spi-pl022.c 66.7 KB
Newer Older
1 2 3
/*
 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
 *
4
 * Copyright (C) 2008-2012 ST-Ericsson AB
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
 *
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * Initial version inspired by:
 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
 * Initial adoption to PL022 by:
 *      Sachin Verma <sachin.verma@st.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/amba/bus.h>
#include <linux/amba/pl022.h>
#include <linux/io.h>
38
#include <linux/slab.h>
39 40 41
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
R
Rabin Vincent 已提交
42
#include <linux/pm_runtime.h>
43
#include <linux/gpio.h>
44
#include <linux/of_gpio.h>
45
#include <linux/pinctrl/consumer.h>
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

/*
 * This macro is used to define some register default values.
 * reg is masked with mask, the OR:ed with an (again masked)
 * val shifted sb steps to the left.
 */
#define SSP_WRITE_BITS(reg, val, mask, sb) \
 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))

/*
 * This macro is also used to define some default values.
 * It will just shift val by sb steps to the left and mask
 * the result with mask.
 */
#define GEN_MASK_BITS(val, mask, sb) \
 (((val)<<(sb)) & (mask))

#define DRIVE_TX		0
#define DO_NOT_DRIVE_TX		1

#define DO_NOT_QUEUE_DMA	0
#define QUEUE_DMA		1

#define RX_TRANSFER		1
#define TX_TRANSFER		2

/*
 * Macros to access SSP Registers with their offsets
 */
#define SSP_CR0(r)	(r + 0x000)
#define SSP_CR1(r)	(r + 0x004)
#define SSP_DR(r)	(r + 0x008)
#define SSP_SR(r)	(r + 0x00C)
#define SSP_CPSR(r)	(r + 0x010)
#define SSP_IMSC(r)	(r + 0x014)
#define SSP_RIS(r)	(r + 0x018)
#define SSP_MIS(r)	(r + 0x01C)
#define SSP_ICR(r)	(r + 0x020)
#define SSP_DMACR(r)	(r + 0x024)
#define SSP_ITCR(r)	(r + 0x080)
#define SSP_ITIP(r)	(r + 0x084)
#define SSP_ITOP(r)	(r + 0x088)
#define SSP_TDR(r)	(r + 0x08C)

#define SSP_PID0(r)	(r + 0xFE0)
#define SSP_PID1(r)	(r + 0xFE4)
#define SSP_PID2(r)	(r + 0xFE8)
#define SSP_PID3(r)	(r + 0xFEC)

#define SSP_CID0(r)	(r + 0xFF0)
#define SSP_CID1(r)	(r + 0xFF4)
#define SSP_CID2(r)	(r + 0xFF8)
#define SSP_CID3(r)	(r + 0xFFC)

/*
 * SSP Control Register 0  - SSP_CR0
 */
103 104
#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
#define SSP_CR0_MASK_FRF	(0x3UL << 4)
105 106 107
#define SSP_CR0_MASK_SPO	(0x1UL << 6)
#define SSP_CR0_MASK_SPH	(0x1UL << 7)
#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
108 109 110 111 112 113 114 115 116 117

/*
 * The ST version of this block moves som bits
 * in SSP_CR0 and extends it to 32 bits
 */
#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)

118 119 120 121 122 123 124 125 126
/*
 * SSP Control Register 0  - SSP_CR1
 */
#define SSP_CR1_MASK_LBM	(0x1UL << 0)
#define SSP_CR1_MASK_SSE	(0x1UL << 1)
#define SSP_CR1_MASK_MS		(0x1UL << 2)
#define SSP_CR1_MASK_SOD	(0x1UL << 3)

/*
127 128
 * The ST version of this block adds some bits
 * in SSP_CR1
129
 */
130 131 132 133 134
#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
135 136
/* This one is only in the PL023 variant */
#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
137 138 139 140 141 142 143

/*
 * SSP Status Register - SSP_SR
 */
#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
144
#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */

/*
 * SSP Clock Prescale Register  - SSP_CPSR
 */
#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)

/*
 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 */
#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */

/*
 * SSP Raw Interrupt Status Register - SSP_RIS
 */
/* Receive Overrun Raw Interrupt status */
#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
/* Receive Timeout Raw Interrupt status */
#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
/* Receive FIFO Raw Interrupt status */
#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
/* Transmit FIFO Raw Interrupt status */
#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)

/*
 * SSP Masked Interrupt Status Register - SSP_MIS
 */
/* Receive Overrun Masked Interrupt status */
#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
/* Receive Timeout Masked Interrupt status */
#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
/* Receive FIFO Masked Interrupt status */
#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
/* Transmit FIFO Masked Interrupt status */
#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)

/*
 * SSP Interrupt Clear Register - SSP_ICR
 */
/* Receive Overrun Raw Clear Interrupt bit */
#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
/* Receive Timeout Clear Interrupt bit */
#define SSP_ICR_MASK_RTIC		(0x1UL << 1)

/*
 * SSP DMA Control Register - SSP_DMACR
 */
/* Receive DMA Enable bit */
#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
/* Transmit DMA Enable bit */
#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)

/*
 * SSP Integration Test control Register - SSP_ITCR
 */
#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)

/*
 * SSP Integration Test Input Register - SSP_ITIP
 */
#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)

/*
 * SSP Integration Test output Register - SSP_ITOP
 */
#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
#define ITOP_MASK_RORINTR		 (0x1UL << 5)
#define ITOP_MASK_RTINTR		 (0x1UL << 6)
#define ITOP_MASK_RXINTR		 (0x1UL << 7)
#define ITOP_MASK_TXINTR		 (0x1UL << 8)
#define ITOP_MASK_INTR			 (0x1UL << 9)
#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)

/*
 * SSP Test Data Register - SSP_TDR
 */
237
#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
238 239 240 241 242 243 244

/*
 * Message State
 * we use the spi_message.state (void *) pointer to
 * hold a single state value, that's why all this
 * (void *) casting is done here.
 */
245 246 247 248
#define STATE_START			((void *) 0)
#define STATE_RUNNING			((void *) 1)
#define STATE_DONE			((void *) 2)
#define STATE_ERROR			((void *) -1)
249 250 251 252

/*
 * SSP State - Whether Enabled or Disabled
 */
253 254
#define SSP_DISABLED			(0)
#define SSP_ENABLED			(1)
255 256 257 258

/*
 * SSP DMA State - Whether DMA Enabled or Disabled
 */
259 260
#define SSP_DMA_DISABLED		(0)
#define SSP_DMA_ENABLED			(1)
261 262 263 264

/*
 * SSP Clock Defaults
 */
265 266
#define SSP_DEFAULT_CLKRATE 0x2
#define SSP_DEFAULT_PRESCALE 0x40
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

/*
 * SSP Clock Parameter ranges
 */
#define CPSDVR_MIN 0x02
#define CPSDVR_MAX 0xFE
#define SCR_MIN 0x00
#define SCR_MAX 0xFF

/*
 * SSP Interrupt related Macros
 */
#define DEFAULT_SSP_REG_IMSC  0x0UL
#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)

#define CLEAR_ALL_INTERRUPTS  0x3

285 286
#define SPI_POLLING_TIMEOUT 1000

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/*
 * The type of reading going on on this chip
 */
enum ssp_reading {
	READING_NULL,
	READING_U8,
	READING_U16,
	READING_U32
};

/**
 * The type of writing going on on this chip
 */
enum ssp_writing {
	WRITING_NULL,
	WRITING_U8,
	WRITING_U16,
	WRITING_U32
};

/**
 * struct vendor_data - vendor-specific config parameters
 * for PL022 derivates
 * @fifodepth: depth of FIFOs (both)
 * @max_bpw: maximum number of bits per word
 * @unidir: supports unidirection transfers
313 314
 * @extended_cr: 32 bit wide control register 0 with extra
 * features and extra features in CR1 as found in the ST variants
315
 * @pl023: supports a subset of the ST extensions called "PL023"
316 317 318 319 320
 */
struct vendor_data {
	int fifodepth;
	int max_bpw;
	bool unidir;
321
	bool extended_cr;
322
	bool pl023;
323
	bool loopback;
324 325 326 327 328
};

/**
 * struct pl022 - This is the private SSP driver data structure
 * @adev: AMBA device model hookup
329 330 331 332
 * @vendor: vendor data for the IP block
 * @phybase: the physical memory where the SSP device resides
 * @virtbase: the virtual memory where the SSP is mapped
 * @clk: outgoing clock "SPICLK" for the SPI bus
333 334
 * @master: SPI framework hookup
 * @master_info: controller-specific data from machine setup
335 336 337
 * @kworker: thread struct for message pump
 * @kworker_task: pointer to task for message pump kworker thread
 * @pump_messages: work struct for scheduling work to the message pump
338 339
 * @queue_lock: spinlock to syncronise access to message queue
 * @queue: message queue
340 341
 * @busy: message pump is busy
 * @running: message pump is running
342 343 344 345
 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 * @cur_msg: Pointer to current spi_message being processed
 * @cur_transfer: Pointer to current spi_transfer
 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 347 348 349
 * @next_msg_cs_active: the next message in the queue has been examined
 *  and it was found that it uses the same chip select as the previous
 *  message, so we left it active after the previous transfer, and it's
 *  active already.
350 351 352 353
 * @tx: current position in TX buffer to be read
 * @tx_end: end position in TX buffer to be read
 * @rx: current position in RX buffer to be written
 * @rx_end: end position in RX buffer to be written
354 355 356 357 358 359 360 361
 * @read: the type of read currently going on
 * @write: the type of write currently going on
 * @exp_fifo_level: expected FIFO level
 * @dma_rx_channel: optional channel for RX DMA
 * @dma_tx_channel: optional channel for TX DMA
 * @sgt_rx: scattertable for the RX transfer
 * @sgt_tx: scattertable for the TX transfer
 * @dummypage: a dummy page used for driving data on the bus with DMA
362 363
 * @cur_cs: current chip select (gpio)
 * @chipselects: list of chipselects (gpios)
364 365 366 367 368 369 370 371 372
 */
struct pl022 {
	struct amba_device		*adev;
	struct vendor_data		*vendor;
	resource_size_t			phybase;
	void __iomem			*virtbase;
	struct clk			*clk;
	struct spi_master		*master;
	struct pl022_ssp_controller	*master_info;
373
	/* Message per-transfer pump */
374 375 376 377
	struct tasklet_struct		pump_transfers;
	struct spi_message		*cur_msg;
	struct spi_transfer		*cur_transfer;
	struct chip_data		*cur_chip;
378
	bool				next_msg_cs_active;
379 380 381 382 383 384
	void				*tx;
	void				*tx_end;
	void				*rx;
	void				*rx_end;
	enum ssp_reading		read;
	enum ssp_writing		write;
385
	u32				exp_fifo_level;
386 387
	enum ssp_rx_level_trig		rx_lev_trig;
	enum ssp_tx_level_trig		tx_lev_trig;
388 389 390 391 392 393 394
	/* DMA settings */
#ifdef CONFIG_DMA_ENGINE
	struct dma_chan			*dma_rx_channel;
	struct dma_chan			*dma_tx_channel;
	struct sg_table			sgt_rx;
	struct sg_table			sgt_tx;
	char				*dummypage;
395
	bool				dma_running;
396
#endif
397 398
	int cur_cs;
	int *chipselects;
399 400 401 402
};

/**
 * struct chip_data - To maintain runtime state of SSP for each client chip
403 404
 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 *       register is 32 bits wide rather than just 16
405 406 407 408 409 410
 * @cr1: Value of control register CR1 of SSP
 * @dmacr: Value of DMA control Register of SSP
 * @cpsr: Value of Clock prescale register
 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 * @enable_dma: Whether to enable DMA or not
 * @read: function ptr to be used to read when doing xfer for this chip
411
 * @write: function ptr to be used to write when doing xfer for this chip
412 413 414 415 416 417 418
 * @cs_control: chip select callback provided by chip
 * @xfer_type: polling/interrupt/DMA
 *
 * Runtime state of the SSP controller, maintained per chip,
 * This would be set according to the current message that would be served
 */
struct chip_data {
419
	u32 cr0;
420 421 422 423
	u16 cr1;
	u16 dmacr;
	u16 cpsr;
	u8 n_bytes;
424
	bool enable_dma;
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	enum ssp_reading read;
	enum ssp_writing write;
	void (*cs_control) (u32 command);
	int xfer_type;
};

/**
 * null_cs_control - Dummy chip select function
 * @command: select/delect the chip
 *
 * If no chip select function is provided by client this is used as dummy
 * chip select
 */
static void null_cs_control(u32 command)
{
	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
}

443 444 445 446 447 448 449 450
static void pl022_cs_control(struct pl022 *pl022, u32 command)
{
	if (gpio_is_valid(pl022->cur_cs))
		gpio_set_value(pl022->cur_cs, command);
	else
		pl022->cur_chip->cs_control(command);
}

451 452 453 454 455 456 457 458 459
/**
 * giveback - current spi_message is over, schedule next message and call
 * callback of this message. Assumes that caller already
 * set message->status; dma and pio irqs are blocked
 * @pl022: SSP driver private data structure
 */
static void giveback(struct pl022 *pl022)
{
	struct spi_transfer *last_transfer;
460
	pl022->next_msg_cs_active = false;
461

462 463
	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
					struct spi_transfer, transfer_list);
464 465 466 467 468 469 470 471 472

	/* Delay if requested before any change in chip select */
	if (last_transfer->delay_usecs)
		/*
		 * FIXME: This runs in interrupt context.
		 * Is this really smart?
		 */
		udelay(last_transfer->delay_usecs);

473
	if (!last_transfer->cs_change) {
474 475
		struct spi_message *next_msg;

476 477 478 479
		/*
		 * cs_change was not set. We can keep the chip select
		 * enabled if there is message in the queue and it is
		 * for the same spi device.
480 481 482 483 484 485 486
		 *
		 * We cannot postpone this until pump_messages, because
		 * after calling msg->complete (below) the driver that
		 * sent the current message could be unloaded, which
		 * could invalidate the cs_control() callback...
		 */
		/* get a pointer to the next message, if any */
487
		next_msg = spi_get_next_queued_message(pl022->master);
488

489 490 491
		/*
		 * see if the next and current messages point
		 * to the same spi device.
492
		 */
493
		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
494
			next_msg = NULL;
495
		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
496
			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
497 498
		else
			pl022->next_msg_cs_active = true;
499

500
	}
501 502 503 504

	pl022->cur_msg = NULL;
	pl022->cur_transfer = NULL;
	pl022->cur_chip = NULL;
505
	spi_finalize_current_message(pl022->master);
506 507 508 509 510

	/* disable the SPI/SSP operation */
	writew((readw(SSP_CR1(pl022->virtbase)) &
		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
}

/**
 * flush - flush the FIFO to reach a clean state
 * @pl022: SSP driver private data structure
 */
static int flush(struct pl022 *pl022)
{
	unsigned long limit = loops_per_jiffy << 1;

	dev_dbg(&pl022->adev->dev, "flush\n");
	do {
		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
			readw(SSP_DR(pl022->virtbase));
	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
526 527 528

	pl022->exp_fifo_level = 0;

529 530 531 532 533 534 535 536 537 538 539
	return limit;
}

/**
 * restore_state - Load configuration of current chip
 * @pl022: SSP driver private data structure
 */
static void restore_state(struct pl022 *pl022)
{
	struct chip_data *chip = pl022->cur_chip;

540 541 542 543
	if (pl022->vendor->extended_cr)
		writel(chip->cr0, SSP_CR0(pl022->virtbase));
	else
		writew(chip->cr0, SSP_CR0(pl022->virtbase));
544 545 546 547 548 549 550 551 552 553 554 555
	writew(chip->cr1, SSP_CR1(pl022->virtbase));
	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/*
 * Default SSP Register Values
 */
#define DEFAULT_SSP_REG_CR0 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
556 557 558 559 560 561 562 563 564 565
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

/* ST versions have slightly different bit layout */
#define DEFAULT_SSP_REG_CR0_ST ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
566
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
567
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
568 569 570
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
571 572
)

573 574 575 576 577 578 579 580
/* The PL023 version is slightly different again */
#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

581 582 583 584
#define DEFAULT_SSP_REG_CR1 ( \
	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
585
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
586 587
)

588 589 590 591 592 593 594 595 596 597
/* ST versions extend this register to use all 16 bits */
#define DEFAULT_SSP_REG_CR1_ST ( \
	DEFAULT_SSP_REG_CR1 | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
)

598 599 600 601 602 603 604 605 606 607 608 609 610 611
/*
 * The PL023 variant has further differences: no loopback mode, no microwire
 * support, and a new clock feedback delay setting.
 */
#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
)
612

613
#define DEFAULT_SSP_REG_CPSR ( \
614
	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
615 616 617 618 619 620 621
)

#define DEFAULT_SSP_REG_DMACR (\
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
)

622 623 624 625
/**
 * load_ssp_default_config - Load default configuration for SSP
 * @pl022: SSP driver private data structure
 */
626 627
static void load_ssp_default_config(struct pl022 *pl022)
{
628 629 630 631
	if (pl022->vendor->pl023) {
		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
	} else if (pl022->vendor->extended_cr) {
632 633 634 635 636 637
		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
	} else {
		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
	}
638 639 640 641 642 643 644 645 646 647 648 649 650 651
	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/**
 * This will write to TX and read from RX according to the parameters
 * set in pl022.
 */
static void readwriter(struct pl022 *pl022)
{

	/*
L
Lucas De Marchi 已提交
652
	 * The FIFO depth is different between primecell variants.
653 654 655 656
	 * I believe filling in too much in the FIFO might cause
	 * errons in 8bit wide transfers on ARM variants (just 8 words
	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
	 *
657 658 659
	 * To prevent this issue, the TX FIFO is only filled to the
	 * unused RX FIFO fill length, regardless of what the TX
	 * FIFO status flag indicates.
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	 */
	dev_dbg(&pl022->adev->dev,
		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);

	/* Read as much as you can */
	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
	       && (pl022->rx < pl022->rx_end)) {
		switch (pl022->read) {
		case READING_NULL:
			readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U8:
			*(u8 *) (pl022->rx) =
				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
			break;
		case READING_U16:
			*(u16 *) (pl022->rx) =
				(u16) readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U32:
			*(u32 *) (pl022->rx) =
				readl(SSP_DR(pl022->virtbase));
			break;
		}
		pl022->rx += (pl022->cur_chip->n_bytes);
686
		pl022->exp_fifo_level--;
687 688
	}
	/*
689
	 * Write as much as possible up to the RX FIFO size
690
	 */
691
	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	       && (pl022->tx < pl022->tx_end)) {
		switch (pl022->write) {
		case WRITING_NULL:
			writew(0x0, SSP_DR(pl022->virtbase));
			break;
		case WRITING_U8:
			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U16:
			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U32:
			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		}
		pl022->tx += (pl022->cur_chip->n_bytes);
708
		pl022->exp_fifo_level++;
709 710 711 712
		/*
		 * This inner reader takes care of things appearing in the RX
		 * FIFO as we're transmitting. This will happen a lot since the
		 * clock starts running when you put things into the TX FIFO,
L
Lucas De Marchi 已提交
713
		 * and then things are continuously clocked into the RX FIFO.
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		 */
		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
		       && (pl022->rx < pl022->rx_end)) {
			switch (pl022->read) {
			case READING_NULL:
				readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U8:
				*(u8 *) (pl022->rx) =
					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
				break;
			case READING_U16:
				*(u16 *) (pl022->rx) =
					(u16) readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U32:
				*(u32 *) (pl022->rx) =
					readl(SSP_DR(pl022->virtbase));
				break;
			}
			pl022->rx += (pl022->cur_chip->n_bytes);
735
			pl022->exp_fifo_level--;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		}
	}
	/*
	 * When we exit here the TX FIFO should be full and the RX FIFO
	 * should be empty
	 */
}

/**
 * next_transfer - Move to the Next transfer in the current spi message
 * @pl022: SSP driver private data structure
 *
 * This function moves though the linked list of spi transfers in the
 * current spi message and returns with the state of current spi
 * message i.e whether its last transfer is done(STATE_DONE) or
 * Next transfer is ready(STATE_RUNNING)
 */
static void *next_transfer(struct pl022 *pl022)
{
	struct spi_message *msg = pl022->cur_msg;
	struct spi_transfer *trans = pl022->cur_transfer;

	/* Move to next transfer */
	if (trans->transfer_list.next != &msg->transfers) {
		pl022->cur_transfer =
		    list_entry(trans->transfer_list.next,
			       struct spi_transfer, transfer_list);
		return STATE_RUNNING;
	}
	return STATE_DONE;
}
767 768 769 770 771 772 773 774 775

/*
 * This DMA functionality is only compiled in if we have
 * access to the generic DMA devices/DMA engine.
 */
#ifdef CONFIG_DMA_ENGINE
static void unmap_free_dma_scatter(struct pl022 *pl022)
{
	/* Unmap and free the SG tables */
776
	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
777
		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
778
	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
	sg_free_table(&pl022->sgt_rx);
	sg_free_table(&pl022->sgt_tx);
}

static void dma_callback(void *data)
{
	struct pl022 *pl022 = data;
	struct spi_message *msg = pl022->cur_msg;

	BUG_ON(!pl022->sgt_rx.sgl);

#ifdef VERBOSE_DEBUG
	/*
	 * Optionally dump out buffers to inspect contents, this is
	 * good if you want to convince yourself that the loopback
	 * read/write contents are the same, when adopting to a new
	 * DMA engine.
	 */
	{
		struct scatterlist *sg;
		unsigned int i;

		dma_sync_sg_for_cpu(&pl022->adev->dev,
				    pl022->sgt_rx.sgl,
				    pl022->sgt_rx.nents,
				    DMA_FROM_DEVICE);

		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
			print_hex_dump(KERN_ERR, "SPI RX: ",
				       DUMP_PREFIX_OFFSET,
				       16,
				       1,
				       sg_virt(sg),
				       sg_dma_len(sg),
				       1);
		}
		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
			print_hex_dump(KERN_ERR, "SPI TX: ",
				       DUMP_PREFIX_OFFSET,
				       16,
				       1,
				       sg_virt(sg),
				       sg_dma_len(sg),
				       1);
		}
	}
#endif

	unmap_free_dma_scatter(pl022);

L
Lucas De Marchi 已提交
832
	/* Update total bytes transferred */
833 834
	msg->actual_length += pl022->cur_transfer->len;
	if (pl022->cur_transfer->cs_change)
835
		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

	/* Move to next transfer */
	msg->state = next_transfer(pl022);
	tasklet_schedule(&pl022->pump_transfers);
}

static void setup_dma_scatter(struct pl022 *pl022,
			      void *buffer,
			      unsigned int length,
			      struct sg_table *sgtab)
{
	struct scatterlist *sg;
	int bytesleft = length;
	void *bufp = buffer;
	int mapbytes;
	int i;

	if (buffer) {
		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
			/*
			 * If there are less bytes left than what fits
			 * in the current page (plus page alignment offset)
			 * we just feed in this, else we stuff in as much
			 * as we can.
			 */
			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
				mapbytes = bytesleft;
			else
				mapbytes = PAGE_SIZE - offset_in_page(bufp);
			sg_set_page(sg, virt_to_page(bufp),
				    mapbytes, offset_in_page(bufp));
			bufp += mapbytes;
			bytesleft -= mapbytes;
			dev_dbg(&pl022->adev->dev,
				"set RX/TX target page @ %p, %d bytes, %d left\n",
				bufp, mapbytes, bytesleft);
		}
	} else {
		/* Map the dummy buffer on every page */
		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
			if (bytesleft < PAGE_SIZE)
				mapbytes = bytesleft;
			else
				mapbytes = PAGE_SIZE;
			sg_set_page(sg, virt_to_page(pl022->dummypage),
				    mapbytes, 0);
			bytesleft -= mapbytes;
			dev_dbg(&pl022->adev->dev,
				"set RX/TX to dummy page %d bytes, %d left\n",
				mapbytes, bytesleft);

		}
	}
	BUG_ON(bytesleft);
}

/**
 * configure_dma - configures the channels for the next transfer
 * @pl022: SSP driver's private data structure
 */
static int configure_dma(struct pl022 *pl022)
{
	struct dma_slave_config rx_conf = {
		.src_addr = SSP_DR(pl022->phybase),
900
		.direction = DMA_DEV_TO_MEM,
901
		.device_fc = false,
902 903 904
	};
	struct dma_slave_config tx_conf = {
		.dst_addr = SSP_DR(pl022->phybase),
905
		.direction = DMA_MEM_TO_DEV,
906
		.device_fc = false,
907 908 909
	};
	unsigned int pages;
	int ret;
910
	int rx_sglen, tx_sglen;
911 912 913 914 915 916 917 918 919
	struct dma_chan *rxchan = pl022->dma_rx_channel;
	struct dma_chan *txchan = pl022->dma_tx_channel;
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;

	/* Check that the channels are available */
	if (!rxchan || !txchan)
		return -ENODEV;

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	/*
	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
	 * Notice that the DMA engine uses one-to-one mapping. Since we can
	 * not trigger on 2 elements this needs explicit mapping rather than
	 * calculation.
	 */
	switch (pl022->rx_lev_trig) {
	case SSP_RX_1_OR_MORE_ELEM:
		rx_conf.src_maxburst = 1;
		break;
	case SSP_RX_4_OR_MORE_ELEM:
		rx_conf.src_maxburst = 4;
		break;
	case SSP_RX_8_OR_MORE_ELEM:
		rx_conf.src_maxburst = 8;
		break;
	case SSP_RX_16_OR_MORE_ELEM:
		rx_conf.src_maxburst = 16;
		break;
	case SSP_RX_32_OR_MORE_ELEM:
		rx_conf.src_maxburst = 32;
		break;
	default:
		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
		break;
	}

	switch (pl022->tx_lev_trig) {
	case SSP_TX_1_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 1;
		break;
	case SSP_TX_4_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 4;
		break;
	case SSP_TX_8_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 8;
		break;
	case SSP_TX_16_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 16;
		break;
	case SSP_TX_32_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 32;
		break;
	default:
		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
		break;
	}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	switch (pl022->read) {
	case READING_NULL:
		/* Use the same as for writing */
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
		break;
	case READING_U8:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		break;
	case READING_U16:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		break;
	case READING_U32:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		break;
	}

	switch (pl022->write) {
	case WRITING_NULL:
		/* Use the same as for reading */
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
		break;
	case WRITING_U8:
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		break;
	case WRITING_U16:
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		break;
	case WRITING_U32:
996
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
997 998 999 1000 1001 1002 1003 1004 1005 1006
		break;
	}

	/* SPI pecularity: we need to read and write the same width */
	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
		rx_conf.src_addr_width = tx_conf.dst_addr_width;
	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
		tx_conf.dst_addr_width = rx_conf.src_addr_width;
	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);

1007 1008
	dmaengine_slave_config(rxchan, &rx_conf);
	dmaengine_slave_config(txchan, &tx_conf);
1009 1010

	/* Create sglists for the transfers */
1011
	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1012 1013
	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);

1014
	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1015 1016 1017
	if (ret)
		goto err_alloc_rx_sg;

1018
	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	if (ret)
		goto err_alloc_tx_sg;

	/* Fill in the scatterlists for the RX+TX buffers */
	setup_dma_scatter(pl022, pl022->rx,
			  pl022->cur_transfer->len, &pl022->sgt_rx);
	setup_dma_scatter(pl022, pl022->tx,
			  pl022->cur_transfer->len, &pl022->sgt_tx);

	/* Map DMA buffers */
1029
	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1030
			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1031
	if (!rx_sglen)
1032 1033
		goto err_rx_sgmap;

1034
	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1035
			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1036
	if (!tx_sglen)
1037 1038 1039
		goto err_tx_sgmap;

	/* Send both scatterlists */
1040
	rxdesc = dmaengine_prep_slave_sg(rxchan,
1041
				      pl022->sgt_rx.sgl,
1042
				      rx_sglen,
1043
				      DMA_DEV_TO_MEM,
1044 1045 1046 1047
				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxdesc)
		goto err_rxdesc;

1048
	txdesc = dmaengine_prep_slave_sg(txchan,
1049
				      pl022->sgt_tx.sgl,
1050
				      tx_sglen,
1051
				      DMA_MEM_TO_DEV,
1052 1053 1054 1055 1056 1057 1058 1059 1060
				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!txdesc)
		goto err_txdesc;

	/* Put the callback on the RX transfer only, that should finish last */
	rxdesc->callback = dma_callback;
	rxdesc->callback_param = pl022;

	/* Submit and fire RX and TX with TX last so we're ready to read! */
1061 1062 1063 1064
	dmaengine_submit(rxdesc);
	dmaengine_submit(txdesc);
	dma_async_issue_pending(rxchan);
	dma_async_issue_pending(txchan);
1065
	pl022->dma_running = true;
1066 1067 1068 1069

	return 0;

err_txdesc:
1070
	dmaengine_terminate_all(txchan);
1071
err_rxdesc:
1072
	dmaengine_terminate_all(rxchan);
1073
	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1074 1075
		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
err_tx_sgmap:
1076
	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1077 1078 1079 1080 1081 1082 1083 1084 1085
		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
err_rx_sgmap:
	sg_free_table(&pl022->sgt_tx);
err_alloc_tx_sg:
	sg_free_table(&pl022->sgt_rx);
err_alloc_rx_sg:
	return -ENOMEM;
}

1086
static int pl022_dma_probe(struct pl022 *pl022)
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	dma_cap_mask_t mask;

	/* Try to acquire a generic DMA engine slave channel */
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	/*
	 * We need both RX and TX channels to do DMA, else do none
	 * of them.
	 */
	pl022->dma_rx_channel = dma_request_channel(mask,
					    pl022->master_info->dma_filter,
					    pl022->master_info->dma_rx_param);
	if (!pl022->dma_rx_channel) {
1101
		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1102 1103 1104 1105 1106 1107 1108
		goto err_no_rxchan;
	}

	pl022->dma_tx_channel = dma_request_channel(mask,
					    pl022->master_info->dma_filter,
					    pl022->master_info->dma_tx_param);
	if (!pl022->dma_tx_channel) {
1109
		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1110 1111 1112 1113
		goto err_no_txchan;
	}

	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1114
	if (!pl022->dummypage)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		goto err_no_dummypage;

	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
		 dma_chan_name(pl022->dma_rx_channel),
		 dma_chan_name(pl022->dma_tx_channel));

	return 0;

err_no_dummypage:
	dma_release_channel(pl022->dma_tx_channel);
err_no_txchan:
	dma_release_channel(pl022->dma_rx_channel);
	pl022->dma_rx_channel = NULL;
err_no_rxchan:
1129 1130
	dev_err(&pl022->adev->dev,
			"Failed to work in dma mode, work without dma!\n");
1131 1132 1133
	return -ENODEV;
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static int pl022_dma_autoprobe(struct pl022 *pl022)
{
	struct device *dev = &pl022->adev->dev;

	/* automatically configure DMA channels from platform, normally using DT */
	pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx");
	if (!pl022->dma_rx_channel)
		goto err_no_rxchan;

	pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx");
	if (!pl022->dma_tx_channel)
		goto err_no_txchan;

	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!pl022->dummypage)
		goto err_no_dummypage;

	return 0;

err_no_dummypage:
	dma_release_channel(pl022->dma_tx_channel);
	pl022->dma_tx_channel = NULL;
err_no_txchan:
	dma_release_channel(pl022->dma_rx_channel);
	pl022->dma_rx_channel = NULL;
err_no_rxchan:
	return -ENODEV;
}
		
1163 1164 1165 1166 1167
static void terminate_dma(struct pl022 *pl022)
{
	struct dma_chan *rxchan = pl022->dma_rx_channel;
	struct dma_chan *txchan = pl022->dma_tx_channel;

1168 1169
	dmaengine_terminate_all(rxchan);
	dmaengine_terminate_all(txchan);
1170
	unmap_free_dma_scatter(pl022);
1171
	pl022->dma_running = false;
1172 1173 1174 1175
}

static void pl022_dma_remove(struct pl022 *pl022)
{
1176
	if (pl022->dma_running)
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
		terminate_dma(pl022);
	if (pl022->dma_tx_channel)
		dma_release_channel(pl022->dma_tx_channel);
	if (pl022->dma_rx_channel)
		dma_release_channel(pl022->dma_rx_channel);
	kfree(pl022->dummypage);
}

#else
static inline int configure_dma(struct pl022 *pl022)
{
	return -ENODEV;
}

1191 1192 1193 1194 1195
static inline int pl022_dma_autoprobe(struct pl022 *pl022)
{
	return 0;
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
static inline int pl022_dma_probe(struct pl022 *pl022)
{
	return 0;
}

static inline void pl022_dma_remove(struct pl022 *pl022)
{
}
#endif

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
/**
 * pl022_interrupt_handler - Interrupt handler for SSP controller
 *
 * This function handles interrupts generated for an interrupt based transfer.
 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
 * current message's state as STATE_ERROR and schedule the tasklet
 * pump_transfers which will do the postprocessing of the current message by
 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
 * more data, and writes data in TX FIFO till it is not full. If we complete
 * the transfer we move to the next transfer and schedule the tasklet.
 */
static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
{
	struct pl022 *pl022 = dev_id;
	struct spi_message *msg = pl022->cur_msg;
	u16 irq_status = 0;
	u16 flag = 0;

	if (unlikely(!msg)) {
		dev_err(&pl022->adev->dev,
			"bad message state in interrupt handler");
		/* Never fail */
		return IRQ_HANDLED;
	}

	/* Read the Interrupt Status Register */
	irq_status = readw(SSP_MIS(pl022->virtbase));

	if (unlikely(!irq_status))
		return IRQ_NONE;

1237 1238 1239 1240 1241
	/*
	 * This handles the FIFO interrupts, the timeout
	 * interrupts are flatly ignored, they cannot be
	 * trusted.
	 */
1242 1243 1244 1245 1246
	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
		/*
		 * Overrun interrupt - bail out since our Data has been
		 * corrupted
		 */
1247
		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
			dev_err(&pl022->adev->dev,
				"RXFIFO is full\n");
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
			dev_err(&pl022->adev->dev,
				"TXFIFO is full\n");

		/*
		 * Disable and clear interrupts, disable SSP,
		 * mark message with bad status so it can be
		 * retried.
		 */
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		writew((readw(SSP_CR1(pl022->virtbase)) &
			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
		msg->state = STATE_ERROR;

		/* Schedule message queue handler */
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	readwriter(pl022);

	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
		flag = 1;
1276 1277 1278
		/* Disable Transmit interrupt, enable receive interrupt */
		writew((readw(SSP_IMSC(pl022->virtbase)) &
		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		       SSP_IMSC(pl022->virtbase));
	}

	/*
	 * Since all transactions must write as much as shall be read,
	 * we can conclude the entire transaction once RX is complete.
	 * At this point, all TX will always be finished.
	 */
	if (pl022->rx >= pl022->rx_end) {
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		if (unlikely(pl022->rx > pl022->rx_end)) {
			dev_warn(&pl022->adev->dev, "read %u surplus "
				 "bytes (did you request an odd "
				 "number of bytes on a 16bit bus?)\n",
				 (u32) (pl022->rx - pl022->rx_end));
		}
L
Lucas De Marchi 已提交
1297
		/* Update total bytes transferred */
1298 1299
		msg->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
1300
			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		/* Move to next transfer */
		msg->state = next_transfer(pl022);
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	return IRQ_HANDLED;
}

/**
 * This sets up the pointers to memory for the next message to
 * send out on the SPI bus.
 */
static int set_up_next_transfer(struct pl022 *pl022,
				struct spi_transfer *transfer)
{
	int residue;

	/* Sanity check the message for this bus width */
	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
	if (unlikely(residue != 0)) {
		dev_err(&pl022->adev->dev,
			"message of %u bytes to transmit but the current "
			"chip bus has a data width of %u bytes!\n",
			pl022->cur_transfer->len,
			pl022->cur_chip->n_bytes);
		dev_err(&pl022->adev->dev, "skipping this message\n");
		return -EIO;
	}
	pl022->tx = (void *)transfer->tx_buf;
	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
	pl022->rx = (void *)transfer->rx_buf;
	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
	pl022->write =
	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
	return 0;
}

/**
1341 1342
 * pump_transfers - Tasklet function which schedules next transfer
 * when running in interrupt or DMA transfer mode.
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
 * @data: SSP driver private data structure
 *
 */
static void pump_transfers(unsigned long data)
{
	struct pl022 *pl022 = (struct pl022 *) data;
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;

	/* Get current state information */
	message = pl022->cur_msg;
	transfer = pl022->cur_transfer;

	/* Handle for abort */
	if (message->state == STATE_ERROR) {
		message->status = -EIO;
		giveback(pl022);
		return;
	}

	/* Handle end of message */
	if (message->state == STATE_DONE) {
		message->status = 0;
		giveback(pl022);
		return;
	}

	/* Delay if requested at end of transfer before CS change */
	if (message->state == STATE_RUNNING) {
		previous = list_entry(transfer->transfer_list.prev,
					struct spi_transfer,
					transfer_list);
		if (previous->delay_usecs)
			/*
			 * FIXME: This runs in interrupt context.
			 * Is this really smart?
			 */
			udelay(previous->delay_usecs);

1383
		/* Reselect chip select only if cs_change was requested */
1384
		if (previous->cs_change)
1385
			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	} else {
		/* STATE_START */
		message->state = STATE_RUNNING;
	}

	if (set_up_next_transfer(pl022, transfer)) {
		message->state = STATE_ERROR;
		message->status = -EIO;
		giveback(pl022);
		return;
	}
	/* Flush the FIFOs and let's go! */
	flush(pl022);

1400 1401 1402 1403 1404 1405
	if (pl022->cur_chip->enable_dma) {
		if (configure_dma(pl022)) {
			dev_dbg(&pl022->adev->dev,
				"configuration of DMA failed, fall back to interrupt mode\n");
			goto err_config_dma;
		}
1406 1407 1408
		return;
	}

1409
err_config_dma:
1410 1411
	/* enable all interrupts except RX */
	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1412 1413
}

1414
static void do_interrupt_dma_transfer(struct pl022 *pl022)
1415
{
1416 1417 1418 1419 1420
	/*
	 * Default is to enable all interrupts except RX -
	 * this will be enabled once TX is complete
	 */
	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1421

1422 1423
	/* Enable target chip, if not already active */
	if (!pl022->next_msg_cs_active)
1424
		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1425 1426 1427 1428 1429 1430 1431 1432

	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
		/* Error path */
		pl022->cur_msg->state = STATE_ERROR;
		pl022->cur_msg->status = -EIO;
		giveback(pl022);
		return;
	}
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	/* If we're using DMA, set up DMA here */
	if (pl022->cur_chip->enable_dma) {
		/* Configure DMA transfer */
		if (configure_dma(pl022)) {
			dev_dbg(&pl022->adev->dev,
				"configuration of DMA failed, fall back to interrupt mode\n");
			goto err_config_dma;
		}
		/* Disable interrupts in DMA mode, IRQ from DMA controller */
		irqflags = DISABLE_ALL_INTERRUPTS;
	}
err_config_dma:
1445 1446 1447
	/* Enable SSP, turn on interrupts */
	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
	       SSP_CR1(pl022->virtbase));
1448
	writew(irqflags, SSP_IMSC(pl022->virtbase));
1449 1450
}

1451
static void do_polling_transfer(struct pl022 *pl022)
1452 1453 1454 1455 1456
{
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;
	struct chip_data *chip;
1457
	unsigned long time, timeout;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	chip = pl022->cur_chip;
	message = pl022->cur_msg;

	while (message->state != STATE_DONE) {
		/* Handle for abort */
		if (message->state == STATE_ERROR)
			break;
		transfer = pl022->cur_transfer;

		/* Delay if requested at end of transfer */
		if (message->state == STATE_RUNNING) {
			previous =
			    list_entry(transfer->transfer_list.prev,
				       struct spi_transfer, transfer_list);
			if (previous->delay_usecs)
				udelay(previous->delay_usecs);
			if (previous->cs_change)
1476
				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1477 1478 1479
		} else {
			/* STATE_START */
			message->state = STATE_RUNNING;
1480
			if (!pl022->next_msg_cs_active)
1481
				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		}

		/* Configuration Changing Per Transfer */
		if (set_up_next_transfer(pl022, transfer)) {
			/* Error path */
			message->state = STATE_ERROR;
			break;
		}
		/* Flush FIFOs and enable SSP */
		flush(pl022);
		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
		       SSP_CR1(pl022->virtbase));

1495
		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1496 1497 1498 1499

		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
			time = jiffies;
1500
			readwriter(pl022);
1501 1502 1503 1504 1505 1506
			if (time_after(time, timeout)) {
				dev_warn(&pl022->adev->dev,
				"%s: timeout!\n", __func__);
				message->state = STATE_ERROR;
				goto out;
			}
1507
			cpu_relax();
1508
		}
1509

L
Lucas De Marchi 已提交
1510
		/* Update total byte transferred */
1511 1512
		message->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
1513
			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1514 1515 1516
		/* Move to next transfer */
		message->state = next_transfer(pl022);
	}
1517
out:
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	/* Handle end of message */
	if (message->state == STATE_DONE)
		message->status = 0;
	else
		message->status = -EIO;

	giveback(pl022);
	return;
}

1528 1529
static int pl022_transfer_one_message(struct spi_master *master,
				      struct spi_message *msg)
1530
{
1531
	struct pl022 *pl022 = spi_master_get_devdata(master);
1532 1533

	/* Initial message state */
1534 1535 1536 1537 1538
	pl022->cur_msg = msg;
	msg->state = STATE_START;

	pl022->cur_transfer = list_entry(msg->transfers.next,
					 struct spi_transfer, transfer_list);
1539 1540

	/* Setup the SPI using the per chip configuration */
1541
	pl022->cur_chip = spi_get_ctldata(msg->spi);
1542
	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1543

1544 1545 1546 1547 1548 1549
	restore_state(pl022);
	flush(pl022);

	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
		do_polling_transfer(pl022);
	else
1550
		do_interrupt_dma_transfer(pl022);
1551 1552 1553 1554

	return 0;
}

1555
static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1556
{
1557
	struct pl022 *pl022 = spi_master_get_devdata(master);
1558

1559 1560 1561
	/* nothing more to do - disable spi/ssp and power off */
	writew((readw(SSP_CR1(pl022->virtbase)) &
		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1562 1563 1564 1565 1566

	return 0;
}

static int verify_controller_parameters(struct pl022 *pl022,
1567
				struct pl022_config_chip const *chip_info)
1568 1569 1570
{
	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1571
		dev_err(&pl022->adev->dev,
1572 1573 1574 1575 1576
			"interface is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
	    (!pl022->vendor->unidir)) {
1577
		dev_err(&pl022->adev->dev,
1578 1579 1580 1581 1582 1583
			"unidirectional mode not supported in this "
			"hardware version\n");
		return -EINVAL;
	}
	if ((chip_info->hierarchy != SSP_MASTER)
	    && (chip_info->hierarchy != SSP_SLAVE)) {
1584
		dev_err(&pl022->adev->dev,
1585 1586 1587 1588 1589 1590
			"hierarchy is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
	    && (chip_info->com_mode != DMA_TRANSFER)
	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1591
		dev_err(&pl022->adev->dev,
1592 1593 1594
			"Communication mode is configured incorrectly\n");
		return -EINVAL;
	}
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	switch (chip_info->rx_lev_trig) {
	case SSP_RX_1_OR_MORE_ELEM:
	case SSP_RX_4_OR_MORE_ELEM:
	case SSP_RX_8_OR_MORE_ELEM:
		/* These are always OK, all variants can handle this */
		break;
	case SSP_RX_16_OR_MORE_ELEM:
		if (pl022->vendor->fifodepth < 16) {
			dev_err(&pl022->adev->dev,
			"RX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	case SSP_RX_32_OR_MORE_ELEM:
		if (pl022->vendor->fifodepth < 32) {
			dev_err(&pl022->adev->dev,
			"RX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	default:
1616
		dev_err(&pl022->adev->dev,
1617 1618 1619
			"RX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
	}
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	switch (chip_info->tx_lev_trig) {
	case SSP_TX_1_OR_MORE_EMPTY_LOC:
	case SSP_TX_4_OR_MORE_EMPTY_LOC:
	case SSP_TX_8_OR_MORE_EMPTY_LOC:
		/* These are always OK, all variants can handle this */
		break;
	case SSP_TX_16_OR_MORE_EMPTY_LOC:
		if (pl022->vendor->fifodepth < 16) {
			dev_err(&pl022->adev->dev,
			"TX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	case SSP_TX_32_OR_MORE_EMPTY_LOC:
		if (pl022->vendor->fifodepth < 32) {
			dev_err(&pl022->adev->dev,
			"TX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	default:
1641
		dev_err(&pl022->adev->dev,
1642 1643 1644 1645 1646 1647
			"TX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
	}
	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
		if ((chip_info->ctrl_len < SSP_BITS_4)
		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1648
			dev_err(&pl022->adev->dev,
1649 1650 1651 1652 1653
				"CTRL LEN is configured incorrectly\n");
			return -EINVAL;
		}
		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1654
			dev_err(&pl022->adev->dev,
1655 1656 1657
				"Wait State is configured incorrectly\n");
			return -EINVAL;
		}
1658 1659 1660 1661 1662
		/* Half duplex is only available in the ST Micro version */
		if (pl022->vendor->extended_cr) {
			if ((chip_info->duplex !=
			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
			    && (chip_info->duplex !=
1663
				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1664
				dev_err(&pl022->adev->dev,
1665 1666
					"Microwire duplex mode is configured incorrectly\n");
				return -EINVAL;
1667
			}
1668 1669
		} else {
			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1670
				dev_err(&pl022->adev->dev,
1671 1672 1673
					"Microwire half duplex mode requested,"
					" but this is only available in the"
					" ST version of PL022\n");
1674 1675 1676 1677 1678 1679
			return -EINVAL;
		}
	}
	return 0;
}

1680 1681 1682 1683 1684 1685 1686
static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
{
	return rate / (cpsdvsr * (1 + scr));
}

static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
				    ssp_clock_params * clk_freq)
1687 1688
{
	/* Lets calculate the frequency parameters */
1689 1690 1691
	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
		best_scr = 0, tmp, found = 0;
1692 1693 1694

	rate = clk_get_rate(pl022->clk);
	/* cpsdvscr = 2 & scr 0 */
1695
	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1696
	/* cpsdvsr = 254 & scr = 255 */
1697 1698
	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);

1699 1700 1701 1702 1703 1704
	if (freq > max_tclk)
		dev_warn(&pl022->adev->dev,
			"Max speed that can be programmed is %d Hz, you requested %d\n",
			max_tclk, freq);

	if (freq < min_tclk) {
1705
		dev_err(&pl022->adev->dev,
1706 1707
			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
			freq, min_tclk);
1708 1709
		return -EINVAL;
	}
1710 1711 1712 1713 1714 1715 1716 1717 1718

	/*
	 * best_freq will give closest possible available rate (<= requested
	 * freq) for all values of scr & cpsdvsr.
	 */
	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
		while (scr <= SCR_MAX) {
			tmp = spi_rate(rate, cpsdvsr, scr);

1719 1720
			if (tmp > freq) {
				/* we need lower freq */
1721
				scr++;
1722 1723 1724
				continue;
			}

1725
			/*
1726 1727
			 * If found exact value, mark found and break.
			 * If found more closer value, update and break.
1728
			 */
1729
			if (tmp > best_freq) {
1730 1731 1732 1733 1734
				best_freq = tmp;
				best_cpsdvsr = cpsdvsr;
				best_scr = scr;

				if (tmp == freq)
1735
					found = 1;
1736
			}
1737 1738 1739 1740 1741
			/*
			 * increased scr will give lower rates, which are not
			 * required
			 */
			break;
1742 1743 1744 1745 1746
		}
		cpsdvsr += 2;
		scr = SCR_MIN;
	}

1747 1748 1749
	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
			freq);

1750 1751 1752 1753 1754 1755 1756 1757
	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
	clk_freq->scr = (u8) (best_scr & 0xFF);
	dev_dbg(&pl022->adev->dev,
		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
		freq, best_freq);
	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
		clk_freq->cpsdvsr, clk_freq->scr);

1758 1759 1760
	return 0;
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
/*
 * A piece of default chip info unless the platform
 * supplies it.
 */
static const struct pl022_config_chip pl022_default_chip_info = {
	.com_mode = POLLING_TRANSFER,
	.iface = SSP_INTERFACE_MOTOROLA_SPI,
	.hierarchy = SSP_SLAVE,
	.slave_tx_disable = DO_NOT_DRIVE_TX,
	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
	.ctrl_len = SSP_BITS_8,
	.wait_state = SSP_MWIRE_WAIT_ZERO,
	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
	.cs_control = null_cs_control,
};

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
/**
 * pl022_setup - setup function registered to SPI master framework
 * @spi: spi device which is requesting setup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. If it is the first time when setup is called by this device,
 * this function will initialize the runtime state for this chip and save
 * the same in the device structure. Else it will update the runtime info
 * with the updated chip info. Nothing is really being written to the
 * controller hardware here, that is not done until the actual transfer
 * commence.
 */
static int pl022_setup(struct spi_device *spi)
{
1792
	struct pl022_config_chip const *chip_info;
1793
	struct pl022_config_chip chip_info_dt;
1794
	struct chip_data *chip;
J
Jonas Aaberg 已提交
1795
	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1796 1797
	int status = 0;
	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1798 1799
	unsigned int bits = spi->bits_per_word;
	u32 tmp;
1800
	struct device_node *np = spi->dev.of_node;
1801 1802 1803 1804 1805 1806 1807 1808 1809

	if (!spi->max_speed_hz)
		return -EINVAL;

	/* Get controller_state if one is supplied */
	chip = spi_get_ctldata(spi);

	if (chip == NULL) {
		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1810
		if (!chip)
1811 1812 1813 1814 1815 1816 1817 1818 1819
			return -ENOMEM;
		dev_dbg(&spi->dev,
			"allocated memory for controller's runtime state\n");
	}

	/* Get controller data if one is supplied */
	chip_info = spi->controller_data;

	if (chip_info == NULL) {
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		if (np) {
			chip_info_dt = pl022_default_chip_info;

			chip_info_dt.hierarchy = SSP_MASTER;
			of_property_read_u32(np, "pl022,interface",
				&chip_info_dt.iface);
			of_property_read_u32(np, "pl022,com-mode",
				&chip_info_dt.com_mode);
			of_property_read_u32(np, "pl022,rx-level-trig",
				&chip_info_dt.rx_lev_trig);
			of_property_read_u32(np, "pl022,tx-level-trig",
				&chip_info_dt.tx_lev_trig);
			of_property_read_u32(np, "pl022,ctrl-len",
				&chip_info_dt.ctrl_len);
			of_property_read_u32(np, "pl022,wait-state",
				&chip_info_dt.wait_state);
			of_property_read_u32(np, "pl022,duplex",
				&chip_info_dt.duplex);

			chip_info = &chip_info_dt;
		} else {
			chip_info = &pl022_default_chip_info;
			/* spi_board_info.controller_data not is supplied */
			dev_dbg(&spi->dev,
				"using default controller_data settings\n");
		}
1846
	} else
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
		dev_dbg(&spi->dev,
			"using user supplied controller_data settings\n");

	/*
	 * We can override with custom divisors, else we use the board
	 * frequency setting
	 */
	if ((0 == chip_info->clk_freq.cpsdvsr)
	    && (0 == chip_info->clk_freq.scr)) {
		status = calculate_effective_freq(pl022,
						  spi->max_speed_hz,
1858
						  &clk_freq);
1859 1860 1861
		if (status < 0)
			goto err_config_params;
	} else {
1862 1863 1864 1865
		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
		if ((clk_freq.cpsdvsr % 2) != 0)
			clk_freq.cpsdvsr =
				clk_freq.cpsdvsr - 1;
1866
	}
1867 1868
	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1869
		status = -EINVAL;
1870 1871 1872 1873 1874
		dev_err(&spi->dev,
			"cpsdvsr is configured incorrectly\n");
		goto err_config_params;
	}

1875 1876 1877 1878 1879
	status = verify_controller_parameters(pl022, chip_info);
	if (status) {
		dev_err(&spi->dev, "controller data is incorrect");
		goto err_config_params;
	}
1880

1881 1882 1883
	pl022->rx_lev_trig = chip_info->rx_lev_trig;
	pl022->tx_lev_trig = chip_info->tx_lev_trig;

1884 1885
	/* Now set controller state based on controller data */
	chip->xfer_type = chip_info->com_mode;
1886 1887
	if (!chip_info->cs_control) {
		chip->cs_control = null_cs_control;
1888 1889 1890
		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
			dev_warn(&spi->dev,
				 "invalid chip select\n");
1891 1892
	} else
		chip->cs_control = chip_info->cs_control;
1893

1894 1895
	/* Check bits per word with vendor specific range */
	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1896
		status = -ENOTSUPP;
1897 1898 1899
		dev_err(&spi->dev, "illegal data size for this controller!\n");
		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
				pl022->vendor->max_bpw);
1900 1901 1902
		goto err_config_params;
	} else if (bits <= 8) {
		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1903 1904 1905
		chip->n_bytes = 1;
		chip->read = READING_U8;
		chip->write = WRITING_U8;
1906
	} else if (bits <= 16) {
1907 1908 1909 1910 1911
		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
		chip->n_bytes = 2;
		chip->read = READING_U16;
		chip->write = WRITING_U16;
	} else {
1912 1913 1914 1915
		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
		chip->n_bytes = 4;
		chip->read = READING_U32;
		chip->write = WRITING_U32;
1916 1917 1918 1919 1920 1921 1922 1923 1924
	}

	/* Now Initialize all register settings required for this chip */
	chip->cr0 = 0;
	chip->cr1 = 0;
	chip->dmacr = 0;
	chip->cpsr = 0;
	if ((chip_info->com_mode == DMA_TRANSFER)
	    && ((pl022->master_info)->enable_dma)) {
1925
		chip->enable_dma = true;
1926 1927 1928 1929 1930 1931
		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	} else {
1932
		chip->enable_dma = false;
1933 1934 1935 1936 1937 1938 1939
		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	}

1940
	chip->cpsr = clk_freq.cpsdvsr;
1941

1942 1943
	/* Special setup for the ST micro extended control registers */
	if (pl022->vendor->extended_cr) {
1944 1945
		u32 etx;

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		if (pl022->vendor->pl023) {
			/* These bits are only in the PL023 */
			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
		} else {
			/* These bits are in the PL022 but not PL023 */
			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
				       SSP_CR0_MASK_HALFDUP_ST, 5);
			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
				       SSP_CR0_MASK_CSS_ST, 16);
			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
				       SSP_CR0_MASK_FRF_ST, 21);
			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
				       SSP_CR1_MASK_MWAIT_ST, 6);
		}
1961
		SSP_WRITE_BITS(chip->cr0, bits - 1,
1962
			       SSP_CR0_MASK_DSS_ST, 0);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

		if (spi->mode & SPI_LSB_FIRST) {
			tmp = SSP_RX_LSB;
			etx = SSP_TX_LSB;
		} else {
			tmp = SSP_RX_MSB;
			etx = SSP_TX_MSB;
		}
		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1973 1974 1975 1976 1977
		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
	} else {
1978
		SSP_WRITE_BITS(chip->cr0, bits - 1,
1979 1980 1981 1982
			       SSP_CR0_MASK_DSS, 0);
		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
			       SSP_CR0_MASK_FRF, 4);
	}
1983

1984
	/* Stuff that is common for all versions */
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	if (spi->mode & SPI_CPOL)
		tmp = SSP_CLK_POL_IDLE_HIGH;
	else
		tmp = SSP_CLK_POL_IDLE_LOW;
	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);

	if (spi->mode & SPI_CPHA)
		tmp = SSP_CLK_SECOND_EDGE;
	else
		tmp = SSP_CLK_FIRST_EDGE;
	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);

1997
	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1998
	/* Loopback is available on all versions except PL023 */
1999
	if (pl022->vendor->loopback) {
2000 2001 2002 2003 2004 2005
		if (spi->mode & SPI_LOOP)
			tmp = LOOPBACK_ENABLED;
		else
			tmp = LOOPBACK_DISABLED;
		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
	}
2006 2007
	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2008 2009
	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
		3);
2010 2011 2012 2013 2014

	/* Save controller_state */
	spi_set_ctldata(spi, chip);
	return status;
 err_config_params:
2015
	spi_set_ctldata(spi, NULL);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	kfree(chip);
	return status;
}

/**
 * pl022_cleanup - cleanup function registered to SPI master framework
 * @spi: spi device which is requesting cleanup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. It will free the runtime state of chip.
 */
static void pl022_cleanup(struct spi_device *spi)
{
	struct chip_data *chip = spi_get_ctldata(spi);

	spi_set_ctldata(spi, NULL);
	kfree(chip);
}

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static struct pl022_ssp_controller *
pl022_platform_data_dt_get(struct device *dev)
{
	struct device_node *np = dev->of_node;
	struct pl022_ssp_controller *pd;
	u32 tmp;

	if (!np) {
		dev_err(dev, "no dt node defined\n");
		return NULL;
	}

	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2048
	if (!pd)
2049 2050 2051
		return NULL;

	pd->bus_id = -1;
2052
	pd->enable_dma = 1;
2053 2054 2055 2056 2057 2058 2059 2060 2061
	of_property_read_u32(np, "num-cs", &tmp);
	pd->num_chipselect = tmp;
	of_property_read_u32(np, "pl022,autosuspend-delay",
			     &pd->autosuspend_delay);
	pd->rt = of_property_read_bool(np, "pl022,rt");

	return pd;
}

2062
static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2063 2064
{
	struct device *dev = &adev->dev;
J
Jingoo Han 已提交
2065 2066
	struct pl022_ssp_controller *platform_info =
			dev_get_platdata(&adev->dev);
2067 2068
	struct spi_master *master;
	struct pl022 *pl022 = NULL;	/*Data for this driver */
2069 2070
	struct device_node *np = adev->dev.of_node;
	int status = 0, i, num_cs;
2071 2072 2073

	dev_info(&adev->dev,
		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2074 2075 2076 2077 2078
	if (!platform_info && IS_ENABLED(CONFIG_OF))
		platform_info = pl022_platform_data_dt_get(dev);

	if (!platform_info) {
		dev_err(dev, "probe: no platform data defined\n");
2079
		return -ENODEV;
2080 2081
	}

2082 2083 2084
	if (platform_info->num_chipselect) {
		num_cs = platform_info->num_chipselect;
	} else {
2085
		dev_err(dev, "probe: no chip select defined\n");
2086
		return -ENODEV;
2087 2088
	}

2089
	/* Allocate master with space for data */
2090
	master = spi_alloc_master(dev, sizeof(struct pl022));
2091 2092
	if (master == NULL) {
		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2093
		return -ENOMEM;
2094 2095 2096 2097 2098 2099 2100
	}

	pl022 = spi_master_get_devdata(master);
	pl022->master = master;
	pl022->master_info = platform_info;
	pl022->adev = adev;
	pl022->vendor = id->data;
2101 2102
	pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
					  GFP_KERNEL);
2103 2104 2105 2106 2107 2108

	/*
	 * Bus Number Which has been Assigned to this SSP controller
	 * on this board
	 */
	master->bus_num = platform_info->bus_id;
2109
	master->num_chipselect = num_cs;
2110 2111
	master->cleanup = pl022_cleanup;
	master->setup = pl022_setup;
2112
	master->auto_runtime_pm = true;
2113 2114 2115
	master->transfer_one_message = pl022_transfer_one_message;
	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
	master->rt = platform_info->rt;
2116
	master->dev.of_node = dev->of_node;
2117

2118 2119
	if (platform_info->num_chipselect && platform_info->chipselects) {
		for (i = 0; i < num_cs; i++)
2120
			pl022->chipselects[i] = platform_info->chipselects[i];
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	} else if (IS_ENABLED(CONFIG_OF)) {
		for (i = 0; i < num_cs; i++) {
			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);

			if (cs_gpio == -EPROBE_DEFER) {
				status = -EPROBE_DEFER;
				goto err_no_gpio;
			}

			pl022->chipselects[i] = cs_gpio;

			if (gpio_is_valid(cs_gpio)) {
2133
				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
					dev_err(&adev->dev,
						"could not request %d gpio\n",
						cs_gpio);
				else if (gpio_direction_output(cs_gpio, 1))
					dev_err(&adev->dev,
						"could set gpio %d as output\n",
						cs_gpio);
			}
		}
	}
2144

2145 2146 2147 2148 2149 2150 2151 2152
	/*
	 * Supports mode 0-3, loopback, and active low CS. Transfers are
	 * always MS bit first on the original pl022.
	 */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
	if (pl022->vendor->extended_cr)
		master->mode_bits |= SPI_LSB_FIRST;

2153 2154 2155 2156 2157 2158
	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);

	status = amba_request_regions(adev, NULL);
	if (status)
		goto err_no_ioregion;

2159
	pl022->phybase = adev->res.start;
2160 2161
	pl022->virtbase = devm_ioremap(dev, adev->res.start,
				       resource_size(&adev->res));
2162 2163 2164 2165
	if (pl022->virtbase == NULL) {
		status = -ENOMEM;
		goto err_no_ioremap;
	}
2166 2167
	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
		&adev->res.start, pl022->virtbase);
2168

2169
	pl022->clk = devm_clk_get(&adev->dev, NULL);
2170 2171 2172 2173 2174
	if (IS_ERR(pl022->clk)) {
		status = PTR_ERR(pl022->clk);
		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
		goto err_no_clk;
	}
2175

2176
	status = clk_prepare_enable(pl022->clk);
2177 2178 2179 2180 2181
	if (status) {
		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
		goto err_no_clk_en;
	}

2182 2183 2184 2185
	/* Initialize transfer pump */
	tasklet_init(&pl022->pump_transfers, pump_transfers,
		     (unsigned long)pl022);

2186 2187 2188 2189 2190
	/* Disable SSP */
	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
	       SSP_CR1(pl022->virtbase));
	load_ssp_default_config(pl022);

2191 2192
	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
				  0, "pl022", pl022);
2193 2194 2195 2196
	if (status < 0) {
		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
		goto err_no_irq;
	}
2197

2198 2199 2200 2201 2202 2203 2204
	/* Get DMA channels, try autoconfiguration first */
	status = pl022_dma_autoprobe(pl022);

	/* If that failed, use channels from platform_info */
	if (status == 0)
		platform_info->enable_dma = 1;
	else if (platform_info->enable_dma) {
2205 2206
		status = pl022_dma_probe(pl022);
		if (status != 0)
2207
			platform_info->enable_dma = 0;
2208 2209
	}

2210 2211
	/* Register with the SPI framework */
	amba_set_drvdata(adev, pl022);
2212
	status = devm_spi_register_master(&adev->dev, master);
2213 2214 2215 2216 2217
	if (status != 0) {
		dev_err(&adev->dev,
			"probe - problem registering spi master\n");
		goto err_spi_register;
	}
L
Lucas De Marchi 已提交
2218
	dev_dbg(dev, "probe succeeded\n");
2219 2220

	/* let runtime pm put suspend */
2221 2222 2223 2224 2225 2226 2227 2228
	if (platform_info->autosuspend_delay > 0) {
		dev_info(&adev->dev,
			"will use autosuspend for runtime pm, delay %dms\n",
			platform_info->autosuspend_delay);
		pm_runtime_set_autosuspend_delay(dev,
			platform_info->autosuspend_delay);
		pm_runtime_use_autosuspend(dev);
	}
2229 2230
	pm_runtime_put(dev);

2231 2232 2233
	return 0;

 err_spi_register:
2234 2235
	if (platform_info->enable_dma)
		pl022_dma_remove(pl022);
2236
 err_no_irq:
2237
	clk_disable_unprepare(pl022->clk);
2238
 err_no_clk_en:
2239 2240 2241 2242
 err_no_clk:
 err_no_ioremap:
	amba_release_regions(adev);
 err_no_ioregion:
2243
 err_no_gpio:
2244 2245 2246 2247
	spi_master_put(master);
	return status;
}

2248
static int
2249 2250 2251
pl022_remove(struct amba_device *adev)
{
	struct pl022 *pl022 = amba_get_drvdata(adev);
2252

2253 2254 2255
	if (!pl022)
		return 0;

2256 2257 2258 2259 2260 2261
	/*
	 * undo pm_runtime_put() in probe.  I assume that we're not
	 * accessing the primecell here.
	 */
	pm_runtime_get_noresume(&adev->dev);

2262
	load_ssp_default_config(pl022);
2263 2264 2265
	if (pl022->master_info->enable_dma)
		pl022_dma_remove(pl022);

2266
	clk_disable_unprepare(pl022->clk);
2267 2268 2269 2270 2271
	amba_release_regions(adev);
	tasklet_disable(&pl022->pump_transfers);
	return 0;
}

2272
#ifdef CONFIG_PM_SLEEP
2273
static int pl022_suspend(struct device *dev)
2274
{
2275
	struct pl022 *pl022 = dev_get_drvdata(dev);
2276
	int ret;
2277

2278 2279 2280 2281
	ret = spi_master_suspend(pl022->master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
2282
	}
2283

2284 2285 2286 2287 2288 2289 2290
	ret = pm_runtime_force_suspend(dev);
	if (ret) {
		spi_master_resume(pl022->master);
		return ret;
	}

	pinctrl_pm_select_sleep_state(dev);
2291

2292
	dev_dbg(dev, "suspended\n");
2293 2294 2295
	return 0;
}

2296
static int pl022_resume(struct device *dev)
2297
{
2298
	struct pl022 *pl022 = dev_get_drvdata(dev);
2299
	int ret;
2300

2301 2302 2303
	ret = pm_runtime_force_resume(dev);
	if (ret)
		dev_err(dev, "problem resuming\n");
2304

2305
	/* Start the queue running */
2306 2307 2308
	ret = spi_master_resume(pl022->master);
	if (ret)
		dev_err(dev, "problem starting queue (%d)\n", ret);
2309
	else
2310
		dev_dbg(dev, "resumed\n");
2311

2312
	return ret;
2313
}
2314
#endif
2315

2316
#ifdef CONFIG_PM
2317 2318 2319
static int pl022_runtime_suspend(struct device *dev)
{
	struct pl022 *pl022 = dev_get_drvdata(dev);
2320

2321 2322 2323
	clk_disable_unprepare(pl022->clk);
	pinctrl_pm_select_idle_state(dev);

2324 2325 2326 2327 2328 2329 2330
	return 0;
}

static int pl022_runtime_resume(struct device *dev)
{
	struct pl022 *pl022 = dev_get_drvdata(dev);

2331 2332 2333
	pinctrl_pm_select_default_state(dev);
	clk_prepare_enable(pl022->clk);

2334 2335 2336 2337 2338 2339
	return 0;
}
#endif

static const struct dev_pm_ops pl022_dev_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2340
	SET_PM_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2341 2342
};

2343 2344 2345 2346
static struct vendor_data vendor_arm = {
	.fifodepth = 8,
	.max_bpw = 16,
	.unidir = false,
2347
	.extended_cr = false,
2348
	.pl023 = false,
2349
	.loopback = true,
2350 2351 2352 2353 2354 2355
};

static struct vendor_data vendor_st = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
2356
	.extended_cr = true,
2357
	.pl023 = false,
2358
	.loopback = true,
2359 2360 2361 2362 2363 2364 2365 2366
};

static struct vendor_data vendor_st_pl023 = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
	.extended_cr = true,
	.pl023 = true,
2367 2368 2369
	.loopback = false,
};

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
static struct amba_id pl022_ids[] = {
	{
		/*
		 * ARM PL022 variant, this has a 16bit wide
		 * and 8 locations deep TX/RX FIFO
		 */
		.id	= 0x00041022,
		.mask	= 0x000fffff,
		.data	= &vendor_arm,
	},
	{
		/*
		 * ST Micro derivative, this has 32bit wide
		 * and 32 locations deep TX/RX FIFO
		 */
2385
		.id	= 0x01080022,
2386 2387 2388
		.mask	= 0xffffffff,
		.data	= &vendor_st,
	},
2389 2390 2391 2392 2393 2394 2395 2396
	{
		/*
		 * ST-Ericsson derivative "PL023" (this is not
		 * an official ARM number), this is a PL022 SSP block
		 * stripped to SPI mode only, it has 32bit wide
		 * and 32 locations deep TX/RX FIFO but no extended
		 * CR0/CR1 register
		 */
2397 2398 2399
		.id	= 0x00080023,
		.mask	= 0xffffffff,
		.data	= &vendor_st_pl023,
2400
	},
2401 2402 2403
	{ 0, 0 },
};

2404 2405
MODULE_DEVICE_TABLE(amba, pl022_ids);

2406 2407 2408
static struct amba_driver pl022_driver = {
	.drv = {
		.name	= "ssp-pl022",
2409
		.pm	= &pl022_dev_pm_ops,
2410 2411 2412
	},
	.id_table	= pl022_ids,
	.probe		= pl022_probe,
2413
	.remove		= pl022_remove,
2414 2415 2416 2417 2418 2419
};

static int __init pl022_init(void)
{
	return amba_driver_register(&pl022_driver);
}
2420
subsys_initcall(pl022_init);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430

static void __exit pl022_exit(void)
{
	amba_driver_unregister(&pl022_driver);
}
module_exit(pl022_exit);

MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
MODULE_DESCRIPTION("PL022 SSP Controller Driver");
MODULE_LICENSE("GPL");