl022->adev->dev, "read %u surplus "
				 "bytes (did you request an odd "
				 "number of bytes on a 16bit bus?)\n",
				 (u32) (pl022->rx - pl022->rx_end));
		}
L
Lucas De Marchi 已提交
1329
		/* Update total bytes transferred */
1330 1331
		msg->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
1332
			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		/* Move to next transfer */
		msg->state = next_transfer(pl022);
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	return IRQ_HANDLED;
}

/**
 * This sets up the pointers to memory for the next message to
 * send out on the SPI bus.
 */
static int set_up_next_transfer(struct pl022 *pl022,
				struct spi_transfer *transfer)
{
	int residue;

	/* Sanity check the message for this bus width */
	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
	if (unlikely(residue != 0)) {
		dev_err(&pl022->adev->dev,
			"message of %u bytes to transmit but the current "
			"chip bus has a data width of %u bytes!\n",
			pl022->cur_transfer->len,
			pl022->cur_chip->n_bytes);
		dev_err(&pl022->adev->dev, "skipping this message\n");
		return -EIO;
	}
	pl022->tx = (void *)transfer->tx_buf;
	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
	pl022->rx = (void *)transfer->rx_buf;
	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
	pl022->write =
	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
	return 0;
}

/**
1373 1374
 * pump_transfers - Tasklet function which schedules next transfer
 * when running in interrupt or DMA transfer mode.
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
 * @data: SSP driver private data structure
 *
 */
static void pump_transfers(unsigned long data)
{
	struct pl022 *pl022 = (struct pl022 *) data;
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;

	/* Get current state information */
	message = pl022->cur_msg;
	transfer = pl022->cur_transfer;

	/* Handle for abort */
	if (message->state == STATE_ERROR) {
		message->status = -EIO;
		giveback(pl022);
		return;
	}

	/* Handle end of message */
	if (message->state == STATE_DONE) {
		message->status = 0;
		giveback(pl022);
		return;
	}

	/* Delay if requested at end of transfer before CS change */
	if (message->state == STATE_RUNNING) {
		previous = list_entry(transfer->transfer_list.prev,
					struct spi_transfer,
					transfer_list);
		if (previous->delay_usecs)
			/*
			 * FIXME: This runs in interrupt context.
			 * Is this really smart?
			 */
			udelay(previous->delay_usecs);

1415
		/* Reselect chip select only if cs_change was requested */
1416
		if (previous->cs_change)
1417
			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	} else {
		/* STATE_START */
		message->state = STATE_RUNNING;
	}

	if (set_up_next_transfer(pl022, transfer)) {
		message->state = STATE_ERROR;
		message->status = -EIO;
		giveback(pl022);
		return;
	}
	/* Flush the FIFOs and let's go! */
	flush(pl022);

1432 1433 1434 1435 1436 1437
	if (pl022->cur_chip->enable_dma) {
		if (configure_dma(pl022)) {
			dev_dbg(&pl022->adev->dev,
				"configuration of DMA failed, fall back to interrupt mode\n");
			goto err_config_dma;
		}
1438 1439 1440
		return;
	}

1441
err_config_dma:
1442 1443
	/* enable all interrupts except RX */
	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1444 1445
}

1446
static void do_interrupt_dma_transfer(struct pl022 *pl022)
1447
{
1448 1449 1450 1451
	/*
	 * Default is to enable all interrupts except RX -
	 * this will be enabled once TX is complete
	 */
1452
	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1453

1454 1455
	/* Enable target chip, if not already active */
	if (!pl022->next_msg_cs_active)
1456
		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1457 1458 1459 1460 1461 1462 1463 1464

	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
		/* Error path */
		pl022->cur_msg->state = STATE_ERROR;
		pl022->cur_msg->status = -EIO;
		giveback(pl022);
		return;
	}
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	/* If we're using DMA, set up DMA here */
	if (pl022->cur_chip->enable_dma) {
		/* Configure DMA transfer */
		if (configure_dma(pl022)) {
			dev_dbg(&pl022->adev->dev,
				"configuration of DMA failed, fall back to interrupt mode\n");
			goto err_config_dma;
		}
		/* Disable interrupts in DMA mode, IRQ from DMA controller */
		irqflags = DISABLE_ALL_INTERRUPTS;
	}
err_config_dma:
1477 1478 1479
	/* Enable SSP, turn on interrupts */
	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
	       SSP_CR1(pl022->virtbase));
1480
	writew(irqflags, SSP_IMSC(pl022->virtbase));
1481 1482
}

1483
static void do_polling_transfer(struct pl022 *pl022)
1484 1485 1486 1487 1488
{
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;
	struct chip_data *chip;
1489
	unsigned long time, timeout;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

	chip = pl022->cur_chip;
	message = pl022->cur_msg;

	while (message->state != STATE_DONE) {
		/* Handle for abort */
		if (message->state == STATE_ERROR)
			break;
		transfer = pl022->cur_transfer;

		/* Delay if requested at end of transfer */
		if (message->state == STATE_RUNNING) {
			previous =
			    list_entry(transfer->transfer_list.prev,
				       struct spi_transfer, transfer_list);
			if (previous->delay_usecs)
				udelay(previous->delay_usecs);
			if (previous->cs_change)
1508
				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1509 1510 1511
		} else {
			/* STATE_START */
			message->state = STATE_RUNNING;
1512
			if (!pl022->next_msg_cs_active)
1513
				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		}

		/* Configuration Changing Per Transfer */
		if (set_up_next_transfer(pl022, transfer)) {
			/* Error path */
			message->state = STATE_ERROR;
			break;
		}
		/* Flush FIFOs and enable SSP */
		flush(pl022);
		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
		       SSP_CR1(pl022->virtbase));

1527
		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1528 1529 1530 1531

		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
			time = jiffies;
1532
			readwriter(pl022);
1533 1534 1535 1536 1537 1538
			if (time_after(time, timeout)) {
				dev_warn(&pl022->adev->dev,
				"%s: timeout!\n", __func__);
				message->state = STATE_ERROR;
				goto out;
			}
1539
			cpu_relax();
1540
		}
1541

L
Lucas De Marchi 已提交
1542
		/* Update total byte transferred */
1543 1544
		message->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
1545
			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1546 1547 1548
		/* Move to next transfer */
		message->state = next_transfer(pl022);
	}
1549
out:
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	/* Handle end of message */
	if (message->state == STATE_DONE)
		message->status = 0;
	else
		message->status = -EIO;

	giveback(pl022);
	return;
}

1560 1561
static int pl022_transfer_one_message(struct spi_master *master,
				      struct spi_message *msg)
1562
{
1563
	struct pl022 *pl022 = spi_master_get_devdata(master);
1564 1565

	/* Initial message state */
1566 1567 1568 1569 1570
	pl022->cur_msg = msg;
	msg->state = STATE_START;

	pl022->cur_transfer = list_entry(msg->transfers.next,
					 struct spi_transfer, transfer_list);
1571 1572

	/* Setup the SPI using the per chip configuration */
1573
	pl022->cur_chip = spi_get_ctldata(msg->spi);
1574
	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1575

1576 1577 1578 1579 1580 1581
	restore_state(pl022);
	flush(pl022);

	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
		do_polling_transfer(pl022);
	else
1582
		do_interrupt_dma_transfer(pl022);
1583 1584 1585 1586

	return 0;
}

1587
static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1588
{
1589
	struct pl022 *pl022 = spi_master_get_devdata(master);
1590

1591 1592 1593
	/* nothing more to do - disable spi/ssp and power off */
	writew((readw(SSP_CR1(pl022->virtbase)) &
		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1594 1595 1596 1597 1598

	return 0;
}

static int verify_controller_parameters(struct pl022 *pl022,
1599
				struct pl022_config_chip const *chip_info)
1600 1601 1602
{
	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1603
		dev_err(&pl022->adev->dev,
1604 1605 1606 1607 1608
			"interface is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
	    (!pl022->vendor->unidir)) {
1609
		dev_err(&pl022->adev->dev,
1610 1611 1612 1613 1614 1615
			"unidirectional mode not supported in this "
			"hardware version\n");
		return -EINVAL;
	}
	if ((chip_info->hierarchy != SSP_MASTER)
	    && (chip_info->hierarchy != SSP_SLAVE)) {
1616
		dev_err(&pl022->adev->dev,
1617 1618 1619 1620 1621 1622
			"hierarchy is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
	    && (chip_info->com_mode != DMA_TRANSFER)
	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1623
		dev_err(&pl022->adev->dev,
1624 1625 1626
			"Communication mode is configured incorrectly\n");
		return -EINVAL;
	}
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	switch (chip_info->rx_lev_trig) {
	case SSP_RX_1_OR_MORE_ELEM:
	case SSP_RX_4_OR_MORE_ELEM:
	case SSP_RX_8_OR_MORE_ELEM:
		/* These are always OK, all variants can handle this */
		break;
	case SSP_RX_16_OR_MORE_ELEM:
		if (pl022->vendor->fifodepth < 16) {
			dev_err(&pl022->adev->dev,
			"RX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	case SSP_RX_32_OR_MORE_ELEM:
		if (pl022->vendor->fifodepth < 32) {
			dev_err(&pl022->adev->dev,
			"RX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	default:
1648
		dev_err(&pl022->adev->dev,
1649 1650 1651
			"RX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
	}
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	switch (chip_info->tx_lev_trig) {
	case SSP_TX_1_OR_MORE_EMPTY_LOC:
	case SSP_TX_4_OR_MORE_EMPTY_LOC:
	case SSP_TX_8_OR_MORE_EMPTY_LOC:
		/* These are always OK, all variants can handle this */
		break;
	case SSP_TX_16_OR_MORE_EMPTY_LOC:
		if (pl022->vendor->fifodepth < 16) {
			dev_err(&pl022->adev->dev,
			"TX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	case SSP_TX_32_OR_MORE_EMPTY_LOC:
		if (pl022->vendor->fifodepth < 32) {
			dev_err(&pl022->adev->dev,
			"TX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	default:
1673
		dev_err(&pl022->adev->dev,
1674 1675 1676 1677 1678 1679
			"TX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
	}
	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
		if ((chip_info->ctrl_len < SSP_BITS_4)
		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1680
			dev_err(&pl022->adev->dev,
1681 1682 1683 1684 1685
				"CTRL LEN is configured incorrectly\n");
			return -EINVAL;
		}
		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1686
			dev_err(&pl022->adev->dev,
1687 1688 1689
				"Wait State is configured incorrectly\n");
			return -EINVAL;
		}
1690 1691 1692 1693 1694
		/* Half duplex is only available in the ST Micro version */
		if (pl022->vendor->extended_cr) {
			if ((chip_info->duplex !=
			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
			    && (chip_info->duplex !=
1695
				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1696
				dev_err(&pl022->adev->dev,
1697 1698
					"Microwire duplex mode is configured incorrectly\n");
				return -EINVAL;
1699
			}
1700 1701
		} else {
			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1702
				dev_err(&pl022->adev->dev,
1703 1704 1705
					"Microwire half duplex mode requested,"
					" but this is only available in the"
					" ST version of PL022\n");
1706 1707 1708 1709 1710 1711
			return -EINVAL;
		}
	}
	return 0;
}

1712 1713 1714 1715 1716 1717 1718
static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
{
	return rate / (cpsdvsr * (1 + scr));
}

static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
				    ssp_clock_params * clk_freq)
1719 1720
{
	/* Lets calculate the frequency parameters */
1721 1722 1723
	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
		best_scr = 0, tmp, found = 0;
1724 1725 1726

	rate = clk_get_rate(pl022->clk);
	/* cpsdvscr = 2 & scr 0 */
1727
	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1728
	/* cpsdvsr = 254 & scr = 255 */
1729 1730
	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);

1731 1732 1733 1734 1735 1736
	if (freq > max_tclk)
		dev_warn(&pl022->adev->dev,
			"Max speed that can be programmed is %d Hz, you requested %d\n",
			max_tclk, freq);

	if (freq < min_tclk) {
1737
		dev_err(&pl022->adev->dev,
1738 1739
			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
			freq, min_tclk);
1740 1741
		return -EINVAL;
	}
1742 1743 1744 1745 1746 1747 1748 1749 1750

	/*
	 * best_freq will give closest possible available rate (<= requested
	 * freq) for all values of scr & cpsdvsr.
	 */
	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
		while (scr <= SCR_MAX) {
			tmp = spi_rate(rate, cpsdvsr, scr);

1751 1752
			if (tmp > freq) {
				/* we need lower freq */
1753
				scr++;
1754 1755 1756
				continue;
			}

1757
			/*
1758 1759
			 * If found exact value, mark found and break.
			 * If found more closer value, update and break.
1760
			 */
1761
			if (tmp > best_freq) {
1762 1763 1764 1765 1766
				best_freq = tmp;
				best_cpsdvsr = cpsdvsr;
				best_scr = scr;

				if (tmp == freq)
1767
					found = 1;
1768
			}
1769 1770 1771 1772 1773
			/*
			 * increased scr will give lower rates, which are not
			 * required
			 */
			break;
1774 1775 1776 1777 1778
		}
		cpsdvsr += 2;
		scr = SCR_MIN;
	}

1779 1780 1781
	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
			freq);

1782 1783 1784 1785 1786 1787 1788 1789
	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
	clk_freq->scr = (u8) (best_scr & 0xFF);
	dev_dbg(&pl022->adev->dev,
		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
		freq, best_freq);
	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
		clk_freq->cpsdvsr, clk_freq->scr);

1790 1791 1792
	return 0;
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/*
 * A piece of default chip info unless the platform
 * supplies it.
 */
static const struct pl022_config_chip pl022_default_chip_info = {
	.com_mode = POLLING_TRANSFER,
	.iface = SSP_INTERFACE_MOTOROLA_SPI,
	.hierarchy = SSP_SLAVE,
	.slave_tx_disable = DO_NOT_DRIVE_TX,
	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
	.ctrl_len = SSP_BITS_8,
	.wait_state = SSP_MWIRE_WAIT_ZERO,
	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
	.cs_control = null_cs_control,
};

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
/**
 * pl022_setup - setup function registered to SPI master framework
 * @spi: spi device which is requesting setup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. If it is the first time when setup is called by this device,
 * this function will initialize the runtime state for this chip and save
 * the same in the device structure. Else it will update the runtime info
 * with the updated chip info. Nothing is really being written to the
 * controller hardware here, that is not done until the actual transfer
 * commence.
 */
static int pl022_setup(struct spi_device *spi)
{
1824
	struct pl022_config_chip const *chip_info;
1825
	struct pl022_config_chip chip_info_dt;
1826
	struct chip_data *chip;
J
Jonas Aaberg 已提交
1827
	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1828 1829
	int status = 0;
	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1830 1831
	unsigned int bits = spi->bits_per_word;
	u32 tmp;
1832
	struct device_node *np = spi->dev.of_node;
1833 1834 1835 1836 1837 1838 1839 1840 1841

	if (!spi->max_speed_hz)
		return -EINVAL;

	/* Get controller_state if one is supplied */
	chip = spi_get_ctldata(spi);

	if (chip == NULL) {
		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1842
		if (!chip)
1843 1844 1845 1846 1847 1848 1849 1850 1851
			return -ENOMEM;
		dev_dbg(&spi->dev,
			"allocated memory for controller's runtime state\n");
	}

	/* Get controller data if one is supplied */
	chip_info = spi->controller_data;

	if (chip_info == NULL) {
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
		if (np) {
			chip_info_dt = pl022_default_chip_info;

			chip_info_dt.hierarchy = SSP_MASTER;
			of_property_read_u32(np, "pl022,interface",
				&chip_info_dt.iface);
			of_property_read_u32(np, "pl022,com-mode",
				&chip_info_dt.com_mode);
			of_property_read_u32(np, "pl022,rx-level-trig",
				&chip_info_dt.rx_lev_trig);
			of_property_read_u32(np, "pl022,tx-level-trig",
				&chip_info_dt.tx_lev_trig);
			of_property_read_u32(np, "pl022,ctrl-len",
				&chip_info_dt.ctrl_len);
			of_property_read_u32(np, "pl022,wait-state",
				&chip_info_dt.wait_state);
			of_property_read_u32(np, "pl022,duplex",
				&chip_info_dt.duplex);

			chip_info = &chip_info_dt;
		} else {
			chip_info = &pl022_default_chip_info;
			/* spi_board_info.controller_data not is supplied */
			dev_dbg(&spi->dev,
				"using default controller_data settings\n");
		}
1878
	} else
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
		dev_dbg(&spi->dev,
			"using user supplied controller_data settings\n");

	/*
	 * We can override with custom divisors, else we use the board
	 * frequency setting
	 */
	if ((0 == chip_info->clk_freq.cpsdvsr)
	    && (0 == chip_info->clk_freq.scr)) {
		status = calculate_effective_freq(pl022,
						  spi->max_speed_hz,
1890
						  &clk_freq);
1891 1892 1893
		if (status < 0)
			goto err_config_params;
	} else {
1894 1895 1896 1897
		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
		if ((clk_freq.cpsdvsr % 2) != 0)
			clk_freq.cpsdvsr =
				clk_freq.cpsdvsr - 1;
1898
	}
1899 1900
	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1901
		status = -EINVAL;
1902 1903 1904 1905 1906
		dev_err(&spi->dev,
			"cpsdvsr is configured incorrectly\n");
		goto err_config_params;
	}

1907 1908 1909 1910 1911
	status = verify_controller_parameters(pl022, chip_info);
	if (status) {
		dev_err(&spi->dev, "controller data is incorrect");
		goto err_config_params;
	}
1912

1913 1914 1915
	pl022->rx_lev_trig = chip_info->rx_lev_trig;
	pl022->tx_lev_trig = chip_info->tx_lev_trig;

1916 1917
	/* Now set controller state based on controller data */
	chip->xfer_type = chip_info->com_mode;
1918 1919
	if (!chip_info->cs_control) {
		chip->cs_control = null_cs_control;
1920 1921 1922
		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
			dev_warn(&spi->dev,
				 "invalid chip select\n");
1923 1924
	} else
		chip->cs_control = chip_info->cs_control;
1925

1926 1927
	/* Check bits per word with vendor specific range */
	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1928
		status = -ENOTSUPP;
1929 1930 1931
		dev_err(&spi->dev, "illegal data size for this controller!\n");
		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
				pl022->vendor->max_bpw);
1932 1933 1934
		goto err_config_params;
	} else if (bits <= 8) {
		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1935 1936 1937
		chip->n_bytes = 1;
		chip->read = READING_U8;
		chip->write = WRITING_U8;
1938
	} else if (bits <= 16) {
1939 1940 1941 1942 1943
		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
		chip->n_bytes = 2;
		chip->read = READING_U16;
		chip->write = WRITING_U16;
	} else {
1944 1945 1946 1947
		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
		chip->n_bytes = 4;
		chip->read = READING_U32;
		chip->write = WRITING_U32;
1948 1949 1950 1951 1952 1953 1954 1955 1956
	}

	/* Now Initialize all register settings required for this chip */
	chip->cr0 = 0;
	chip->cr1 = 0;
	chip->dmacr = 0;
	chip->cpsr = 0;
	if ((chip_info->com_mode == DMA_TRANSFER)
	    && ((pl022->master_info)->enable_dma)) {
1957
		chip->enable_dma = true;
1958 1959 1960 1961 1962 1963
		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	} else {
1964
		chip->enable_dma = false;
1965 1966 1967 1968 1969 1970 1971
		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	}

1972
	chip->cpsr = clk_freq.cpsdvsr;
1973

1974 1975
	/* Special setup for the ST micro extended control registers */
	if (pl022->vendor->extended_cr) {
1976 1977
		u32 etx;

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
		if (pl022->vendor->pl023) {
			/* These bits are only in the PL023 */
			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
		} else {
			/* These bits are in the PL022 but not PL023 */
			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
				       SSP_CR0_MASK_HALFDUP_ST, 5);
			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
				       SSP_CR0_MASK_CSS_ST, 16);
			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
				       SSP_CR0_MASK_FRF_ST, 21);
			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
				       SSP_CR1_MASK_MWAIT_ST, 6);
		}
1993
		SSP_WRITE_BITS(chip->cr0, bits - 1,
1994
			       SSP_CR0_MASK_DSS_ST, 0);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

		if (spi->mode & SPI_LSB_FIRST) {
			tmp = SSP_RX_LSB;
			etx = SSP_TX_LSB;
		} else {
			tmp = SSP_RX_MSB;
			etx = SSP_TX_MSB;
		}
		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2005 2006 2007 2008 2009
		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
	} else {
2010
		SSP_WRITE_BITS(chip->cr0, bits - 1,
2011 2012 2013 2014
			       SSP_CR0_MASK_DSS, 0);
		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
			       SSP_CR0_MASK_FRF, 4);
	}
2015

2016
	/* Stuff that is common for all versions */
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	if (spi->mode & SPI_CPOL)
		tmp = SSP_CLK_POL_IDLE_HIGH;
	else
		tmp = SSP_CLK_POL_IDLE_LOW;
	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);

	if (spi->mode & SPI_CPHA)
		tmp = SSP_CLK_SECOND_EDGE;
	else
		tmp = SSP_CLK_FIRST_EDGE;
	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);

2029
	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2030
	/* Loopback is available on all versions except PL023 */
2031
	if (pl022->vendor->loopback) {
2032 2033 2034 2035 2036 2037
		if (spi->mode & SPI_LOOP)
			tmp = LOOPBACK_ENABLED;
		else
			tmp = LOOPBACK_DISABLED;
		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
	}
2038 2039
	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2040 2041
	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
		3);
2042 2043 2044 2045 2046

	/* Save controller_state */
	spi_set_ctldata(spi, chip);
	return status;
 err_config_params:
2047
	spi_set_ctldata(spi, NULL);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	kfree(chip);
	return status;
}

/**
 * pl022_cleanup - cleanup function registered to SPI master framework
 * @spi: spi device which is requesting cleanup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. It will free the runtime state of chip.
 */
static void pl022_cleanup(struct spi_device *spi)
{
	struct chip_data *chip = spi_get_ctldata(spi);

	spi_set_ctldata(spi, NULL);
	kfree(chip);
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
static struct pl022_ssp_controller *
pl022_platform_data_dt_get(struct device *dev)
{
	struct device_node *np = dev->of_node;
	struct pl022_ssp_controller *pd;
	u32 tmp;

	if (!np) {
		dev_err(dev, "no dt node defined\n");
		return NULL;
	}

	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2080
	if (!pd)
2081 2082 2083
		return NULL;

	pd->bus_id = -1;
2084
	pd->enable_dma = 1;
2085 2086 2087 2088 2089 2090 2091 2092 2093
	of_property_read_u32(np, "num-cs", &tmp);
	pd->num_chipselect = tmp;
	of_property_read_u32(np, "pl022,autosuspend-delay",
			     &pd->autosuspend_delay);
	pd->rt = of_property_read_bool(np, "pl022,rt");

	return pd;
}

2094
static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2095 2096
{
	struct device *dev = &adev->dev;
J
Jingoo Han 已提交
2097 2098
	struct pl022_ssp_controller *platform_info =
			dev_get_platdata(&adev->dev);
2099 2100
	struct spi_master *master;
	struct pl022 *pl022 = NULL;	/*Data for this driver */
2101 2102
	struct device_node *np = adev->dev.of_node;
	int status = 0, i, num_cs;
2103 2104 2105

	dev_info(&adev->dev,
		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2106 2107 2108 2109 2110
	if (!platform_info && IS_ENABLED(CONFIG_OF))
		platform_info = pl022_platform_data_dt_get(dev);

	if (!platform_info) {
		dev_err(dev, "probe: no platform data defined\n");
2111
		return -ENODEV;
2112 2113
	}

2114 2115 2116
	if (platform_info->num_chipselect) {
		num_cs = platform_info->num_chipselect;
	} else {
2117
		dev_err(dev, "probe: no chip select defined\n");
2118
		return -ENODEV;
2119 2120
	}

2121
	/* Allocate master with space for data */
2122
	master = spi_alloc_master(dev, sizeof(struct pl022));
2123 2124
	if (master == NULL) {
		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2125
		return -ENOMEM;
2126 2127 2128 2129 2130 2131 2132
	}

	pl022 = spi_master_get_devdata(master);
	pl022->master = master;
	pl022->master_info = platform_info;
	pl022->adev = adev;
	pl022->vendor = id->data;
2133 2134
	pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
					  GFP_KERNEL);
2135 2136 2137 2138
	if (!pl022->chipselects) {
		status = -ENOMEM;
		goto err_no_mem;
	}
2139 2140 2141 2142 2143 2144

	/*
	 * Bus Number Which has been Assigned to this SSP controller
	 * on this board
	 */
	master->bus_num = platform_info->bus_id;
2145
	master->num_chipselect = num_cs;
2146 2147
	master->cleanup = pl022_cleanup;
	master->setup = pl022_setup;
2148
	master->auto_runtime_pm = true;
2149 2150 2151
	master->transfer_one_message = pl022_transfer_one_message;
	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
	master->rt = platform_info->rt;
2152
	master->dev.of_node = dev->of_node;
2153

2154 2155
	if (platform_info->num_chipselect && platform_info->chipselects) {
		for (i = 0; i < num_cs; i++)
2156
			pl022->chipselects[i] = platform_info->chipselects[i];
2157 2158 2159
	} else if (pl022->vendor->internal_cs_ctrl) {
		for (i = 0; i < num_cs; i++)
			pl022->chipselects[i] = i;
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	} else if (IS_ENABLED(CONFIG_OF)) {
		for (i = 0; i < num_cs; i++) {
			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);

			if (cs_gpio == -EPROBE_DEFER) {
				status = -EPROBE_DEFER;
				goto err_no_gpio;
			}

			pl022->chipselects[i] = cs_gpio;

			if (gpio_is_valid(cs_gpio)) {
2172
				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2173 2174 2175 2176 2177
					dev_err(&adev->dev,
						"could not request %d gpio\n",
						cs_gpio);
				else if (gpio_direction_output(cs_gpio, 1))
					dev_err(&adev->dev,
R
Roland Stigge 已提交
2178
						"could not set gpio %d as output\n",
2179 2180 2181 2182
						cs_gpio);
			}
		}
	}
2183

2184 2185 2186 2187 2188 2189 2190 2191
	/*
	 * Supports mode 0-3, loopback, and active low CS. Transfers are
	 * always MS bit first on the original pl022.
	 */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
	if (pl022->vendor->extended_cr)
		master->mode_bits |= SPI_LSB_FIRST;

2192 2193 2194 2195 2196 2197
	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);

	status = amba_request_regions(adev, NULL);
	if (status)
		goto err_no_ioregion;

2198
	pl022->phybase = adev->res.start;
2199 2200
	pl022->virtbase = devm_ioremap(dev, adev->res.start,
				       resource_size(&adev->res));
2201 2202 2203 2204
	if (pl022->virtbase == NULL) {
		status = -ENOMEM;
		goto err_no_ioremap;
	}
2205 2206
	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
		&adev->res.start, pl022->virtbase);
2207

2208
	pl022->clk = devm_clk_get(&adev->dev, NULL);
2209 2210 2211 2212 2213
	if (IS_ERR(pl022->clk)) {
		status = PTR_ERR(pl022->clk);
		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
		goto err_no_clk;
	}
2214

2215
	status = clk_prepare_enable(pl022->clk);
2216 2217 2218 2219 2220
	if (status) {
		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
		goto err_no_clk_en;
	}

2221 2222 2223 2224
	/* Initialize transfer pump */
	tasklet_init(&pl022->pump_transfers, pump_transfers,
		     (unsigned long)pl022);

2225 2226 2227 2228 2229
	/* Disable SSP */
	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
	       SSP_CR1(pl022->virtbase));
	load_ssp_default_config(pl022);

2230 2231
	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
				  0, "pl022", pl022);
2232 2233 2234 2235
	if (status < 0) {
		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
		goto err_no_irq;
	}
2236

2237 2238 2239 2240 2241 2242 2243
	/* Get DMA channels, try autoconfiguration first */
	status = pl022_dma_autoprobe(pl022);

	/* If that failed, use channels from platform_info */
	if (status == 0)
		platform_info->enable_dma = 1;
	else if (platform_info->enable_dma) {
2244 2245
		status = pl022_dma_probe(pl022);
		if (status != 0)
2246
			platform_info->enable_dma = 0;
2247 2248
	}

2249 2250
	/* Register with the SPI framework */
	amba_set_drvdata(adev, pl022);
2251
	status = devm_spi_register_master(&adev->dev, master);
2252 2253 2254 2255 2256
	if (status != 0) {
		dev_err(&adev->dev,
			"probe - problem registering spi master\n");
		goto err_spi_register;
	}
L
Lucas De Marchi 已提交
2257
	dev_dbg(dev, "probe succeeded\n");
2258 2259

	/* let runtime pm put suspend */
2260 2261 2262 2263 2264 2265 2266 2267
	if (platform_info->autosuspend_delay > 0) {
		dev_info(&adev->dev,
			"will use autosuspend for runtime pm, delay %dms\n",
			platform_info->autosuspend_delay);
		pm_runtime_set_autosuspend_delay(dev,
			platform_info->autosuspend_delay);
		pm_runtime_use_autosuspend(dev);
	}
2268 2269
	pm_runtime_put(dev);

2270 2271 2272
	return 0;

 err_spi_register:
2273 2274
	if (platform_info->enable_dma)
		pl022_dma_remove(pl022);
2275
 err_no_irq:
2276
	clk_disable_unprepare(pl022->clk);
2277
 err_no_clk_en:
2278 2279 2280 2281
 err_no_clk:
 err_no_ioremap:
	amba_release_regions(adev);
 err_no_ioregion:
2282
 err_no_gpio:
2283
 err_no_mem:
2284 2285 2286 2287
	spi_master_put(master);
	return status;
}

2288
static int
2289 2290 2291
pl022_remove(struct amba_device *adev)
{
	struct pl022 *pl022 = amba_get_drvdata(adev);
2292

2293 2294 2295
	if (!pl022)
		return 0;

2296 2297 2298 2299 2300 2301
	/*
	 * undo pm_runtime_put() in probe.  I assume that we're not
	 * accessing the primecell here.
	 */
	pm_runtime_get_noresume(&adev->dev);

2302
	load_ssp_default_config(pl022);
2303 2304 2305
	if (pl022->master_info->enable_dma)
		pl022_dma_remove(pl022);

2306
	clk_disable_unprepare(pl022->clk);
2307 2308 2309 2310 2311
	amba_release_regions(adev);
	tasklet_disable(&pl022->pump_transfers);
	return 0;
}

2312
#ifdef CONFIG_PM_SLEEP
2313
static int pl022_suspend(struct device *dev)
2314
{
2315
	struct pl022 *pl022 = dev_get_drvdata(dev);
2316
	int ret;
2317

2318 2319 2320 2321
	ret = spi_master_suspend(pl022->master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
2322
	}
2323

2324 2325 2326 2327 2328 2329 2330
	ret = pm_runtime_force_suspend(dev);
	if (ret) {
		spi_master_resume(pl022->master);
		return ret;
	}

	pinctrl_pm_select_sleep_state(dev);
2331

2332
	dev_dbg(dev, "suspended\n");
2333 2334 2335
	return 0;
}

2336
static int pl022_resume(struct device *dev)
2337
{
2338
	struct pl022 *pl022 = dev_get_drvdata(dev);
2339
	int ret;
2340

2341 2342 2343
	ret = pm_runtime_force_resume(dev);
	if (ret)
		dev_err(dev, "problem resuming\n");
2344

2345
	/* Start the queue running */
2346 2347 2348
	ret = spi_master_resume(pl022->master);
	if (ret)
		dev_err(dev, "problem starting queue (%d)\n", ret);
2349
	else
2350
		dev_dbg(dev, "resumed\n");
2351

2352
	return ret;
2353
}
2354
#endif
2355

2356
#ifdef CONFIG_PM
2357 2358 2359
static int pl022_runtime_suspend(struct device *dev)
{
	struct pl022 *pl022 = dev_get_drvdata(dev);
2360

2361 2362 2363
	clk_disable_unprepare(pl022->clk);
	pinctrl_pm_select_idle_state(dev);

2364 2365 2366 2367 2368 2369 2370
	return 0;
}

static int pl022_runtime_resume(struct device *dev)
{
	struct pl022 *pl022 = dev_get_drvdata(dev);

2371 2372 2373
	pinctrl_pm_select_default_state(dev);
	clk_prepare_enable(pl022->clk);

2374 2375 2376 2377 2378 2379
	return 0;
}
#endif

static const struct dev_pm_ops pl022_dev_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2380
	SET_PM_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2381 2382
};

2383 2384 2385 2386
static struct vendor_data vendor_arm = {
	.fifodepth = 8,
	.max_bpw = 16,
	.unidir = false,
2387
	.extended_cr = false,
2388
	.pl023 = false,
2389
	.loopback = true,
2390
	.internal_cs_ctrl = false,
2391 2392 2393 2394 2395 2396
};

static struct vendor_data vendor_st = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
2397
	.extended_cr = true,
2398
	.pl023 = false,
2399
	.loopback = true,
2400
	.internal_cs_ctrl = false,
2401 2402 2403 2404 2405 2406 2407 2408
};

static struct vendor_data vendor_st_pl023 = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
	.extended_cr = true,
	.pl023 = true,
2409
	.loopback = false,
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	.internal_cs_ctrl = false,
};

static struct vendor_data vendor_lsi = {
	.fifodepth = 8,
	.max_bpw = 16,
	.unidir = false,
	.extended_cr = false,
	.pl023 = false,
	.loopback = true,
	.internal_cs_ctrl = true,
2421 2422
};

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
static struct amba_id pl022_ids[] = {
	{
		/*
		 * ARM PL022 variant, this has a 16bit wide
		 * and 8 locations deep TX/RX FIFO
		 */
		.id	= 0x00041022,
		.mask	= 0x000fffff,
		.data	= &vendor_arm,
	},
	{
		/*
		 * ST Micro derivative, this has 32bit wide
		 * and 32 locations deep TX/RX FIFO
		 */
2438
		.id	= 0x01080022,
2439 2440 2441
		.mask	= 0xffffffff,
		.data	= &vendor_st,
	},
2442 2443 2444 2445 2446 2447 2448 2449
	{
		/*
		 * ST-Ericsson derivative "PL023" (this is not
		 * an official ARM number), this is a PL022 SSP block
		 * stripped to SPI mode only, it has 32bit wide
		 * and 32 locations deep TX/RX FIFO but no extended
		 * CR0/CR1 register
		 */
2450 2451 2452
		.id	= 0x00080023,
		.mask	= 0xffffffff,
		.data	= &vendor_st_pl023,
2453
	},
2454 2455 2456 2457 2458 2459 2460 2461 2462
	{
		/*
		 * PL022 variant that has a chip select control register whih
		 * allows control of 5 output signals nCS[0:4].
		 */
		.id	= 0x000b6022,
		.mask	= 0x000fffff,
		.data	= &vendor_lsi,
	},
2463 2464 2465
	{ 0, 0 },
};

2466 2467
MODULE_DEVICE_TABLE(amba, pl022_ids);

2468 2469 2470
static struct amba_driver pl022_driver = {
	.drv = {
		.name	= "ssp-pl022",
2471
		.pm	= &pl022_dev_pm_ops,
2472 2473 2474
	},
	.id_table	= pl022_ids,
	.probe		= pl022_probe,
2475
	.remove		= pl022_remove,
2476 2477 2478 2479 2480 2481
};

static int __init pl022_init(void)
{
	return amba_driver_register(&pl022_driver);
}
2482
subsys_initcall(pl022_init);
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

static void __exit pl022_exit(void)
{
	amba_driver_unregister(&pl022_driver);
}
module_exit(pl022_exit);

MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
MODULE_DESCRIPTION("PL022 SSP Controller Driver");
MODULE_LICENSE("GPL");