spi-pl022.c 68.3 KB
Newer Older
1 2 3
/*
 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
 *
4
 * Copyright (C) 2008-2012 ST-Ericsson AB
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
 *
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * Initial version inspired by:
 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
 * Initial adoption to PL022 by:
 *      Sachin Verma <sachin.verma@st.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/amba/bus.h>
#include <linux/amba/pl022.h>
#include <linux/io.h>
38
#include <linux/slab.h>
39 40 41
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
R
Rabin Vincent 已提交
42
#include <linux/pm_runtime.h>
43
#include <linux/gpio.h>
44
#include <linux/of_gpio.h>
45
#include <linux/pinctrl/consumer.h>
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

/*
 * This macro is used to define some register default values.
 * reg is masked with mask, the OR:ed with an (again masked)
 * val shifted sb steps to the left.
 */
#define SSP_WRITE_BITS(reg, val, mask, sb) \
 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))

/*
 * This macro is also used to define some default values.
 * It will just shift val by sb steps to the left and mask
 * the result with mask.
 */
#define GEN_MASK_BITS(val, mask, sb) \
 (((val)<<(sb)) & (mask))

#define DRIVE_TX		0
#define DO_NOT_DRIVE_TX		1

#define DO_NOT_QUEUE_DMA	0
#define QUEUE_DMA		1

#define RX_TRANSFER		1
#define TX_TRANSFER		2

/*
 * Macros to access SSP Registers with their offsets
 */
#define SSP_CR0(r)	(r + 0x000)
#define SSP_CR1(r)	(r + 0x004)
#define SSP_DR(r)	(r + 0x008)
#define SSP_SR(r)	(r + 0x00C)
#define SSP_CPSR(r)	(r + 0x010)
#define SSP_IMSC(r)	(r + 0x014)
#define SSP_RIS(r)	(r + 0x018)
#define SSP_MIS(r)	(r + 0x01C)
#define SSP_ICR(r)	(r + 0x020)
#define SSP_DMACR(r)	(r + 0x024)
#define SSP_ITCR(r)	(r + 0x080)
#define SSP_ITIP(r)	(r + 0x084)
#define SSP_ITOP(r)	(r + 0x088)
#define SSP_TDR(r)	(r + 0x08C)

#define SSP_PID0(r)	(r + 0xFE0)
#define SSP_PID1(r)	(r + 0xFE4)
#define SSP_PID2(r)	(r + 0xFE8)
#define SSP_PID3(r)	(r + 0xFEC)

#define SSP_CID0(r)	(r + 0xFF0)
#define SSP_CID1(r)	(r + 0xFF4)
#define SSP_CID2(r)	(r + 0xFF8)
#define SSP_CID3(r)	(r + 0xFFC)

/*
 * SSP Control Register 0  - SSP_CR0
 */
103 104
#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
#define SSP_CR0_MASK_FRF	(0x3UL << 4)
105 106 107
#define SSP_CR0_MASK_SPO	(0x1UL << 6)
#define SSP_CR0_MASK_SPH	(0x1UL << 7)
#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
108 109 110 111 112 113 114 115 116 117

/*
 * The ST version of this block moves som bits
 * in SSP_CR0 and extends it to 32 bits
 */
#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)

118 119 120 121 122 123 124 125 126
/*
 * SSP Control Register 0  - SSP_CR1
 */
#define SSP_CR1_MASK_LBM	(0x1UL << 0)
#define SSP_CR1_MASK_SSE	(0x1UL << 1)
#define SSP_CR1_MASK_MS		(0x1UL << 2)
#define SSP_CR1_MASK_SOD	(0x1UL << 3)

/*
127 128
 * The ST version of this block adds some bits
 * in SSP_CR1
129
 */
130 131 132 133 134
#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
135 136
/* This one is only in the PL023 variant */
#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
137 138 139 140 141 142 143

/*
 * SSP Status Register - SSP_SR
 */
#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
144
#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */

/*
 * SSP Clock Prescale Register  - SSP_CPSR
 */
#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)

/*
 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 */
#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */

/*
 * SSP Raw Interrupt Status Register - SSP_RIS
 */
/* Receive Overrun Raw Interrupt status */
#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
/* Receive Timeout Raw Interrupt status */
#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
/* Receive FIFO Raw Interrupt status */
#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
/* Transmit FIFO Raw Interrupt status */
#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)

/*
 * SSP Masked Interrupt Status Register - SSP_MIS
 */
/* Receive Overrun Masked Interrupt status */
#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
/* Receive Timeout Masked Interrupt status */
#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
/* Receive FIFO Masked Interrupt status */
#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
/* Transmit FIFO Masked Interrupt status */
#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)

/*
 * SSP Interrupt Clear Register - SSP_ICR
 */
/* Receive Overrun Raw Clear Interrupt bit */
#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
/* Receive Timeout Clear Interrupt bit */
#define SSP_ICR_MASK_RTIC		(0x1UL << 1)

/*
 * SSP DMA Control Register - SSP_DMACR
 */
/* Receive DMA Enable bit */
#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
/* Transmit DMA Enable bit */
#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)

/*
 * SSP Integration Test control Register - SSP_ITCR
 */
#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)

/*
 * SSP Integration Test Input Register - SSP_ITIP
 */
#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)

/*
 * SSP Integration Test output Register - SSP_ITOP
 */
#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
#define ITOP_MASK_RORINTR		 (0x1UL << 5)
#define ITOP_MASK_RTINTR		 (0x1UL << 6)
#define ITOP_MASK_RXINTR		 (0x1UL << 7)
#define ITOP_MASK_TXINTR		 (0x1UL << 8)
#define ITOP_MASK_INTR			 (0x1UL << 9)
#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)

/*
 * SSP Test Data Register - SSP_TDR
 */
237
#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
238 239 240 241 242 243 244

/*
 * Message State
 * we use the spi_message.state (void *) pointer to
 * hold a single state value, that's why all this
 * (void *) casting is done here.
 */
245 246 247 248
#define STATE_START			((void *) 0)
#define STATE_RUNNING			((void *) 1)
#define STATE_DONE			((void *) 2)
#define STATE_ERROR			((void *) -1)
249 250 251 252

/*
 * SSP State - Whether Enabled or Disabled
 */
253 254
#define SSP_DISABLED			(0)
#define SSP_ENABLED			(1)
255 256 257 258

/*
 * SSP DMA State - Whether DMA Enabled or Disabled
 */
259 260
#define SSP_DMA_DISABLED		(0)
#define SSP_DMA_ENABLED			(1)
261 262 263 264

/*
 * SSP Clock Defaults
 */
265 266
#define SSP_DEFAULT_CLKRATE 0x2
#define SSP_DEFAULT_PRESCALE 0x40
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

/*
 * SSP Clock Parameter ranges
 */
#define CPSDVR_MIN 0x02
#define CPSDVR_MAX 0xFE
#define SCR_MIN 0x00
#define SCR_MAX 0xFF

/*
 * SSP Interrupt related Macros
 */
#define DEFAULT_SSP_REG_IMSC  0x0UL
#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)

#define CLEAR_ALL_INTERRUPTS  0x3

285 286
#define SPI_POLLING_TIMEOUT 1000

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/*
 * The type of reading going on on this chip
 */
enum ssp_reading {
	READING_NULL,
	READING_U8,
	READING_U16,
	READING_U32
};

/**
 * The type of writing going on on this chip
 */
enum ssp_writing {
	WRITING_NULL,
	WRITING_U8,
	WRITING_U16,
	WRITING_U32
};

/**
 * struct vendor_data - vendor-specific config parameters
 * for PL022 derivates
 * @fifodepth: depth of FIFOs (both)
 * @max_bpw: maximum number of bits per word
 * @unidir: supports unidirection transfers
313 314
 * @extended_cr: 32 bit wide control register 0 with extra
 * features and extra features in CR1 as found in the ST variants
315
 * @pl023: supports a subset of the ST extensions called "PL023"
316 317 318 319 320
 */
struct vendor_data {
	int fifodepth;
	int max_bpw;
	bool unidir;
321
	bool extended_cr;
322
	bool pl023;
323
	bool loopback;
324 325 326 327 328
};

/**
 * struct pl022 - This is the private SSP driver data structure
 * @adev: AMBA device model hookup
329 330 331 332
 * @vendor: vendor data for the IP block
 * @phybase: the physical memory where the SSP device resides
 * @virtbase: the virtual memory where the SSP is mapped
 * @clk: outgoing clock "SPICLK" for the SPI bus
333 334
 * @master: SPI framework hookup
 * @master_info: controller-specific data from machine setup
335 336 337
 * @kworker: thread struct for message pump
 * @kworker_task: pointer to task for message pump kworker thread
 * @pump_messages: work struct for scheduling work to the message pump
338 339
 * @queue_lock: spinlock to syncronise access to message queue
 * @queue: message queue
340 341
 * @busy: message pump is busy
 * @running: message pump is running
342 343 344 345
 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 * @cur_msg: Pointer to current spi_message being processed
 * @cur_transfer: Pointer to current spi_transfer
 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 347 348 349
 * @next_msg_cs_active: the next message in the queue has been examined
 *  and it was found that it uses the same chip select as the previous
 *  message, so we left it active after the previous transfer, and it's
 *  active already.
350 351 352 353
 * @tx: current position in TX buffer to be read
 * @tx_end: end position in TX buffer to be read
 * @rx: current position in RX buffer to be written
 * @rx_end: end position in RX buffer to be written
354 355 356 357 358 359 360 361
 * @read: the type of read currently going on
 * @write: the type of write currently going on
 * @exp_fifo_level: expected FIFO level
 * @dma_rx_channel: optional channel for RX DMA
 * @dma_tx_channel: optional channel for TX DMA
 * @sgt_rx: scattertable for the RX transfer
 * @sgt_tx: scattertable for the TX transfer
 * @dummypage: a dummy page used for driving data on the bus with DMA
362 363
 * @cur_cs: current chip select (gpio)
 * @chipselects: list of chipselects (gpios)
364 365 366 367 368 369 370 371 372
 */
struct pl022 {
	struct amba_device		*adev;
	struct vendor_data		*vendor;
	resource_size_t			phybase;
	void __iomem			*virtbase;
	struct clk			*clk;
	struct spi_master		*master;
	struct pl022_ssp_controller	*master_info;
373
	/* Message per-transfer pump */
374 375 376 377
	struct tasklet_struct		pump_transfers;
	struct spi_message		*cur_msg;
	struct spi_transfer		*cur_transfer;
	struct chip_data		*cur_chip;
378
	bool				next_msg_cs_active;
379 380 381 382 383 384
	void				*tx;
	void				*tx_end;
	void				*rx;
	void				*rx_end;
	enum ssp_reading		read;
	enum ssp_writing		write;
385
	u32				exp_fifo_level;
386 387
	enum ssp_rx_level_trig		rx_lev_trig;
	enum ssp_tx_level_trig		tx_lev_trig;
388 389 390 391 392 393 394
	/* DMA settings */
#ifdef CONFIG_DMA_ENGINE
	struct dma_chan			*dma_rx_channel;
	struct dma_chan			*dma_tx_channel;
	struct sg_table			sgt_rx;
	struct sg_table			sgt_tx;
	char				*dummypage;
395
	bool				dma_running;
396
#endif
397 398
	int cur_cs;
	int *chipselects;
399 400 401 402
};

/**
 * struct chip_data - To maintain runtime state of SSP for each client chip
403 404
 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 *       register is 32 bits wide rather than just 16
405 406 407 408 409 410
 * @cr1: Value of control register CR1 of SSP
 * @dmacr: Value of DMA control Register of SSP
 * @cpsr: Value of Clock prescale register
 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 * @enable_dma: Whether to enable DMA or not
 * @read: function ptr to be used to read when doing xfer for this chip
411
 * @write: function ptr to be used to write when doing xfer for this chip
412 413 414 415 416 417 418
 * @cs_control: chip select callback provided by chip
 * @xfer_type: polling/interrupt/DMA
 *
 * Runtime state of the SSP controller, maintained per chip,
 * This would be set according to the current message that would be served
 */
struct chip_data {
419
	u32 cr0;
420 421 422 423
	u16 cr1;
	u16 dmacr;
	u16 cpsr;
	u8 n_bytes;
424
	bool enable_dma;
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	enum ssp_reading read;
	enum ssp_writing write;
	void (*cs_control) (u32 command);
	int xfer_type;
};

/**
 * null_cs_control - Dummy chip select function
 * @command: select/delect the chip
 *
 * If no chip select function is provided by client this is used as dummy
 * chip select
 */
static void null_cs_control(u32 command)
{
	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
}

443 444 445 446 447 448 449 450
static void pl022_cs_control(struct pl022 *pl022, u32 command)
{
	if (gpio_is_valid(pl022->cur_cs))
		gpio_set_value(pl022->cur_cs, command);
	else
		pl022->cur_chip->cs_control(command);
}

451 452 453 454 455 456 457 458 459
/**
 * giveback - current spi_message is over, schedule next message and call
 * callback of this message. Assumes that caller already
 * set message->status; dma and pio irqs are blocked
 * @pl022: SSP driver private data structure
 */
static void giveback(struct pl022 *pl022)
{
	struct spi_transfer *last_transfer;
460
	pl022->next_msg_cs_active = false;
461

462
	last_transfer = list_entry(pl022->cur_msg->transfers.prev,
463 464 465 466 467 468 469 470 471 472 473
					struct spi_transfer,
					transfer_list);

	/* Delay if requested before any change in chip select */
	if (last_transfer->delay_usecs)
		/*
		 * FIXME: This runs in interrupt context.
		 * Is this really smart?
		 */
		udelay(last_transfer->delay_usecs);

474
	if (!last_transfer->cs_change) {
475 476
		struct spi_message *next_msg;

477 478 479 480
		/*
		 * cs_change was not set. We can keep the chip select
		 * enabled if there is message in the queue and it is
		 * for the same spi device.
481 482 483 484 485 486 487
		 *
		 * We cannot postpone this until pump_messages, because
		 * after calling msg->complete (below) the driver that
		 * sent the current message could be unloaded, which
		 * could invalidate the cs_control() callback...
		 */
		/* get a pointer to the next message, if any */
488
		next_msg = spi_get_next_queued_message(pl022->master);
489

490 491 492
		/*
		 * see if the next and current messages point
		 * to the same spi device.
493
		 */
494
		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
495
			next_msg = NULL;
496
		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
497
			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
498 499
		else
			pl022->next_msg_cs_active = true;
500

501
	}
502 503 504 505

	pl022->cur_msg = NULL;
	pl022->cur_transfer = NULL;
	pl022->cur_chip = NULL;
506
	spi_finalize_current_message(pl022->master);
507 508 509 510 511

	/* disable the SPI/SSP operation */
	writew((readw(SSP_CR1(pl022->virtbase)) &
		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
}

/**
 * flush - flush the FIFO to reach a clean state
 * @pl022: SSP driver private data structure
 */
static int flush(struct pl022 *pl022)
{
	unsigned long limit = loops_per_jiffy << 1;

	dev_dbg(&pl022->adev->dev, "flush\n");
	do {
		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
			readw(SSP_DR(pl022->virtbase));
	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
527 528 529

	pl022->exp_fifo_level = 0;

530 531 532 533 534 535 536 537 538 539 540
	return limit;
}

/**
 * restore_state - Load configuration of current chip
 * @pl022: SSP driver private data structure
 */
static void restore_state(struct pl022 *pl022)
{
	struct chip_data *chip = pl022->cur_chip;

541 542 543 544
	if (pl022->vendor->extended_cr)
		writel(chip->cr0, SSP_CR0(pl022->virtbase));
	else
		writew(chip->cr0, SSP_CR0(pl022->virtbase));
545 546 547 548 549 550 551 552 553 554 555 556
	writew(chip->cr1, SSP_CR1(pl022->virtbase));
	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/*
 * Default SSP Register Values
 */
#define DEFAULT_SSP_REG_CR0 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
557 558 559 560 561 562 563 564 565 566
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

/* ST versions have slightly different bit layout */
#define DEFAULT_SSP_REG_CR0_ST ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
567
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
568
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
569 570 571
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
572 573
)

574 575 576 577 578 579 580 581
/* The PL023 version is slightly different again */
#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

582 583 584 585
#define DEFAULT_SSP_REG_CR1 ( \
	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
586
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
587 588
)

589 590 591 592 593 594 595 596 597 598
/* ST versions extend this register to use all 16 bits */
#define DEFAULT_SSP_REG_CR1_ST ( \
	DEFAULT_SSP_REG_CR1 | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
)

599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * The PL023 variant has further differences: no loopback mode, no microwire
 * support, and a new clock feedback delay setting.
 */
#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
)
613

614
#define DEFAULT_SSP_REG_CPSR ( \
615
	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
616 617 618 619 620 621 622
)

#define DEFAULT_SSP_REG_DMACR (\
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
)

623 624 625 626
/**
 * load_ssp_default_config - Load default configuration for SSP
 * @pl022: SSP driver private data structure
 */
627 628
static void load_ssp_default_config(struct pl022 *pl022)
{
629 630 631 632
	if (pl022->vendor->pl023) {
		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
	} else if (pl022->vendor->extended_cr) {
633 634 635 636 637 638
		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
	} else {
		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
	}
639 640 641 642 643 644 645 646 647 648 649 650 651 652
	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/**
 * This will write to TX and read from RX according to the parameters
 * set in pl022.
 */
static void readwriter(struct pl022 *pl022)
{

	/*
L
Lucas De Marchi 已提交
653
	 * The FIFO depth is different between primecell variants.
654 655 656 657
	 * I believe filling in too much in the FIFO might cause
	 * errons in 8bit wide transfers on ARM variants (just 8 words
	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
	 *
658 659 660
	 * To prevent this issue, the TX FIFO is only filled to the
	 * unused RX FIFO fill length, regardless of what the TX
	 * FIFO status flag indicates.
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	 */
	dev_dbg(&pl022->adev->dev,
		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);

	/* Read as much as you can */
	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
	       && (pl022->rx < pl022->rx_end)) {
		switch (pl022->read) {
		case READING_NULL:
			readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U8:
			*(u8 *) (pl022->rx) =
				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
			break;
		case READING_U16:
			*(u16 *) (pl022->rx) =
				(u16) readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U32:
			*(u32 *) (pl022->rx) =
				readl(SSP_DR(pl022->virtbase));
			break;
		}
		pl022->rx += (pl022->cur_chip->n_bytes);
687
		pl022->exp_fifo_level--;
688 689
	}
	/*
690
	 * Write as much as possible up to the RX FIFO size
691
	 */
692
	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	       && (pl022->tx < pl022->tx_end)) {
		switch (pl022->write) {
		case WRITING_NULL:
			writew(0x0, SSP_DR(pl022->virtbase));
			break;
		case WRITING_U8:
			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U16:
			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U32:
			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		}
		pl022->tx += (pl022->cur_chip->n_bytes);
709
		pl022->exp_fifo_level++;
710 711 712 713
		/*
		 * This inner reader takes care of things appearing in the RX
		 * FIFO as we're transmitting. This will happen a lot since the
		 * clock starts running when you put things into the TX FIFO,
L
Lucas De Marchi 已提交
714
		 * and then things are continuously clocked into the RX FIFO.
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		 */
		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
		       && (pl022->rx < pl022->rx_end)) {
			switch (pl022->read) {
			case READING_NULL:
				readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U8:
				*(u8 *) (pl022->rx) =
					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
				break;
			case READING_U16:
				*(u16 *) (pl022->rx) =
					(u16) readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U32:
				*(u32 *) (pl022->rx) =
					readl(SSP_DR(pl022->virtbase));
				break;
			}
			pl022->rx += (pl022->cur_chip->n_bytes);
736
			pl022->exp_fifo_level--;
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
		}
	}
	/*
	 * When we exit here the TX FIFO should be full and the RX FIFO
	 * should be empty
	 */
}

/**
 * next_transfer - Move to the Next transfer in the current spi message
 * @pl022: SSP driver private data structure
 *
 * This function moves though the linked list of spi transfers in the
 * current spi message and returns with the state of current spi
 * message i.e whether its last transfer is done(STATE_DONE) or
 * Next transfer is ready(STATE_RUNNING)
 */
static void *next_transfer(struct pl022 *pl022)
{
	struct spi_message *msg = pl022->cur_msg;
	struct spi_transfer *trans = pl022->cur_transfer;

	/* Move to next transfer */
	if (trans->transfer_list.next != &msg->transfers) {
		pl022->cur_transfer =
		    list_entry(trans->transfer_list.next,
			       struct spi_transfer, transfer_list);
		return STATE_RUNNING;
	}
	return STATE_DONE;
}
768 769 770 771 772 773 774 775 776

/*
 * This DMA functionality is only compiled in if we have
 * access to the generic DMA devices/DMA engine.
 */
#ifdef CONFIG_DMA_ENGINE
static void unmap_free_dma_scatter(struct pl022 *pl022)
{
	/* Unmap and free the SG tables */
777
	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
778
		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
779
	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
	sg_free_table(&pl022->sgt_rx);
	sg_free_table(&pl022->sgt_tx);
}

static void dma_callback(void *data)
{
	struct pl022 *pl022 = data;
	struct spi_message *msg = pl022->cur_msg;

	BUG_ON(!pl022->sgt_rx.sgl);

#ifdef VERBOSE_DEBUG
	/*
	 * Optionally dump out buffers to inspect contents, this is
	 * good if you want to convince yourself that the loopback
	 * read/write contents are the same, when adopting to a new
	 * DMA engine.
	 */
	{
		struct scatterlist *sg;
		unsigned int i;

		dma_sync_sg_for_cpu(&pl022->adev->dev,
				    pl022->sgt_rx.sgl,
				    pl022->sgt_rx.nents,
				    DMA_FROM_DEVICE);

		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
			print_hex_dump(KERN_ERR, "SPI RX: ",
				       DUMP_PREFIX_OFFSET,
				       16,
				       1,
				       sg_virt(sg),
				       sg_dma_len(sg),
				       1);
		}
		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
			print_hex_dump(KERN_ERR, "SPI TX: ",
				       DUMP_PREFIX_OFFSET,
				       16,
				       1,
				       sg_virt(sg),
				       sg_dma_len(sg),
				       1);
		}
	}
#endif

	unmap_free_dma_scatter(pl022);

L
Lucas De Marchi 已提交
833
	/* Update total bytes transferred */
834 835
	msg->actual_length += pl022->cur_transfer->len;
	if (pl022->cur_transfer->cs_change)
836
		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

	/* Move to next transfer */
	msg->state = next_transfer(pl022);
	tasklet_schedule(&pl022->pump_transfers);
}

static void setup_dma_scatter(struct pl022 *pl022,
			      void *buffer,
			      unsigned int length,
			      struct sg_table *sgtab)
{
	struct scatterlist *sg;
	int bytesleft = length;
	void *bufp = buffer;
	int mapbytes;
	int i;

	if (buffer) {
		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
			/*
			 * If there are less bytes left than what fits
			 * in the current page (plus page alignment offset)
			 * we just feed in this, else we stuff in as much
			 * as we can.
			 */
			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
				mapbytes = bytesleft;
			else
				mapbytes = PAGE_SIZE - offset_in_page(bufp);
			sg_set_page(sg, virt_to_page(bufp),
				    mapbytes, offset_in_page(bufp));
			bufp += mapbytes;
			bytesleft -= mapbytes;
			dev_dbg(&pl022->adev->dev,
				"set RX/TX target page @ %p, %d bytes, %d left\n",
				bufp, mapbytes, bytesleft);
		}
	} else {
		/* Map the dummy buffer on every page */
		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
			if (bytesleft < PAGE_SIZE)
				mapbytes = bytesleft;
			else
				mapbytes = PAGE_SIZE;
			sg_set_page(sg, virt_to_page(pl022->dummypage),
				    mapbytes, 0);
			bytesleft -= mapbytes;
			dev_dbg(&pl022->adev->dev,
				"set RX/TX to dummy page %d bytes, %d left\n",
				mapbytes, bytesleft);

		}
	}
	BUG_ON(bytesleft);
}

/**
 * configure_dma - configures the channels for the next transfer
 * @pl022: SSP driver's private data structure
 */
static int configure_dma(struct pl022 *pl022)
{
	struct dma_slave_config rx_conf = {
		.src_addr = SSP_DR(pl022->phybase),
901
		.direction = DMA_DEV_TO_MEM,
902
		.device_fc = false,
903 904 905
	};
	struct dma_slave_config tx_conf = {
		.dst_addr = SSP_DR(pl022->phybase),
906
		.direction = DMA_MEM_TO_DEV,
907
		.device_fc = false,
908 909 910
	};
	unsigned int pages;
	int ret;
911
	int rx_sglen, tx_sglen;
912 913 914 915 916 917 918 919 920
	struct dma_chan *rxchan = pl022->dma_rx_channel;
	struct dma_chan *txchan = pl022->dma_tx_channel;
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;

	/* Check that the channels are available */
	if (!rxchan || !txchan)
		return -ENODEV;

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	/*
	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
	 * Notice that the DMA engine uses one-to-one mapping. Since we can
	 * not trigger on 2 elements this needs explicit mapping rather than
	 * calculation.
	 */
	switch (pl022->rx_lev_trig) {
	case SSP_RX_1_OR_MORE_ELEM:
		rx_conf.src_maxburst = 1;
		break;
	case SSP_RX_4_OR_MORE_ELEM:
		rx_conf.src_maxburst = 4;
		break;
	case SSP_RX_8_OR_MORE_ELEM:
		rx_conf.src_maxburst = 8;
		break;
	case SSP_RX_16_OR_MORE_ELEM:
		rx_conf.src_maxburst = 16;
		break;
	case SSP_RX_32_OR_MORE_ELEM:
		rx_conf.src_maxburst = 32;
		break;
	default:
		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
		break;
	}

	switch (pl022->tx_lev_trig) {
	case SSP_TX_1_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 1;
		break;
	case SSP_TX_4_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 4;
		break;
	case SSP_TX_8_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 8;
		break;
	case SSP_TX_16_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 16;
		break;
	case SSP_TX_32_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 32;
		break;
	default:
		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
		break;
	}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	switch (pl022->read) {
	case READING_NULL:
		/* Use the same as for writing */
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
		break;
	case READING_U8:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		break;
	case READING_U16:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		break;
	case READING_U32:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		break;
	}

	switch (pl022->write) {
	case WRITING_NULL:
		/* Use the same as for reading */
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
		break;
	case WRITING_U8:
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		break;
	case WRITING_U16:
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		break;
	case WRITING_U32:
997
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
998 999 1000 1001 1002 1003 1004 1005 1006 1007
		break;
	}

	/* SPI pecularity: we need to read and write the same width */
	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
		rx_conf.src_addr_width = tx_conf.dst_addr_width;
	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
		tx_conf.dst_addr_width = rx_conf.src_addr_width;
	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);

1008 1009
	dmaengine_slave_config(rxchan, &rx_conf);
	dmaengine_slave_config(txchan, &tx_conf);
1010 1011

	/* Create sglists for the transfers */
1012
	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1013 1014
	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);

1015
	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1016 1017 1018
	if (ret)
		goto err_alloc_rx_sg;

1019
	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	if (ret)
		goto err_alloc_tx_sg;

	/* Fill in the scatterlists for the RX+TX buffers */
	setup_dma_scatter(pl022, pl022->rx,
			  pl022->cur_transfer->len, &pl022->sgt_rx);
	setup_dma_scatter(pl022, pl022->tx,
			  pl022->cur_transfer->len, &pl022->sgt_tx);

	/* Map DMA buffers */
1030
	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1031
			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1032
	if (!rx_sglen)
1033 1034
		goto err_rx_sgmap;

1035
	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1036
			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1037
	if (!tx_sglen)
1038 1039 1040
		goto err_tx_sgmap;

	/* Send both scatterlists */
1041
	rxdesc = dmaengine_prep_slave_sg(rxchan,
1042
				      pl022->sgt_rx.sgl,
1043
				      rx_sglen,
1044
				      DMA_DEV_TO_MEM,
1045 1046 1047 1048
				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxdesc)
		goto err_rxdesc;

1049
	txdesc = dmaengine_prep_slave_sg(txchan,
1050
				      pl022->sgt_tx.sgl,
1051
				      tx_sglen,
1052
				      DMA_MEM_TO_DEV,
1053 1054 1055 1056 1057 1058 1059 1060 1061
				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!txdesc)
		goto err_txdesc;

	/* Put the callback on the RX transfer only, that should finish last */
	rxdesc->callback = dma_callback;
	rxdesc->callback_param = pl022;

	/* Submit and fire RX and TX with TX last so we're ready to read! */
1062 1063 1064 1065
	dmaengine_submit(rxdesc);
	dmaengine_submit(txdesc);
	dma_async_issue_pending(rxchan);
	dma_async_issue_pending(txchan);
1066
	pl022->dma_running = true;
1067 1068 1069 1070

	return 0;

err_txdesc:
1071
	dmaengine_terminate_all(txchan);
1072
err_rxdesc:
1073
	dmaengine_terminate_all(rxchan);
1074
	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1075 1076
		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
err_tx_sgmap:
1077
	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1078 1079 1080 1081 1082 1083 1084 1085 1086
		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
err_rx_sgmap:
	sg_free_table(&pl022->sgt_tx);
err_alloc_tx_sg:
	sg_free_table(&pl022->sgt_rx);
err_alloc_rx_sg:
	return -ENOMEM;
}

1087
static int pl022_dma_probe(struct pl022 *pl022)
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
{
	dma_cap_mask_t mask;

	/* Try to acquire a generic DMA engine slave channel */
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	/*
	 * We need both RX and TX channels to do DMA, else do none
	 * of them.
	 */
	pl022->dma_rx_channel = dma_request_channel(mask,
					    pl022->master_info->dma_filter,
					    pl022->master_info->dma_rx_param);
	if (!pl022->dma_rx_channel) {
1102
		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1103 1104 1105 1106 1107 1108 1109
		goto err_no_rxchan;
	}

	pl022->dma_tx_channel = dma_request_channel(mask,
					    pl022->master_info->dma_filter,
					    pl022->master_info->dma_tx_param);
	if (!pl022->dma_tx_channel) {
1110
		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1111 1112 1113 1114 1115
		goto err_no_txchan;
	}

	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!pl022->dummypage) {
1116
		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		goto err_no_dummypage;
	}

	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
		 dma_chan_name(pl022->dma_rx_channel),
		 dma_chan_name(pl022->dma_tx_channel));

	return 0;

err_no_dummypage:
	dma_release_channel(pl022->dma_tx_channel);
err_no_txchan:
	dma_release_channel(pl022->dma_rx_channel);
	pl022->dma_rx_channel = NULL;
err_no_rxchan:
1132 1133
	dev_err(&pl022->adev->dev,
			"Failed to work in dma mode, work without dma!\n");
1134 1135 1136
	return -ENODEV;
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static int pl022_dma_autoprobe(struct pl022 *pl022)
{
	struct device *dev = &pl022->adev->dev;

	/* automatically configure DMA channels from platform, normally using DT */
	pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx");
	if (!pl022->dma_rx_channel)
		goto err_no_rxchan;

	pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx");
	if (!pl022->dma_tx_channel)
		goto err_no_txchan;

	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!pl022->dummypage)
		goto err_no_dummypage;

	return 0;

err_no_dummypage:
	dma_release_channel(pl022->dma_tx_channel);
	pl022->dma_tx_channel = NULL;
err_no_txchan:
	dma_release_channel(pl022->dma_rx_channel);
	pl022->dma_rx_channel = NULL;
err_no_rxchan:
	return -ENODEV;
}
		
1166 1167 1168 1169 1170
static void terminate_dma(struct pl022 *pl022)
{
	struct dma_chan *rxchan = pl022->dma_rx_channel;
	struct dma_chan *txchan = pl022->dma_tx_channel;

1171 1172
	dmaengine_terminate_all(rxchan);
	dmaengine_terminate_all(txchan);
1173
	unmap_free_dma_scatter(pl022);
1174
	pl022->dma_running = false;
1175 1176 1177 1178
}

static void pl022_dma_remove(struct pl022 *pl022)
{
1179
	if (pl022->dma_running)
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		terminate_dma(pl022);
	if (pl022->dma_tx_channel)
		dma_release_channel(pl022->dma_tx_channel);
	if (pl022->dma_rx_channel)
		dma_release_channel(pl022->dma_rx_channel);
	kfree(pl022->dummypage);
}

#else
static inline int configure_dma(struct pl022 *pl022)
{
	return -ENODEV;
}

1194 1195 1196 1197 1198
static inline int pl022_dma_autoprobe(struct pl022 *pl022)
{
	return 0;
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
static inline int pl022_dma_probe(struct pl022 *pl022)
{
	return 0;
}

static inline void pl022_dma_remove(struct pl022 *pl022)
{
}
#endif

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/**
 * pl022_interrupt_handler - Interrupt handler for SSP controller
 *
 * This function handles interrupts generated for an interrupt based transfer.
 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
 * current message's state as STATE_ERROR and schedule the tasklet
 * pump_transfers which will do the postprocessing of the current message by
 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
 * more data, and writes data in TX FIFO till it is not full. If we complete
 * the transfer we move to the next transfer and schedule the tasklet.
 */
static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
{
	struct pl022 *pl022 = dev_id;
	struct spi_message *msg = pl022->cur_msg;
	u16 irq_status = 0;
	u16 flag = 0;

	if (unlikely(!msg)) {
		dev_err(&pl022->adev->dev,
			"bad message state in interrupt handler");
		/* Never fail */
		return IRQ_HANDLED;
	}

	/* Read the Interrupt Status Register */
	irq_status = readw(SSP_MIS(pl022->virtbase));

	if (unlikely(!irq_status))
		return IRQ_NONE;

1240 1241 1242 1243 1244
	/*
	 * This handles the FIFO interrupts, the timeout
	 * interrupts are flatly ignored, they cannot be
	 * trusted.
	 */
1245 1246 1247 1248 1249
	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
		/*
		 * Overrun interrupt - bail out since our Data has been
		 * corrupted
		 */
1250
		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
			dev_err(&pl022->adev->dev,
				"RXFIFO is full\n");
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
			dev_err(&pl022->adev->dev,
				"TXFIFO is full\n");

		/*
		 * Disable and clear interrupts, disable SSP,
		 * mark message with bad status so it can be
		 * retried.
		 */
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		writew((readw(SSP_CR1(pl022->virtbase)) &
			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
		msg->state = STATE_ERROR;

		/* Schedule message queue handler */
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	readwriter(pl022);

	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
		flag = 1;
1279 1280 1281
		/* Disable Transmit interrupt, enable receive interrupt */
		writew((readw(SSP_IMSC(pl022->virtbase)) &
		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		       SSP_IMSC(pl022->virtbase));
	}

	/*
	 * Since all transactions must write as much as shall be read,
	 * we can conclude the entire transaction once RX is complete.
	 * At this point, all TX will always be finished.
	 */
	if (pl022->rx >= pl022->rx_end) {
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		if (unlikely(pl022->rx > pl022->rx_end)) {
			dev_warn(&pl022->adev->dev, "read %u surplus "
				 "bytes (did you request an odd "
				 "number of bytes on a 16bit bus?)\n",
				 (u32) (pl022->rx - pl022->rx_end));
		}
L
Lucas De Marchi 已提交
1300
		/* Update total bytes transferred */
1301 1302
		msg->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
1303
			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		/* Move to next transfer */
		msg->state = next_transfer(pl022);
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	return IRQ_HANDLED;
}

/**
 * This sets up the pointers to memory for the next message to
 * send out on the SPI bus.
 */
static int set_up_next_transfer(struct pl022 *pl022,
				struct spi_transfer *transfer)
{
	int residue;

	/* Sanity check the message for this bus width */
	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
	if (unlikely(residue != 0)) {
		dev_err(&pl022->adev->dev,
			"message of %u bytes to transmit but the current "
			"chip bus has a data width of %u bytes!\n",
			pl022->cur_transfer->len,
			pl022->cur_chip->n_bytes);
		dev_err(&pl022->adev->dev, "skipping this message\n");
		return -EIO;
	}
	pl022->tx = (void *)transfer->tx_buf;
	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
	pl022->rx = (void *)transfer->rx_buf;
	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
	pl022->write =
	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
	return 0;
}

/**
1344 1345
 * pump_transfers - Tasklet function which schedules next transfer
 * when running in interrupt or DMA transfer mode.
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
 * @data: SSP driver private data structure
 *
 */
static void pump_transfers(unsigned long data)
{
	struct pl022 *pl022 = (struct pl022 *) data;
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;

	/* Get current state information */
	message = pl022->cur_msg;
	transfer = pl022->cur_transfer;

	/* Handle for abort */
	if (message->state == STATE_ERROR) {
		message->status = -EIO;
		giveback(pl022);
		return;
	}

	/* Handle end of message */
	if (message->state == STATE_DONE) {
		message->status = 0;
		giveback(pl022);
		return;
	}

	/* Delay if requested at end of transfer before CS change */
	if (message->state == STATE_RUNNING) {
		previous = list_entry(transfer->transfer_list.prev,
					struct spi_transfer,
					transfer_list);
		if (previous->delay_usecs)
			/*
			 * FIXME: This runs in interrupt context.
			 * Is this really smart?
			 */
			udelay(previous->delay_usecs);

1386
		/* Reselect chip select only if cs_change was requested */
1387
		if (previous->cs_change)
1388
			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	} else {
		/* STATE_START */
		message->state = STATE_RUNNING;
	}

	if (set_up_next_transfer(pl022, transfer)) {
		message->state = STATE_ERROR;
		message->status = -EIO;
		giveback(pl022);
		return;
	}
	/* Flush the FIFOs and let's go! */
	flush(pl022);

1403 1404 1405 1406 1407 1408
	if (pl022->cur_chip->enable_dma) {
		if (configure_dma(pl022)) {
			dev_dbg(&pl022->adev->dev,
				"configuration of DMA failed, fall back to interrupt mode\n");
			goto err_config_dma;
		}
1409 1410 1411
		return;
	}

1412
err_config_dma:
1413 1414
	/* enable all interrupts except RX */
	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1415 1416
}

1417
static void do_interrupt_dma_transfer(struct pl022 *pl022)
1418
{
1419 1420 1421 1422 1423
	/*
	 * Default is to enable all interrupts except RX -
	 * this will be enabled once TX is complete
	 */
	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1424

1425 1426
	/* Enable target chip, if not already active */
	if (!pl022->next_msg_cs_active)
1427
		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1428 1429 1430 1431 1432 1433 1434 1435

	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
		/* Error path */
		pl022->cur_msg->state = STATE_ERROR;
		pl022->cur_msg->status = -EIO;
		giveback(pl022);
		return;
	}
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	/* If we're using DMA, set up DMA here */
	if (pl022->cur_chip->enable_dma) {
		/* Configure DMA transfer */
		if (configure_dma(pl022)) {
			dev_dbg(&pl022->adev->dev,
				"configuration of DMA failed, fall back to interrupt mode\n");
			goto err_config_dma;
		}
		/* Disable interrupts in DMA mode, IRQ from DMA controller */
		irqflags = DISABLE_ALL_INTERRUPTS;
	}
err_config_dma:
1448 1449 1450
	/* Enable SSP, turn on interrupts */
	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
	       SSP_CR1(pl022->virtbase));
1451
	writew(irqflags, SSP_IMSC(pl022->virtbase));
1452 1453
}

1454
static void do_polling_transfer(struct pl022 *pl022)
1455 1456 1457 1458 1459
{
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;
	struct chip_data *chip;
1460
	unsigned long time, timeout;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	chip = pl022->cur_chip;
	message = pl022->cur_msg;

	while (message->state != STATE_DONE) {
		/* Handle for abort */
		if (message->state == STATE_ERROR)
			break;
		transfer = pl022->cur_transfer;

		/* Delay if requested at end of transfer */
		if (message->state == STATE_RUNNING) {
			previous =
			    list_entry(transfer->transfer_list.prev,
				       struct spi_transfer, transfer_list);
			if (previous->delay_usecs)
				udelay(previous->delay_usecs);
			if (previous->cs_change)
1479
				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1480 1481 1482
		} else {
			/* STATE_START */
			message->state = STATE_RUNNING;
1483
			if (!pl022->next_msg_cs_active)
1484
				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		}

		/* Configuration Changing Per Transfer */
		if (set_up_next_transfer(pl022, transfer)) {
			/* Error path */
			message->state = STATE_ERROR;
			break;
		}
		/* Flush FIFOs and enable SSP */
		flush(pl022);
		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
		       SSP_CR1(pl022->virtbase));

1498
		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1499 1500 1501 1502

		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
			time = jiffies;
1503
			readwriter(pl022);
1504 1505 1506 1507 1508 1509
			if (time_after(time, timeout)) {
				dev_warn(&pl022->adev->dev,
				"%s: timeout!\n", __func__);
				message->state = STATE_ERROR;
				goto out;
			}
1510
			cpu_relax();
1511
		}
1512

L
Lucas De Marchi 已提交
1513
		/* Update total byte transferred */
1514 1515
		message->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
1516
			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1517 1518 1519
		/* Move to next transfer */
		message->state = next_transfer(pl022);
	}
1520
out:
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	/* Handle end of message */
	if (message->state == STATE_DONE)
		message->status = 0;
	else
		message->status = -EIO;

	giveback(pl022);
	return;
}

1531 1532
static int pl022_transfer_one_message(struct spi_master *master,
				      struct spi_message *msg)
1533
{
1534
	struct pl022 *pl022 = spi_master_get_devdata(master);
1535 1536

	/* Initial message state */
1537 1538 1539 1540 1541
	pl022->cur_msg = msg;
	msg->state = STATE_START;

	pl022->cur_transfer = list_entry(msg->transfers.next,
					 struct spi_transfer, transfer_list);
1542 1543

	/* Setup the SPI using the per chip configuration */
1544
	pl022->cur_chip = spi_get_ctldata(msg->spi);
1545
	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1546

1547 1548 1549 1550 1551 1552
	restore_state(pl022);
	flush(pl022);

	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
		do_polling_transfer(pl022);
	else
1553
		do_interrupt_dma_transfer(pl022);
1554 1555 1556 1557

	return 0;
}

1558
static int pl022_prepare_transfer_hardware(struct spi_master *master)
1559
{
1560
	struct pl022 *pl022 = spi_master_get_devdata(master);
1561

1562 1563 1564 1565 1566
	/*
	 * Just make sure we have all we need to run the transfer by syncing
	 * with the runtime PM framework.
	 */
	pm_runtime_get_sync(&pl022->adev->dev);
1567 1568 1569
	return 0;
}

1570
static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1571
{
1572
	struct pl022 *pl022 = spi_master_get_devdata(master);
1573

1574 1575 1576
	/* nothing more to do - disable spi/ssp and power off */
	writew((readw(SSP_CR1(pl022->virtbase)) &
		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1577

1578 1579 1580 1581 1582
	if (pl022->master_info->autosuspend_delay > 0) {
		pm_runtime_mark_last_busy(&pl022->adev->dev);
		pm_runtime_put_autosuspend(&pl022->adev->dev);
	} else {
		pm_runtime_put(&pl022->adev->dev);
1583 1584 1585 1586 1587 1588
	}

	return 0;
}

static int verify_controller_parameters(struct pl022 *pl022,
1589
				struct pl022_config_chip const *chip_info)
1590 1591 1592
{
	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1593
		dev_err(&pl022->adev->dev,
1594 1595 1596 1597 1598
			"interface is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
	    (!pl022->vendor->unidir)) {
1599
		dev_err(&pl022->adev->dev,
1600 1601 1602 1603 1604 1605
			"unidirectional mode not supported in this "
			"hardware version\n");
		return -EINVAL;
	}
	if ((chip_info->hierarchy != SSP_MASTER)
	    && (chip_info->hierarchy != SSP_SLAVE)) {
1606
		dev_err(&pl022->adev->dev,
1607 1608 1609 1610 1611 1612
			"hierarchy is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
	    && (chip_info->com_mode != DMA_TRANSFER)
	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1613
		dev_err(&pl022->adev->dev,
1614 1615 1616
			"Communication mode is configured incorrectly\n");
		return -EINVAL;
	}
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	switch (chip_info->rx_lev_trig) {
	case SSP_RX_1_OR_MORE_ELEM:
	case SSP_RX_4_OR_MORE_ELEM:
	case SSP_RX_8_OR_MORE_ELEM:
		/* These are always OK, all variants can handle this */
		break;
	case SSP_RX_16_OR_MORE_ELEM:
		if (pl022->vendor->fifodepth < 16) {
			dev_err(&pl022->adev->dev,
			"RX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	case SSP_RX_32_OR_MORE_ELEM:
		if (pl022->vendor->fifodepth < 32) {
			dev_err(&pl022->adev->dev,
			"RX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	default:
1638
		dev_err(&pl022->adev->dev,
1639 1640
			"RX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
1641
		break;
1642
	}
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	switch (chip_info->tx_lev_trig) {
	case SSP_TX_1_OR_MORE_EMPTY_LOC:
	case SSP_TX_4_OR_MORE_EMPTY_LOC:
	case SSP_TX_8_OR_MORE_EMPTY_LOC:
		/* These are always OK, all variants can handle this */
		break;
	case SSP_TX_16_OR_MORE_EMPTY_LOC:
		if (pl022->vendor->fifodepth < 16) {
			dev_err(&pl022->adev->dev,
			"TX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	case SSP_TX_32_OR_MORE_EMPTY_LOC:
		if (pl022->vendor->fifodepth < 32) {
			dev_err(&pl022->adev->dev,
			"TX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	default:
1664
		dev_err(&pl022->adev->dev,
1665 1666
			"TX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
1667
		break;
1668 1669 1670 1671
	}
	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
		if ((chip_info->ctrl_len < SSP_BITS_4)
		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1672
			dev_err(&pl022->adev->dev,
1673 1674 1675 1676 1677
				"CTRL LEN is configured incorrectly\n");
			return -EINVAL;
		}
		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1678
			dev_err(&pl022->adev->dev,
1679 1680 1681
				"Wait State is configured incorrectly\n");
			return -EINVAL;
		}
1682 1683 1684 1685 1686
		/* Half duplex is only available in the ST Micro version */
		if (pl022->vendor->extended_cr) {
			if ((chip_info->duplex !=
			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
			    && (chip_info->duplex !=
1687
				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1688
				dev_err(&pl022->adev->dev,
1689 1690
					"Microwire duplex mode is configured incorrectly\n");
				return -EINVAL;
1691
			}
1692 1693
		} else {
			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1694
				dev_err(&pl022->adev->dev,
1695 1696 1697
					"Microwire half duplex mode requested,"
					" but this is only available in the"
					" ST version of PL022\n");
1698 1699 1700 1701 1702 1703
			return -EINVAL;
		}
	}
	return 0;
}

1704 1705 1706 1707 1708 1709 1710
static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
{
	return rate / (cpsdvsr * (1 + scr));
}

static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
				    ssp_clock_params * clk_freq)
1711 1712
{
	/* Lets calculate the frequency parameters */
1713 1714 1715
	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
		best_scr = 0, tmp, found = 0;
1716 1717 1718

	rate = clk_get_rate(pl022->clk);
	/* cpsdvscr = 2 & scr 0 */
1719
	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1720
	/* cpsdvsr = 254 & scr = 255 */
1721 1722
	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);

1723 1724 1725 1726 1727 1728
	if (freq > max_tclk)
		dev_warn(&pl022->adev->dev,
			"Max speed that can be programmed is %d Hz, you requested %d\n",
			max_tclk, freq);

	if (freq < min_tclk) {
1729
		dev_err(&pl022->adev->dev,
1730 1731
			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
			freq, min_tclk);
1732 1733
		return -EINVAL;
	}
1734 1735 1736 1737 1738 1739 1740 1741 1742

	/*
	 * best_freq will give closest possible available rate (<= requested
	 * freq) for all values of scr & cpsdvsr.
	 */
	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
		while (scr <= SCR_MAX) {
			tmp = spi_rate(rate, cpsdvsr, scr);

1743 1744
			if (tmp > freq) {
				/* we need lower freq */
1745
				scr++;
1746 1747 1748
				continue;
			}

1749
			/*
1750 1751
			 * If found exact value, mark found and break.
			 * If found more closer value, update and break.
1752
			 */
1753
			if (tmp > best_freq) {
1754 1755 1756 1757 1758
				best_freq = tmp;
				best_cpsdvsr = cpsdvsr;
				best_scr = scr;

				if (tmp == freq)
1759
					found = 1;
1760
			}
1761 1762 1763 1764 1765
			/*
			 * increased scr will give lower rates, which are not
			 * required
			 */
			break;
1766 1767 1768 1769 1770
		}
		cpsdvsr += 2;
		scr = SCR_MIN;
	}

1771 1772 1773
	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
			freq);

1774 1775 1776 1777 1778 1779 1780 1781
	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
	clk_freq->scr = (u8) (best_scr & 0xFF);
	dev_dbg(&pl022->adev->dev,
		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
		freq, best_freq);
	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
		clk_freq->cpsdvsr, clk_freq->scr);

1782 1783 1784
	return 0;
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
/*
 * A piece of default chip info unless the platform
 * supplies it.
 */
static const struct pl022_config_chip pl022_default_chip_info = {
	.com_mode = POLLING_TRANSFER,
	.iface = SSP_INTERFACE_MOTOROLA_SPI,
	.hierarchy = SSP_SLAVE,
	.slave_tx_disable = DO_NOT_DRIVE_TX,
	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
	.ctrl_len = SSP_BITS_8,
	.wait_state = SSP_MWIRE_WAIT_ZERO,
	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
	.cs_control = null_cs_control,
};

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
/**
 * pl022_setup - setup function registered to SPI master framework
 * @spi: spi device which is requesting setup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. If it is the first time when setup is called by this device,
 * this function will initialize the runtime state for this chip and save
 * the same in the device structure. Else it will update the runtime info
 * with the updated chip info. Nothing is really being written to the
 * controller hardware here, that is not done until the actual transfer
 * commence.
 */
static int pl022_setup(struct spi_device *spi)
{
1816
	struct pl022_config_chip const *chip_info;
1817
	struct pl022_config_chip chip_info_dt;
1818
	struct chip_data *chip;
J
Jonas Aaberg 已提交
1819
	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1820 1821
	int status = 0;
	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1822 1823
	unsigned int bits = spi->bits_per_word;
	u32 tmp;
1824
	struct device_node *np = spi->dev.of_node;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

	if (!spi->max_speed_hz)
		return -EINVAL;

	/* Get controller_state if one is supplied */
	chip = spi_get_ctldata(spi);

	if (chip == NULL) {
		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
		if (!chip) {
			dev_err(&spi->dev,
				"cannot allocate controller state\n");
			return -ENOMEM;
		}
		dev_dbg(&spi->dev,
			"allocated memory for controller's runtime state\n");
	}

	/* Get controller data if one is supplied */
	chip_info = spi->controller_data;

	if (chip_info == NULL) {
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		if (np) {
			chip_info_dt = pl022_default_chip_info;

			chip_info_dt.hierarchy = SSP_MASTER;
			of_property_read_u32(np, "pl022,interface",
				&chip_info_dt.iface);
			of_property_read_u32(np, "pl022,com-mode",
				&chip_info_dt.com_mode);
			of_property_read_u32(np, "pl022,rx-level-trig",
				&chip_info_dt.rx_lev_trig);
			of_property_read_u32(np, "pl022,tx-level-trig",
				&chip_info_dt.tx_lev_trig);
			of_property_read_u32(np, "pl022,ctrl-len",
				&chip_info_dt.ctrl_len);
			of_property_read_u32(np, "pl022,wait-state",
				&chip_info_dt.wait_state);
			of_property_read_u32(np, "pl022,duplex",
				&chip_info_dt.duplex);

			chip_info = &chip_info_dt;
		} else {
			chip_info = &pl022_default_chip_info;
			/* spi_board_info.controller_data not is supplied */
			dev_dbg(&spi->dev,
				"using default controller_data settings\n");
		}
1873
	} else
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		dev_dbg(&spi->dev,
			"using user supplied controller_data settings\n");

	/*
	 * We can override with custom divisors, else we use the board
	 * frequency setting
	 */
	if ((0 == chip_info->clk_freq.cpsdvsr)
	    && (0 == chip_info->clk_freq.scr)) {
		status = calculate_effective_freq(pl022,
						  spi->max_speed_hz,
1885
						  &clk_freq);
1886 1887 1888
		if (status < 0)
			goto err_config_params;
	} else {
1889 1890 1891 1892
		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
		if ((clk_freq.cpsdvsr % 2) != 0)
			clk_freq.cpsdvsr =
				clk_freq.cpsdvsr - 1;
1893
	}
1894 1895
	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1896
		status = -EINVAL;
1897 1898 1899 1900 1901
		dev_err(&spi->dev,
			"cpsdvsr is configured incorrectly\n");
		goto err_config_params;
	}

1902 1903 1904 1905 1906
	status = verify_controller_parameters(pl022, chip_info);
	if (status) {
		dev_err(&spi->dev, "controller data is incorrect");
		goto err_config_params;
	}
1907

1908 1909 1910
	pl022->rx_lev_trig = chip_info->rx_lev_trig;
	pl022->tx_lev_trig = chip_info->tx_lev_trig;

1911 1912
	/* Now set controller state based on controller data */
	chip->xfer_type = chip_info->com_mode;
1913 1914
	if (!chip_info->cs_control) {
		chip->cs_control = null_cs_control;
1915 1916 1917
		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
			dev_warn(&spi->dev,
				 "invalid chip select\n");
1918 1919
	} else
		chip->cs_control = chip_info->cs_control;
1920

1921 1922
	/* Check bits per word with vendor specific range */
	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1923
		status = -ENOTSUPP;
1924 1925 1926
		dev_err(&spi->dev, "illegal data size for this controller!\n");
		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
				pl022->vendor->max_bpw);
1927 1928 1929
		goto err_config_params;
	} else if (bits <= 8) {
		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1930 1931 1932
		chip->n_bytes = 1;
		chip->read = READING_U8;
		chip->write = WRITING_U8;
1933
	} else if (bits <= 16) {
1934 1935 1936 1937 1938
		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
		chip->n_bytes = 2;
		chip->read = READING_U16;
		chip->write = WRITING_U16;
	} else {
1939 1940 1941 1942
		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
		chip->n_bytes = 4;
		chip->read = READING_U32;
		chip->write = WRITING_U32;
1943 1944 1945 1946 1947 1948 1949 1950 1951
	}

	/* Now Initialize all register settings required for this chip */
	chip->cr0 = 0;
	chip->cr1 = 0;
	chip->dmacr = 0;
	chip->cpsr = 0;
	if ((chip_info->com_mode == DMA_TRANSFER)
	    && ((pl022->master_info)->enable_dma)) {
1952
		chip->enable_dma = true;
1953 1954 1955 1956 1957 1958
		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	} else {
1959
		chip->enable_dma = false;
1960 1961 1962 1963 1964 1965 1966
		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	}

1967
	chip->cpsr = clk_freq.cpsdvsr;
1968

1969 1970
	/* Special setup for the ST micro extended control registers */
	if (pl022->vendor->extended_cr) {
1971 1972
		u32 etx;

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
		if (pl022->vendor->pl023) {
			/* These bits are only in the PL023 */
			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
		} else {
			/* These bits are in the PL022 but not PL023 */
			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
				       SSP_CR0_MASK_HALFDUP_ST, 5);
			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
				       SSP_CR0_MASK_CSS_ST, 16);
			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
				       SSP_CR0_MASK_FRF_ST, 21);
			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
				       SSP_CR1_MASK_MWAIT_ST, 6);
		}
1988
		SSP_WRITE_BITS(chip->cr0, bits - 1,
1989
			       SSP_CR0_MASK_DSS_ST, 0);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

		if (spi->mode & SPI_LSB_FIRST) {
			tmp = SSP_RX_LSB;
			etx = SSP_TX_LSB;
		} else {
			tmp = SSP_RX_MSB;
			etx = SSP_TX_MSB;
		}
		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2000 2001 2002 2003 2004
		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
	} else {
2005
		SSP_WRITE_BITS(chip->cr0, bits - 1,
2006 2007 2008 2009
			       SSP_CR0_MASK_DSS, 0);
		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
			       SSP_CR0_MASK_FRF, 4);
	}
2010

2011
	/* Stuff that is common for all versions */
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	if (spi->mode & SPI_CPOL)
		tmp = SSP_CLK_POL_IDLE_HIGH;
	else
		tmp = SSP_CLK_POL_IDLE_LOW;
	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);

	if (spi->mode & SPI_CPHA)
		tmp = SSP_CLK_SECOND_EDGE;
	else
		tmp = SSP_CLK_FIRST_EDGE;
	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);

2024
	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2025
	/* Loopback is available on all versions except PL023 */
2026
	if (pl022->vendor->loopback) {
2027 2028 2029 2030 2031 2032
		if (spi->mode & SPI_LOOP)
			tmp = LOOPBACK_ENABLED;
		else
			tmp = LOOPBACK_DISABLED;
		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
	}
2033 2034
	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2035 2036
	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
		3);
2037 2038 2039 2040 2041

	/* Save controller_state */
	spi_set_ctldata(spi, chip);
	return status;
 err_config_params:
2042
	spi_set_ctldata(spi, NULL);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	kfree(chip);
	return status;
}

/**
 * pl022_cleanup - cleanup function registered to SPI master framework
 * @spi: spi device which is requesting cleanup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. It will free the runtime state of chip.
 */
static void pl022_cleanup(struct spi_device *spi)
{
	struct chip_data *chip = spi_get_ctldata(spi);

	spi_set_ctldata(spi, NULL);
	kfree(chip);
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static struct pl022_ssp_controller *
pl022_platform_data_dt_get(struct device *dev)
{
	struct device_node *np = dev->of_node;
	struct pl022_ssp_controller *pd;
	u32 tmp;

	if (!np) {
		dev_err(dev, "no dt node defined\n");
		return NULL;
	}

	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
	if (!pd) {
		dev_err(dev, "cannot allocate platform data memory\n");
		return NULL;
	}

	pd->bus_id = -1;
2081
	pd->enable_dma = 1;
2082 2083 2084 2085 2086 2087 2088 2089 2090
	of_property_read_u32(np, "num-cs", &tmp);
	pd->num_chipselect = tmp;
	of_property_read_u32(np, "pl022,autosuspend-delay",
			     &pd->autosuspend_delay);
	pd->rt = of_property_read_bool(np, "pl022,rt");

	return pd;
}

2091
static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2092 2093 2094 2095 2096
{
	struct device *dev = &adev->dev;
	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
	struct spi_master *master;
	struct pl022 *pl022 = NULL;	/*Data for this driver */
2097 2098
	struct device_node *np = adev->dev.of_node;
	int status = 0, i, num_cs;
2099 2100 2101

	dev_info(&adev->dev,
		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2102 2103 2104 2105 2106
	if (!platform_info && IS_ENABLED(CONFIG_OF))
		platform_info = pl022_platform_data_dt_get(dev);

	if (!platform_info) {
		dev_err(dev, "probe: no platform data defined\n");
2107
		return -ENODEV;
2108 2109
	}

2110 2111 2112
	if (platform_info->num_chipselect) {
		num_cs = platform_info->num_chipselect;
	} else {
2113
		dev_err(dev, "probe: no chip select defined\n");
2114
		return -ENODEV;
2115 2116
	}

2117
	/* Allocate master with space for data */
2118
	master = spi_alloc_master(dev, sizeof(struct pl022));
2119 2120
	if (master == NULL) {
		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2121
		return -ENOMEM;
2122 2123 2124 2125 2126 2127 2128
	}

	pl022 = spi_master_get_devdata(master);
	pl022->master = master;
	pl022->master_info = platform_info;
	pl022->adev = adev;
	pl022->vendor = id->data;
2129 2130
	pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
					  GFP_KERNEL);
2131

2132
	pinctrl_pm_select_default_state(dev);
2133

2134 2135 2136 2137 2138
	/*
	 * Bus Number Which has been Assigned to this SSP controller
	 * on this board
	 */
	master->bus_num = platform_info->bus_id;
2139
	master->num_chipselect = num_cs;
2140 2141
	master->cleanup = pl022_cleanup;
	master->setup = pl022_setup;
2142 2143 2144 2145
	master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
	master->transfer_one_message = pl022_transfer_one_message;
	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
	master->rt = platform_info->rt;
2146
	master->dev.of_node = dev->of_node;
2147

2148 2149
	if (platform_info->num_chipselect && platform_info->chipselects) {
		for (i = 0; i < num_cs; i++)
2150
			pl022->chipselects[i] = platform_info->chipselects[i];
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	} else if (IS_ENABLED(CONFIG_OF)) {
		for (i = 0; i < num_cs; i++) {
			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);

			if (cs_gpio == -EPROBE_DEFER) {
				status = -EPROBE_DEFER;
				goto err_no_gpio;
			}

			pl022->chipselects[i] = cs_gpio;

			if (gpio_is_valid(cs_gpio)) {
2163
				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
					dev_err(&adev->dev,
						"could not request %d gpio\n",
						cs_gpio);
				else if (gpio_direction_output(cs_gpio, 1))
					dev_err(&adev->dev,
						"could set gpio %d as output\n",
						cs_gpio);
			}
		}
	}
2174

2175 2176 2177 2178 2179 2180 2181 2182
	/*
	 * Supports mode 0-3, loopback, and active low CS. Transfers are
	 * always MS bit first on the original pl022.
	 */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
	if (pl022->vendor->extended_cr)
		master->mode_bits |= SPI_LSB_FIRST;

2183 2184 2185 2186 2187 2188
	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);

	status = amba_request_regions(adev, NULL);
	if (status)
		goto err_no_ioregion;

2189
	pl022->phybase = adev->res.start;
2190 2191
	pl022->virtbase = devm_ioremap(dev, adev->res.start,
				       resource_size(&adev->res));
2192 2193 2194 2195 2196 2197 2198
	if (pl022->virtbase == NULL) {
		status = -ENOMEM;
		goto err_no_ioremap;
	}
	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
	       adev->res.start, pl022->virtbase);

2199
	pl022->clk = devm_clk_get(&adev->dev, NULL);
2200 2201 2202 2203 2204
	if (IS_ERR(pl022->clk)) {
		status = PTR_ERR(pl022->clk);
		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
		goto err_no_clk;
	}
2205 2206 2207 2208 2209 2210 2211

	status = clk_prepare(pl022->clk);
	if (status) {
		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
		goto  err_clk_prep;
	}

2212 2213 2214 2215 2216 2217
	status = clk_enable(pl022->clk);
	if (status) {
		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
		goto err_no_clk_en;
	}

2218 2219 2220 2221
	/* Initialize transfer pump */
	tasklet_init(&pl022->pump_transfers, pump_transfers,
		     (unsigned long)pl022);

2222 2223 2224 2225 2226
	/* Disable SSP */
	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
	       SSP_CR1(pl022->virtbase));
	load_ssp_default_config(pl022);

2227 2228
	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
				  0, "pl022", pl022);
2229 2230 2231 2232
	if (status < 0) {
		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
		goto err_no_irq;
	}
2233

2234 2235 2236 2237 2238 2239 2240
	/* Get DMA channels, try autoconfiguration first */
	status = pl022_dma_autoprobe(pl022);

	/* If that failed, use channels from platform_info */
	if (status == 0)
		platform_info->enable_dma = 1;
	else if (platform_info->enable_dma) {
2241 2242
		status = pl022_dma_probe(pl022);
		if (status != 0)
2243
			platform_info->enable_dma = 0;
2244 2245
	}

2246 2247 2248 2249 2250 2251 2252 2253
	/* Register with the SPI framework */
	amba_set_drvdata(adev, pl022);
	status = spi_register_master(master);
	if (status != 0) {
		dev_err(&adev->dev,
			"probe - problem registering spi master\n");
		goto err_spi_register;
	}
L
Lucas De Marchi 已提交
2254
	dev_dbg(dev, "probe succeeded\n");
2255 2256

	/* let runtime pm put suspend */
2257 2258 2259 2260 2261 2262 2263 2264
	if (platform_info->autosuspend_delay > 0) {
		dev_info(&adev->dev,
			"will use autosuspend for runtime pm, delay %dms\n",
			platform_info->autosuspend_delay);
		pm_runtime_set_autosuspend_delay(dev,
			platform_info->autosuspend_delay);
		pm_runtime_use_autosuspend(dev);
	}
2265 2266
	pm_runtime_put(dev);

2267 2268 2269
	return 0;

 err_spi_register:
2270 2271
	if (platform_info->enable_dma)
		pl022_dma_remove(pl022);
2272
 err_no_irq:
2273 2274
	clk_disable(pl022->clk);
 err_no_clk_en:
2275 2276
	clk_unprepare(pl022->clk);
 err_clk_prep:
2277 2278 2279 2280
 err_no_clk:
 err_no_ioremap:
	amba_release_regions(adev);
 err_no_ioregion:
2281
 err_no_gpio:
2282 2283 2284 2285
	spi_master_put(master);
	return status;
}

2286
static int
2287 2288 2289
pl022_remove(struct amba_device *adev)
{
	struct pl022 *pl022 = amba_get_drvdata(adev);
2290

2291 2292 2293
	if (!pl022)
		return 0;

2294 2295 2296 2297 2298 2299
	/*
	 * undo pm_runtime_put() in probe.  I assume that we're not
	 * accessing the primecell here.
	 */
	pm_runtime_get_noresume(&adev->dev);

2300
	load_ssp_default_config(pl022);
2301 2302 2303
	if (pl022->master_info->enable_dma)
		pl022_dma_remove(pl022);

2304
	clk_disable(pl022->clk);
2305
	clk_unprepare(pl022->clk);
2306 2307 2308 2309 2310 2311 2312
	amba_release_regions(adev);
	tasklet_disable(&pl022->pump_transfers);
	spi_unregister_master(pl022->master);
	amba_set_drvdata(adev, NULL);
	return 0;
}

2313 2314 2315 2316 2317 2318
#if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME)
/*
 * These two functions are used from both suspend/resume and
 * the runtime counterparts to handle external resources like
 * clocks, pins and regulators when going to sleep.
 */
2319
static void pl022_suspend_resources(struct pl022 *pl022, bool runtime)
2320 2321 2322
{
	clk_disable(pl022->clk);

2323 2324 2325 2326
	if (runtime)
		pinctrl_pm_select_idle_state(&pl022->adev->dev);
	else
		pinctrl_pm_select_sleep_state(&pl022->adev->dev);
2327 2328
}

2329
static void pl022_resume_resources(struct pl022 *pl022, bool runtime)
2330
{
2331
	/* First go to the default state */
2332 2333
	pinctrl_pm_select_default_state(&pl022->adev->dev);
	if (!runtime)
2334
		/* Then let's idle the pins until the next transfer happens */
2335
		pinctrl_pm_select_idle_state(&pl022->adev->dev);
2336

2337 2338 2339 2340
	clk_enable(pl022->clk);
}
#endif

2341
#ifdef CONFIG_SUSPEND
2342
static int pl022_suspend(struct device *dev)
2343
{
2344
	struct pl022 *pl022 = dev_get_drvdata(dev);
2345
	int ret;
2346

2347 2348 2349 2350
	ret = spi_master_suspend(pl022->master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
2351
	}
2352 2353

	pm_runtime_get_sync(dev);
2354
	pl022_suspend_resources(pl022, false);
2355

2356
	dev_dbg(dev, "suspended\n");
2357 2358 2359
	return 0;
}

2360
static int pl022_resume(struct device *dev)
2361
{
2362
	struct pl022 *pl022 = dev_get_drvdata(dev);
2363
	int ret;
2364

2365
	pl022_resume_resources(pl022, false);
2366
	pm_runtime_put(dev);
2367

2368
	/* Start the queue running */
2369 2370 2371
	ret = spi_master_resume(pl022->master);
	if (ret)
		dev_err(dev, "problem starting queue (%d)\n", ret);
2372
	else
2373
		dev_dbg(dev, "resumed\n");
2374

2375
	return ret;
2376 2377 2378
}
#endif	/* CONFIG_PM */

2379 2380 2381 2382
#ifdef CONFIG_PM_RUNTIME
static int pl022_runtime_suspend(struct device *dev)
{
	struct pl022 *pl022 = dev_get_drvdata(dev);
2383

2384
	pl022_suspend_resources(pl022, true);
2385 2386 2387 2388 2389 2390 2391
	return 0;
}

static int pl022_runtime_resume(struct device *dev)
{
	struct pl022 *pl022 = dev_get_drvdata(dev);

2392
	pl022_resume_resources(pl022, true);
2393 2394 2395 2396 2397 2398 2399 2400 2401
	return 0;
}
#endif

static const struct dev_pm_ops pl022_dev_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
};

2402 2403 2404 2405
static struct vendor_data vendor_arm = {
	.fifodepth = 8,
	.max_bpw = 16,
	.unidir = false,
2406
	.extended_cr = false,
2407
	.pl023 = false,
2408
	.loopback = true,
2409 2410 2411 2412 2413 2414
};

static struct vendor_data vendor_st = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
2415
	.extended_cr = true,
2416
	.pl023 = false,
2417
	.loopback = true,
2418 2419 2420 2421 2422 2423 2424 2425
};

static struct vendor_data vendor_st_pl023 = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
	.extended_cr = true,
	.pl023 = true,
2426 2427 2428
	.loopback = false,
};

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
static struct amba_id pl022_ids[] = {
	{
		/*
		 * ARM PL022 variant, this has a 16bit wide
		 * and 8 locations deep TX/RX FIFO
		 */
		.id	= 0x00041022,
		.mask	= 0x000fffff,
		.data	= &vendor_arm,
	},
	{
		/*
		 * ST Micro derivative, this has 32bit wide
		 * and 32 locations deep TX/RX FIFO
		 */
2444
		.id	= 0x01080022,
2445 2446 2447
		.mask	= 0xffffffff,
		.data	= &vendor_st,
	},
2448 2449 2450 2451 2452 2453 2454 2455
	{
		/*
		 * ST-Ericsson derivative "PL023" (this is not
		 * an official ARM number), this is a PL022 SSP block
		 * stripped to SPI mode only, it has 32bit wide
		 * and 32 locations deep TX/RX FIFO but no extended
		 * CR0/CR1 register
		 */
2456 2457 2458
		.id	= 0x00080023,
		.mask	= 0xffffffff,
		.data	= &vendor_st_pl023,
2459
	},
2460 2461 2462
	{ 0, 0 },
};

2463 2464
MODULE_DEVICE_TABLE(amba, pl022_ids);

2465 2466 2467
static struct amba_driver pl022_driver = {
	.drv = {
		.name	= "ssp-pl022",
2468
		.pm	= &pl022_dev_pm_ops,
2469 2470 2471
	},
	.id_table	= pl022_ids,
	.probe		= pl022_probe,
2472
	.remove		= pl022_remove,
2473 2474 2475 2476 2477 2478
};

static int __init pl022_init(void)
{
	return amba_driver_register(&pl022_driver);
}
2479
subsys_initcall(pl022_init);
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

static void __exit pl022_exit(void)
{
	amba_driver_unregister(&pl022_driver);
}
module_exit(pl022_exit);

MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
MODULE_DESCRIPTION("PL022 SSP Controller Driver");
MODULE_LICENSE("GPL");