blk-mq.c 56.6 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161 162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
163
{
164 165 166
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

167 168 169
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
170
	rq->mq_ctx = ctx;
171
	rq->cmd_flags |= rw_flags;
172 173 174 175 176 177
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
178
	rq->start_time = jiffies;
179 180
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
181
	set_start_time_ns(rq);
182 183 184 185 186 187 188 189 190 191
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

192 193
	rq->cmd = rq->__cmd;

194 195 196 197 198 199
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
200 201
	rq->timeout = 0;

202 203 204 205
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

206 207 208
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

209
static struct request *
210
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 212 213 214
{
	struct request *rq;
	unsigned int tag;

215
	tag = blk_mq_get_tag(data);
216
	if (tag != BLK_MQ_TAG_FAIL) {
217
		rq = data->hctx->tags->rqs[tag];
218

219
		if (blk_mq_tag_busy(data->hctx)) {
220
			rq->cmd_flags = REQ_MQ_INFLIGHT;
221
			atomic_inc(&data->hctx->nr_active);
222 223 224
		}

		rq->tag = tag;
225
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 227 228 229 230 231
		return rq;
	}

	return NULL;
}

232 233
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
234
{
235 236
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
237
	struct request *rq;
238
	struct blk_mq_alloc_data alloc_data;
239
	int ret;
240

241
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 243
	if (ret)
		return ERR_PTR(ret);
244

245 246
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248

249
	rq = __blk_mq_alloc_request(&alloc_data, rw);
250
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 252 253 254 255
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
256
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 258
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
259 260
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
261
	if (!rq) {
262
		blk_queue_exit(q);
263
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
264
	}
265 266
	return rq;
}
267
EXPORT_SYMBOL(blk_mq_alloc_request);
268 269 270 271 272 273 274

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

275 276
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
277
	rq->cmd_flags = 0;
278

279
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281
	blk_queue_exit(q);
282 283
}

284
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 286 287 288 289
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
290 291 292 293 294 295 296 297 298 299 300

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
301
}
J
Jens Axboe 已提交
302
EXPORT_SYMBOL_GPL(blk_mq_free_request);
303

304
inline void __blk_mq_end_request(struct request *rq, int error)
305
{
M
Ming Lei 已提交
306 307
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
308
	if (rq->end_io) {
309
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
310 311 312
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
313
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
314
	}
315
}
316
EXPORT_SYMBOL(__blk_mq_end_request);
317

318
void blk_mq_end_request(struct request *rq, int error)
319 320 321
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
322
	__blk_mq_end_request(rq, error);
323
}
324
EXPORT_SYMBOL(blk_mq_end_request);
325

326
static void __blk_mq_complete_request_remote(void *data)
327
{
328
	struct request *rq = data;
329

330
	rq->q->softirq_done_fn(rq);
331 332
}

333
static void blk_mq_ipi_complete_request(struct request *rq)
334 335
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
336
	bool shared = false;
337 338
	int cpu;

C
Christoph Hellwig 已提交
339
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 341 342
		rq->q->softirq_done_fn(rq);
		return;
	}
343 344

	cpu = get_cpu();
C
Christoph Hellwig 已提交
345 346 347 348
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349
		rq->csd.func = __blk_mq_complete_request_remote;
350 351
		rq->csd.info = rq;
		rq->csd.flags = 0;
352
		smp_call_function_single_async(ctx->cpu, &rq->csd);
353
	} else {
354
		rq->q->softirq_done_fn(rq);
355
	}
356 357
	put_cpu();
}
358

359
static void __blk_mq_complete_request(struct request *rq)
360 361 362 363
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
364
		blk_mq_end_request(rq, rq->errors);
365 366 367 368
	else
		blk_mq_ipi_complete_request(rq);
}

369 370 371 372 373 374 375 376
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
377
void blk_mq_complete_request(struct request *rq, int error)
378
{
379 380 381
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
382
		return;
383 384
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
385
		__blk_mq_complete_request(rq);
386
	}
387 388
}
EXPORT_SYMBOL(blk_mq_complete_request);
389

390 391 392 393 394 395
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

396
void blk_mq_start_request(struct request *rq)
397 398 399 400 401
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
402
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
403 404
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
405

406
	blk_add_timer(rq);
407

408 409 410 411 412 413
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

414 415 416 417 418 419
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
420 421 422 423
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424 425 426 427 428 429 430 431 432

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
433
}
434
EXPORT_SYMBOL(blk_mq_start_request);
435

436
static void __blk_mq_requeue_request(struct request *rq)
437 438 439 440
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
441

442 443 444 445
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
446 447
}

448 449 450 451 452
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
453
	blk_mq_add_to_requeue_list(rq, true);
454 455 456
}
EXPORT_SYMBOL(blk_mq_requeue_request);

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

484 485 486 487 488
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

513 514 515 516 517 518
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

519 520 521 522 523 524
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

545 546
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
547 548 549 550
	if (tag < tags->nr_tags)
		return tags->rqs[tag];

	return NULL;
551 552 553
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

554
struct blk_mq_timeout_data {
555 556
	unsigned long next;
	unsigned int next_set;
557 558
};

559
void blk_mq_rq_timed_out(struct request *req, bool reserved)
560
{
561 562
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
563 564 565 566 567 568 569 570 571 572

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
573 574
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
575

576
	if (ops->timeout)
577
		ret = ops->timeout(req, reserved);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
593
}
594

595 596 597 598
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
599

600 601 602 603 604
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
605 606 607 608
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
609
		return;
610
	}
611

612 613
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
614
			blk_mq_rq_timed_out(rq, reserved);
615 616 617 618
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
619 620
}

621
static void blk_mq_timeout_work(struct work_struct *work)
622
{
623 624
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
625 626 627 628 629
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
630

631 632 633
	if (blk_queue_enter(q, true))
		return;

634
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
635

636 637 638
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
639
	} else {
640 641
		struct blk_mq_hw_ctx *hctx;

642 643 644 645 646
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
647
	}
648
	blk_queue_exit(q);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

690 691 692 693 694 695 696 697 698
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

699
	for (i = 0; i < hctx->ctx_map.size; i++) {
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

724 725 726 727 728 729 730 731 732 733 734
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
735 736
	LIST_HEAD(driver_list);
	struct list_head *dptr;
737
	int queued;
738

739
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
740

741
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
742 743 744 745 746 747 748
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
749
	flush_busy_ctxs(hctx, &rq_list);
750 751 752 753 754 755 756 757 758 759 760 761

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

762 763 764 765 766 767
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

768 769 770
	/*
	 * Now process all the entries, sending them to the driver.
	 */
771
	queued = 0;
772
	while (!list_empty(&rq_list)) {
773
		struct blk_mq_queue_data bd;
774 775 776 777 778
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

779 780 781 782 783
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
784 785 786 787 788 789
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
790
			__blk_mq_requeue_request(rq);
791 792 793 794
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
795
			rq->errors = -EIO;
796
			blk_mq_end_request(rq, rq->errors);
797 798 799 800 801
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
802 803 804 805 806 807 808

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
824 825 826 827 828 829 830 831 832 833
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
834 835 836
	}
}

837 838 839 840 841 842 843 844
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
845 846
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
847 848

	if (--hctx->next_cpu_batch <= 0) {
849
		int cpu = hctx->next_cpu, next_cpu;
850 851 852 853 854 855 856

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
857 858

		return cpu;
859 860
	}

861
	return hctx->next_cpu;
862 863
}

864 865
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
866 867
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
868 869
		return;

870
	if (!async) {
871 872
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
873
			__blk_mq_run_hw_queue(hctx);
874
			put_cpu();
875 876
			return;
		}
877

878
		put_cpu();
879
	}
880

881 882
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
883 884
}

885
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
886 887 888 889 890 891 892
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
893
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
894 895
			continue;

896
		blk_mq_run_hw_queue(hctx, async);
897 898
	}
}
899
EXPORT_SYMBOL(blk_mq_run_hw_queues);
900 901 902

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
903 904
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
905 906 907 908
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

909 910 911 912 913 914 915 916 917 918
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

919 920 921
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
922

923
	blk_mq_run_hw_queue(hctx, false);
924 925 926
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

927 928 929 930 931 932 933 934 935 936
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

937
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
938 939 940 941 942 943 944 945 946
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
947
		blk_mq_run_hw_queue(hctx, async);
948 949 950 951
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

952
static void blk_mq_run_work_fn(struct work_struct *work)
953 954 955
{
	struct blk_mq_hw_ctx *hctx;

956
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
957

958 959 960
	__blk_mq_run_hw_queue(hctx);
}

961 962 963 964 965 966 967 968 969 970 971 972
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
973 974
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
975

976 977
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
978 979 980
}
EXPORT_SYMBOL(blk_mq_delay_queue);

981 982 983 984
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
985
{
986 987
	trace_block_rq_insert(hctx->queue, rq);

988 989 990 991
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
992
}
993

994 995 996 997 998 999
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1000 1001 1002
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1003 1004
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1005
{
1006
	struct request_queue *q = rq->q;
1007
	struct blk_mq_hw_ctx *hctx;
1008 1009 1010 1011 1012
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1013 1014 1015

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1016 1017 1018
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1019 1020 1021

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1022 1023

	blk_mq_put_ctx(current_ctx);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1055
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1056
	}
1057
	blk_mq_hctx_mark_pending(hctx, ctx);
1058 1059 1060
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1061
	blk_mq_put_ctx(current_ctx);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1124

1125
	blk_account_io_start(rq, 1);
1126 1127
}

1128 1129 1130 1131 1132 1133
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1134 1135 1136
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1137
{
1138
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1139 1140 1141 1142 1143 1144 1145
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1146 1147
		struct request_queue *q = hctx->queue;

1148 1149 1150 1151 1152
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1153

1154 1155 1156
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1157
	}
1158
}
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1173
	struct blk_mq_alloc_data alloc_data;
1174

1175
	blk_queue_enter_live(q);
1176 1177 1178
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1179
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1180
		rw |= REQ_SYNC;
1181

1182
	trace_block_getrq(q, bio, rw);
1183
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1184
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1185
	if (unlikely(!rq)) {
1186
		__blk_mq_run_hw_queue(hctx);
1187 1188
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1189 1190

		ctx = blk_mq_get_ctx(q);
1191
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1192
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1193 1194 1195
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1196 1197 1198
	}

	hctx->queued++;
1199 1200 1201 1202 1203
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1204
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1215
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1216 1217 1218 1219 1220 1221 1222

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1223 1224
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1225
		return 0;
1226
	}
1227

1228 1229 1230 1231 1232 1233 1234
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1235
	}
1236 1237

	return -1;
1238 1239
}

1240 1241 1242 1243 1244
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1245
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1246 1247 1248 1249 1250
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1251 1252
	unsigned int request_count = 0;
	struct blk_plug *plug;
1253
	struct request *same_queue_rq = NULL;
1254
	blk_qc_t cookie;
1255 1256 1257 1258

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1259
		bio_io_error(bio);
1260
		return BLK_QC_T_NONE;
1261 1262
	}

1263 1264
	blk_queue_split(q, &bio, q->bio_split);

1265 1266 1267
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count,
					   &same_queue_rq))
1268
			return BLK_QC_T_NONE;
1269 1270
	} else
		request_count = blk_plug_queued_count(q);
1271

1272 1273
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1274
		return BLK_QC_T_NONE;
1275

1276
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1277 1278 1279 1280 1281 1282 1283

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1284
	plug = current->plug;
1285 1286 1287 1288 1289
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1290 1291 1292
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1293 1294 1295 1296

		blk_mq_bio_to_request(rq, bio);

		/*
1297
		 * We do limited pluging. If the bio can be merged, do that.
1298 1299
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1300
		 */
1301
		if (plug) {
1302 1303
			/*
			 * The plug list might get flushed before this. If that
1304 1305 1306
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1307 1308
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1309
				list_del_init(&old_rq->queuelist);
1310
			}
1311 1312 1313 1314 1315
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1316 1317 1318
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1319
		blk_mq_insert_request(old_rq, false, true, true);
1320
		goto done;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1334 1335
done:
	return cookie;
1336 1337 1338 1339 1340 1341
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1342
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1343 1344 1345
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1346 1347
	struct blk_plug *plug;
	unsigned int request_count = 0;
1348 1349
	struct blk_map_ctx data;
	struct request *rq;
1350
	blk_qc_t cookie;
1351 1352 1353 1354

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1355
		bio_io_error(bio);
1356
		return BLK_QC_T_NONE;
1357 1358
	}

1359 1360
	blk_queue_split(q, &bio, q->bio_split);

1361
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1362
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1363
		return BLK_QC_T_NONE;
1364 1365

	rq = blk_mq_map_request(q, bio, &data);
1366
	if (unlikely(!rq))
1367
		return BLK_QC_T_NONE;
1368

1369
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1382 1383 1384
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1385
		if (!request_count)
1386
			trace_block_plug(q);
1387 1388 1389 1390

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1391 1392
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1393
		}
1394

1395
		list_add_tail(&rq->queuelist, &plug->mq_list);
1396
		return cookie;
1397 1398
	}

1399 1400 1401 1402 1403 1404 1405 1406 1407
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1408 1409
	}

1410
	blk_mq_put_ctx(data.ctx);
1411
	return cookie;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1423 1424
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1425
{
1426
	struct page *page;
1427

1428
	if (tags->rqs && set->ops->exit_request) {
1429
		int i;
1430

1431 1432
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1433
				continue;
1434 1435
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1436
			tags->rqs[i] = NULL;
1437
		}
1438 1439
	}

1440 1441
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1442
		list_del_init(&page->lru);
1443 1444 1445 1446 1447
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1448 1449 1450
		__free_pages(page, page->private);
	}

1451
	kfree(tags->rqs);
1452

1453
	blk_mq_free_tags(tags);
1454 1455 1456 1457
}

static size_t order_to_size(unsigned int order)
{
1458
	return (size_t)PAGE_SIZE << order;
1459 1460
}

1461 1462
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1463
{
1464
	struct blk_mq_tags *tags;
1465 1466 1467
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1468
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1469 1470
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1471 1472
	if (!tags)
		return NULL;
1473

1474 1475
	INIT_LIST_HEAD(&tags->page_list);

1476 1477 1478
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1479 1480 1481 1482
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1483 1484 1485 1486 1487

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1488
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1489
				cache_line_size());
1490
	left = rq_size * set->queue_depth;
1491

1492
	for (i = 0; i < set->queue_depth; ) {
1493 1494 1495 1496 1497
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1498
		while (this_order && left < order_to_size(this_order - 1))
1499 1500 1501
			this_order--;

		do {
1502
			page = alloc_pages_node(set->numa_node,
1503
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1504
				this_order);
1505 1506 1507 1508 1509 1510 1511 1512 1513
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1514
			goto fail;
1515 1516

		page->private = this_order;
1517
		list_add_tail(&page->lru, &tags->page_list);
1518 1519

		p = page_address(page);
1520 1521 1522 1523 1524
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1525
		entries_per_page = order_to_size(this_order) / rq_size;
1526
		to_do = min(entries_per_page, set->queue_depth - i);
1527 1528
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1529 1530 1531 1532
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1533 1534
						set->numa_node)) {
					tags->rqs[i] = NULL;
1535
					goto fail;
1536
				}
1537 1538
			}

1539 1540 1541 1542
			p += rq_size;
			i++;
		}
	}
1543
	return tags;
1544

1545 1546 1547
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1548 1549
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1625 1626 1627 1628 1629

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1630 1631 1632 1633

	return NOTIFY_OK;
}

1634
/* hctx->ctxs will be freed in queue's release handler */
1635 1636 1637 1638
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1639 1640
	unsigned flush_start_tag = set->queue_depth;

1641 1642
	blk_mq_tag_idle(hctx);

1643 1644 1645 1646 1647
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1648 1649 1650 1651
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1652
	blk_free_flush_queue(hctx->fq);
1653 1654 1655
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1665
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1675
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1676 1677 1678
		free_cpumask_var(hctx->cpumask);
}

1679 1680 1681
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1682
{
1683
	int node;
1684
	unsigned flush_start_tag = set->queue_depth;
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1696
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1697 1698 1699 1700 1701 1702

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1703 1704

	/*
1705 1706
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1707
	 */
1708 1709 1710 1711
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1712

1713 1714
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1715

1716
	hctx->nr_ctx = 0;
1717

1718 1719 1720
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1721

1722 1723 1724
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1725

1726 1727 1728 1729 1730
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1731

1732
	return 0;
1733

1734 1735 1736 1737 1738
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1739 1740 1741 1742 1743 1744
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1745

1746 1747
	return -1;
}
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1768 1769
		hctx = q->mq_ops->map_queue(q, i);

1770 1771 1772 1773 1774
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1775
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1776 1777 1778
	}
}

1779 1780
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1781 1782 1783 1784
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1785
	struct blk_mq_tag_set *set = q->tag_set;
1786

1787 1788 1789 1790 1791
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1792
	queue_for_each_hw_ctx(q, hctx, i) {
1793
		cpumask_clear(hctx->cpumask);
1794 1795 1796 1797 1798 1799
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1800
	for_each_possible_cpu(i) {
1801
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1802
		if (!cpumask_test_cpu(i, online_mask))
1803 1804
			continue;

1805
		ctx = per_cpu_ptr(q->queue_ctx, i);
1806
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1807

1808
		cpumask_set_cpu(i, hctx->cpumask);
1809 1810 1811
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1812

1813 1814
	mutex_unlock(&q->sysfs_lock);

1815
	queue_for_each_hw_ctx(q, hctx, i) {
1816 1817
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1818
		/*
1819 1820
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1821 1822 1823 1824 1825 1826
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1827
			hctx->tags = NULL;
1828 1829 1830
			continue;
		}

M
Ming Lei 已提交
1831 1832 1833 1834 1835 1836
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1837
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1838 1839 1840 1841 1842
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1843
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1844

1845 1846 1847
		/*
		 * Initialize batch roundrobin counts
		 */
1848 1849 1850
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1851 1852
}

1853
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1854 1855 1856 1857
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1869 1870 1871

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1872
		queue_set_hctx_shared(q, shared);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1883 1884 1885 1886 1887 1888
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1889 1890 1891 1892 1893 1894 1895 1896 1897
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1898 1899 1900 1901 1902 1903 1904 1905 1906

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1907
	list_add_tail(&q->tag_set_list, &set->tag_list);
1908

1909 1910 1911
	mutex_unlock(&set->tag_list_lock);
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1924 1925 1926 1927
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1928
		kfree(hctx);
1929
	}
1930

1931 1932 1933
	kfree(q->mq_map);
	q->mq_map = NULL;

1934 1935 1936 1937 1938 1939
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1940
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1956 1957
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1958
{
K
Keith Busch 已提交
1959 1960
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1961

K
Keith Busch 已提交
1962
	blk_mq_sysfs_unregister(q);
1963
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1964
		int node;
1965

K
Keith Busch 已提交
1966 1967 1968 1969
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1970 1971
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1972
		if (!hctxs[i])
K
Keith Busch 已提交
1973
			break;
1974

1975
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1976 1977 1978 1979 1980
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1981

1982
		atomic_set(&hctxs[i]->nr_active, 0);
1983
		hctxs[i]->numa_node = node;
1984
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
1985 1986 1987 1988 1989 1990 1991 1992

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
1993
	}
K
Keith Busch 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2018 2019 2020
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2021 2022
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2023
		goto err_exit;
K
Keith Busch 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2037

2038
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2039
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2040 2041 2042

	q->nr_queues = nr_cpu_ids;

2043
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2044

2045 2046 2047
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2048 2049
	q->sg_reserved_size = INT_MAX;

2050 2051 2052 2053
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2054 2055 2056 2057 2058
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2059 2060 2061 2062 2063
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2064 2065
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2066

2067
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2068

2069
	get_online_cpus();
2070 2071
	mutex_lock(&all_q_mutex);

2072
	list_add_tail(&q->all_q_node, &all_q_list);
2073
	blk_mq_add_queue_tag_set(set, q);
2074
	blk_mq_map_swqueue(q, cpu_online_mask);
2075

2076
	mutex_unlock(&all_q_mutex);
2077
	put_online_cpus();
2078

2079
	return q;
2080

2081
err_hctxs:
K
Keith Busch 已提交
2082
	kfree(q->mq_map);
2083
err_map:
K
Keith Busch 已提交
2084
	kfree(q->queue_hw_ctx);
2085
err_percpu:
K
Keith Busch 已提交
2086
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2087 2088
err_exit:
	q->mq_ops = NULL;
2089 2090
	return ERR_PTR(-ENOMEM);
}
2091
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2092 2093 2094

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2095
	struct blk_mq_tag_set	*set = q->tag_set;
2096

2097 2098 2099 2100
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2101 2102
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2103 2104
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2105 2106 2107
}

/* Basically redo blk_mq_init_queue with queue frozen */
2108 2109
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2110
{
2111
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2112

2113 2114
	blk_mq_sysfs_unregister(q);

2115
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2116 2117 2118 2119 2120 2121 2122

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2123
	blk_mq_map_swqueue(q, online_mask);
2124

2125
	blk_mq_sysfs_register(q);
2126 2127
}

2128 2129
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2130 2131
{
	struct request_queue *q;
2132 2133 2134 2135 2136 2137 2138
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2139 2140

	/*
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2156
	 */
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2167
		return NOTIFY_OK;
2168
	}
2169 2170

	mutex_lock(&all_q_mutex);
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2181
	list_for_each_entry(q, &all_q_list, all_q_node) {
2182 2183
		blk_mq_freeze_queue_wait(q);

2184 2185 2186 2187 2188 2189 2190
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2191
	list_for_each_entry(q, &all_q_list, all_q_node)
2192
		blk_mq_queue_reinit(q, &online_new);
2193 2194 2195 2196

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2197 2198 2199 2200
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2255 2256 2257 2258 2259 2260
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2261 2262 2263 2264 2265 2266
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2267 2268
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2269 2270
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2271 2272
	if (!set->nr_hw_queues)
		return -EINVAL;
2273
	if (!set->queue_depth)
2274 2275 2276 2277
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2278
	if (!set->ops->queue_rq || !set->ops->map_queue)
2279 2280
		return -EINVAL;

2281 2282 2283 2284 2285
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2296 2297 2298 2299 2300
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2301

K
Keith Busch 已提交
2302
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2303 2304
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2305
		return -ENOMEM;
2306

2307 2308
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2309

2310 2311 2312
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2313
	return 0;
2314
enomem:
2315 2316
	kfree(set->tags);
	set->tags = NULL;
2317 2318 2319 2320 2321 2322 2323 2324
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2325
	for (i = 0; i < nr_cpu_ids; i++) {
2326
		if (set->tags[i])
2327 2328 2329
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2330
	kfree(set->tags);
2331
	set->tags = NULL;
2332 2333 2334
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2346 2347
		if (!hctx->tags)
			continue;
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2398 2399 2400 2401
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2402
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2403 2404 2405 2406

	return 0;
}
subsys_initcall(blk_mq_init);