adv7604.c 103.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * adv7604 - Analog Devices ADV7604 video decoder driver
 *
 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * References (c = chapter, p = page):
 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
 *		Revision 2.5, June 2010
 * REF_02 - Analog devices, Register map documentation, Documentation of
 *		the register maps, Software manual, Rev. F, June 2010
 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
 */

30
#include <linux/delay.h>
31
#include <linux/gpio/consumer.h>
H
Hans Verkuil 已提交
32
#include <linux/hdmi.h>
33
#include <linux/i2c.h>
34 35 36
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
37
#include <linux/v4l2-dv-timings.h>
38 39
#include <linux/videodev2.h>
#include <linux/workqueue.h>
40
#include <linux/regmap.h>
41

42
#include <media/i2c/adv7604.h>
43
#include <media/cec.h>
44
#include <media/v4l2-ctrls.h>
45
#include <media/v4l2-device.h>
46
#include <media/v4l2-event.h>
47
#include <media/v4l2-dv-timings.h>
48
#include <media/v4l2-of.h>
49 50 51 52 53 54 55 56 57 58 59

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");

MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");

/* ADV7604 system clock frequency */
60
#define ADV76XX_FSC (28636360)
61

62
#define ADV76XX_RGB_OUT					(1 << 1)
63

64
#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
65
#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
66
#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
67

68
#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
69
#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
70
#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
71
#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
72
#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
73 74
#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)

75 76 77 78 79 80
#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
81

82
#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
83

84 85
#define ADV76XX_MAX_ADDRS (3)

86
enum adv76xx_type {
87 88
	ADV7604,
	ADV7611,
89
	ADV7612,
90 91
};

92
struct adv76xx_reg_seq {
93 94 95 96
	unsigned int reg;
	u8 val;
};

97
struct adv76xx_format_info {
98
	u32 code;
99 100 101 102 103 104
	u8 op_ch_sel;
	bool rgb_out;
	bool swap_cb_cr;
	u8 op_format_sel;
};

H
Hans Verkuil 已提交
105 106 107 108 109 110 111
struct adv76xx_cfg_read_infoframe {
	const char *desc;
	u8 present_mask;
	u8 head_addr;
	u8 payload_addr;
};

112 113
struct adv76xx_chip_info {
	enum adv76xx_type type;
114 115 116 117 118 119 120 121 122 123 124 125

	bool has_afe;
	unsigned int max_port;
	unsigned int num_dv_ports;

	unsigned int edid_enable_reg;
	unsigned int edid_status_reg;
	unsigned int lcf_reg;

	unsigned int cable_det_mask;
	unsigned int tdms_lock_mask;
	unsigned int fmt_change_digital_mask;
126
	unsigned int cp_csc;
127

128
	const struct adv76xx_format_info *formats;
129 130
	unsigned int nformats;

131 132 133 134 135 136
	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
	void (*setup_irqs)(struct v4l2_subdev *sd);
	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);

	/* 0 = AFE, 1 = HDMI */
137
	const struct adv76xx_reg_seq *recommended_settings[2];
138 139 140
	unsigned int num_recommended_settings[2];

	unsigned long page_mask;
141 142 143 144 145 146 147 148 149 150 151 152 153 154

	/* Masks for timings */
	unsigned int linewidth_mask;
	unsigned int field0_height_mask;
	unsigned int field1_height_mask;
	unsigned int hfrontporch_mask;
	unsigned int hsync_mask;
	unsigned int hbackporch_mask;
	unsigned int field0_vfrontporch_mask;
	unsigned int field1_vfrontporch_mask;
	unsigned int field0_vsync_mask;
	unsigned int field1_vsync_mask;
	unsigned int field0_vbackporch_mask;
	unsigned int field1_vbackporch_mask;
155 156
};

157 158 159 160 161 162 163
/*
 **********************************************************************
 *
 *  Arrays with configuration parameters for the ADV7604
 *
 **********************************************************************
 */
164

165 166 167
struct adv76xx_state {
	const struct adv76xx_chip_info *info;
	struct adv76xx_platform_data pdata;
168

169
	struct gpio_desc *hpd_gpio[4];
170
	struct gpio_desc *reset_gpio;
171

172
	struct v4l2_subdev sd;
173
	struct media_pad pads[ADV76XX_PAD_MAX];
174
	unsigned int source_pad;
175

176
	struct v4l2_ctrl_handler hdl;
177

178
	enum adv76xx_pad selected_input;
179

180
	struct v4l2_dv_timings timings;
181
	const struct adv76xx_format_info *format;
182

183 184 185 186 187
	struct {
		u8 edid[256];
		u32 present;
		unsigned blocks;
	} edid;
188
	u16 spa_port_a[2];
189 190 191
	struct v4l2_fract aspect_ratio;
	u32 rgb_quantization_range;
	struct delayed_work delayed_work_enable_hotplug;
192
	bool restart_stdi_once;
193

194
	/* CEC */
195 196 197 198 199
	struct cec_adapter *cec_adap;
	u8   cec_addr[ADV76XX_MAX_ADDRS];
	u8   cec_valid_addrs;
	bool cec_enabled_adap;

200
	/* i2c clients */
201
	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
202

203 204 205
	/* Regmaps */
	struct regmap *regmap[ADV76XX_PAGE_MAX];

206 207 208 209 210 211 212 213
	/* controls */
	struct v4l2_ctrl *detect_tx_5v_ctrl;
	struct v4l2_ctrl *analog_sampling_phase_ctrl;
	struct v4l2_ctrl *free_run_color_manual_ctrl;
	struct v4l2_ctrl *free_run_color_ctrl;
	struct v4l2_ctrl *rgb_quantization_range_ctrl;
};

214
static bool adv76xx_has_afe(struct adv76xx_state *state)
215 216 217 218
{
	return state->info->has_afe;
}

219 220 221 222
/* Unsupported timings. This device cannot support 720p30. */
static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
	V4L2_DV_BT_CEA_1280X720P30,
	{ }
223 224
};

225 226 227 228 229 230 231 232 233 234
static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
{
	int i;

	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
			return false;
	return true;
}

235
struct adv76xx_video_standards {
236 237 238 239 240 241
	struct v4l2_dv_timings timings;
	u8 vid_std;
	u8 v_freq;
};

/* sorted by number of lines */
242
static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
243 244 245 246 247 248 249 250 251 252 253 254 255 256
	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	/* TODO add 1920x1080P60_RB (CVT timing) */
	{ },
};

/* sorted by number of lines */
257
static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
	/* TODO add 1600X1200P60_RB (not a DMT timing) */
	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
	{ },
};

/* sorted by number of lines */
285
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
286 287 288 289 290 291 292 293 294 295 296 297 298
	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	{ },
};

/* sorted by number of lines */
299
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ },
};

318 319 320 321 322
static const struct v4l2_event adv76xx_ev_fmt = {
	.type = V4L2_EVENT_SOURCE_CHANGE,
	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};

323 324
/* ----------------------------------------------------------------------- */

325
static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
326
{
327
	return container_of(sd, struct adv76xx_state, sd);
328 329 330 331
}

static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
332
	return V4L2_DV_BT_FRAME_WIDTH(t);
333 334 335 336
}

static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
337
	return V4L2_DV_BT_FRAME_HEIGHT(t);
338 339 340 341
}

/* ----------------------------------------------------------------------- */

342 343
static int adv76xx_read_check(struct adv76xx_state *state,
			     int client_page, u8 reg)
344
{
345
	struct i2c_client *client = state->i2c_clients[client_page];
346
	int err;
347
	unsigned int val;
348

349 350 351 352 353 354
	err = regmap_read(state->regmap[client_page], reg, &val);

	if (err) {
		v4l_err(client, "error reading %02x, %02x\n",
				client->addr, reg);
		return err;
355
	}
356
	return val;
357 358
}

359 360 361 362 363 364 365 366 367
/* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
 * size to one or more registers.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
			      unsigned int init_reg, const void *val,
			      size_t val_len)
368
{
369 370 371 372
	struct regmap *regmap = state->regmap[client_page];

	if (val_len > I2C_SMBUS_BLOCK_MAX)
		val_len = I2C_SMBUS_BLOCK_MAX;
373

374
	return regmap_raw_write(regmap, init_reg, val, val_len);
375 376 377 378 379 380
}

/* ----------------------------------------------------------------------- */

static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
381
	struct adv76xx_state *state = to_state(sd);
382

383
	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
384 385 386 387
}

static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
388
	struct adv76xx_state *state = to_state(sd);
389

390
	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
391 392
}

393 394
static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
				   u8 val)
395
{
396
	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
397 398 399 400
}

static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
401
	struct adv76xx_state *state = to_state(sd);
402

403
	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
404 405 406 407
}

static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
408
	struct adv76xx_state *state = to_state(sd);
409

410
	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
411 412 413 414
}

static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
415
	struct adv76xx_state *state = to_state(sd);
416

417
	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
418 419 420 421
}

static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
422
	struct adv76xx_state *state = to_state(sd);
423

424
	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
425 426
}

427 428 429 430 431 432
static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
				   u8 val)
{
	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
}

433 434
static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
435
	struct adv76xx_state *state = to_state(sd);
436

437
	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
438 439 440 441
}

static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
442
	struct adv76xx_state *state = to_state(sd);
443

444
	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
445 446 447 448
}

static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
449
	struct adv76xx_state *state = to_state(sd);
450

451
	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
452 453 454 455
}

static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
456
	struct adv76xx_state *state = to_state(sd);
457

458
	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
459 460 461 462
}

static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
463
	struct adv76xx_state *state = to_state(sd);
464

465
	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
466 467 468 469
}

static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
470
	struct adv76xx_state *state = to_state(sd);
471

472
	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
473 474
}

475
static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
476
{
477
	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
478 479 480 481
}

static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
482
	struct adv76xx_state *state = to_state(sd);
483

484
	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
485 486 487 488
}

static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
489
	struct adv76xx_state *state = to_state(sd);
490

491
	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
492 493 494
}

static inline int edid_write_block(struct v4l2_subdev *sd,
495
					unsigned int total_len, const u8 *val)
496
{
497
	struct adv76xx_state *state = to_state(sd);
498
	int err = 0;
499 500
	int i = 0;
	int len = 0;
501

502 503 504 505 506 507 508 509 510 511 512 513
	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
				__func__, total_len);

	while (!err && i < total_len) {
		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
				I2C_SMBUS_BLOCK_MAX :
				(total_len - i);

		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
				i, val + i, len);
		i += len;
	}
514

515 516
	return err;
}
517

518
static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
519 520 521
{
	unsigned int i;

522
	for (i = 0; i < state->info->num_dv_ports; ++i)
523 524
		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));

525
	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
526 527
}

528
static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
529 530
{
	struct delayed_work *dwork = to_delayed_work(work);
531
	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
532 533
						delayed_work_enable_hotplug);
	struct v4l2_subdev *sd = &state->sd;
534

535
	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
536

537
	adv76xx_set_hpd(state, state->edid.present);
538 539 540 541
}

static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
542
	struct adv76xx_state *state = to_state(sd);
543

544
	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
545 546
}

547 548 549 550 551
static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
}

552 553
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
554
	struct adv76xx_state *state = to_state(sd);
555

556
	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
557 558
}

559
static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
560
{
561
	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
562 563
}

564 565
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
566
	struct adv76xx_state *state = to_state(sd);
567

568
	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
569 570 571 572
}

static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
573
	struct adv76xx_state *state = to_state(sd);
574

575
	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
576 577
}

578 579 580 581 582
static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
}

583 584
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
585
	struct adv76xx_state *state = to_state(sd);
586

587
	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
588 589
}

590
static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
591
{
592
	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
593 594 595 596
}

static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
597
	struct adv76xx_state *state = to_state(sd);
598

599
	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
600 601 602 603
}

static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
604
	struct adv76xx_state *state = to_state(sd);
605

606
	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
607
}
608

609 610
#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
#define ADV76XX_REG_SEQ_TERM		0xffff
611 612

#ifdef CONFIG_VIDEO_ADV_DEBUG
613
static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
614
{
615
	struct adv76xx_state *state = to_state(sd);
616
	unsigned int page = reg >> 8;
617 618
	unsigned int val;
	int err;
619 620 621 622 623

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;
624
	err = regmap_read(state->regmap[page], reg, &val);
625

626
	return err ? err : val;
627 628 629
}
#endif

630
static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
631
{
632
	struct adv76xx_state *state = to_state(sd);
633 634 635 636 637 638 639
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

640
	return regmap_write(state->regmap[page], reg, val);
641 642
}

643 644
static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
				  const struct adv76xx_reg_seq *reg_seq)
645 646 647
{
	unsigned int i;

648 649
	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
650 651
}

652 653 654 655
/* -----------------------------------------------------------------------------
 * Format helpers
 */

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
static const struct adv76xx_format_info adv7604_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
695 696
};

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
static const struct adv76xx_format_info adv7611_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
724 725
};

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static const struct adv76xx_format_info adv7612_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
};

743 744
static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state *state, u32 code)
745 746 747 748 749 750 751 752 753 754 755
{
	unsigned int i;

	for (i = 0; i < state->info->nformats; ++i) {
		if (state->info->formats[i].code == code)
			return &state->info->formats[i];
	}

	return NULL;
}

756 757
/* ----------------------------------------------------------------------- */

758 759
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
760
	struct adv76xx_state *state = to_state(sd);
761

762 763
	return state->selected_input == ADV7604_PAD_VGA_RGB ||
	       state->selected_input == ADV7604_PAD_VGA_COMP;
764 765 766 767
}

static inline bool is_digital_input(struct v4l2_subdev *sd)
{
768
	struct adv76xx_state *state = to_state(sd);
769

770
	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
771 772 773
	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
774 775
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
	.type = V4L2_DV_BT_656_1120,
	/* keep this initialization for compatibility with GCC < 4.4.6 */
	.reserved = { 0 },
	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
			V4L2_DV_BT_CAP_CUSTOM)
};

static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
	.type = V4L2_DV_BT_656_1120,
	/* keep this initialization for compatibility with GCC < 4.4.6 */
	.reserved = { 0 },
	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
			V4L2_DV_BT_CAP_CUSTOM)
};

798 799 800 801 802 803
/*
 * Return the DV timings capabilities for the requested sink pad. As a special
 * case, pad value -1 returns the capabilities for the currently selected input.
 */
static const struct v4l2_dv_timings_cap *
adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
804
{
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	if (pad == -1) {
		struct adv76xx_state *state = to_state(sd);

		pad = state->selected_input;
	}

	switch (pad) {
	case ADV76XX_PAD_HDMI_PORT_A:
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
		return &adv76xx_timings_cap_digital;

	case ADV7604_PAD_VGA_RGB:
	case ADV7604_PAD_VGA_COMP:
	default:
		return &adv7604_timings_cap_analog;
	}
823 824 825
}


826 827
/* ----------------------------------------------------------------------- */

828
#ifdef CONFIG_VIDEO_ADV_DEBUG
829
static void adv76xx_inv_register(struct v4l2_subdev *sd)
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
{
	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}

846
static int adv76xx_g_register(struct v4l2_subdev *sd,
847 848
					struct v4l2_dbg_register *reg)
{
849 850
	int ret;

851
	ret = adv76xx_read_reg(sd, reg->reg);
852
	if (ret < 0) {
853
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
854
		adv76xx_inv_register(sd);
855
		return ret;
856
	}
857 858 859 860

	reg->size = 1;
	reg->val = ret;

861 862 863
	return 0;
}

864
static int adv76xx_s_register(struct v4l2_subdev *sd,
865
					const struct v4l2_dbg_register *reg)
866
{
867
	int ret;
868

869
	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
870
	if (ret < 0) {
871
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
872
		adv76xx_inv_register(sd);
873
		return ret;
874
	}
875

876 877 878 879
	return 0;
}
#endif

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return ((value & 0x10) >> 4)
	     | ((value & 0x08) >> 2)
	     | ((value & 0x04) << 0)
	     | ((value & 0x02) << 2);
}

static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

897 898 899 900 901 902 903 904 905 906
static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
{
	/*  Reads CABLE_DET_A_RAW. For input B support, need to
	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
	 */
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

907
static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
908
{
909 910
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
911
	u16 cable_det = info->read_cable_det(sd);
912

913
	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
914 915
}

916 917
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
		u8 prim_mode,
918
		const struct adv76xx_video_standards *predef_vid_timings,
919 920 921 922 923
		const struct v4l2_dv_timings *timings)
{
	int i;

	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
924
		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
925
				is_digital_input(sd) ? 250000 : 1000000, false))
926 927 928 929 930 931 932 933 934 935 936 937
			continue;
		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
				prim_mode); /* v_freq and prim mode */
		return 0;
	}

	return -1;
}

static int configure_predefined_video_timings(struct v4l2_subdev *sd,
		struct v4l2_dv_timings *timings)
938
{
939
	struct adv76xx_state *state = to_state(sd);
940 941 942 943
	int err;

	v4l2_dbg(1, debug, sd, "%s", __func__);

944
	if (adv76xx_has_afe(state)) {
945 946 947 948
		/* reset to default values */
		io_write(sd, 0x16, 0x43);
		io_write(sd, 0x17, 0x5a);
	}
949
	/* disable embedded syncs for auto graphics mode */
950
	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
951 952 953 954 955 956 957 958 959 960 961
	cp_write(sd, 0x8f, 0x00);
	cp_write(sd, 0x90, 0x00);
	cp_write(sd, 0xa2, 0x00);
	cp_write(sd, 0xa3, 0x00);
	cp_write(sd, 0xa4, 0x00);
	cp_write(sd, 0xa5, 0x00);
	cp_write(sd, 0xa6, 0x00);
	cp_write(sd, 0xa7, 0x00);
	cp_write(sd, 0xab, 0x00);
	cp_write(sd, 0xac, 0x00);

962
	if (is_analog_input(sd)) {
963 964 965 966 967
		err = find_and_set_predefined_video_timings(sd,
				0x01, adv7604_prim_mode_comp, timings);
		if (err)
			err = find_and_set_predefined_video_timings(sd,
					0x02, adv7604_prim_mode_gr, timings);
968
	} else if (is_digital_input(sd)) {
969
		err = find_and_set_predefined_video_timings(sd,
970
				0x05, adv76xx_prim_mode_hdmi_comp, timings);
971 972
		if (err)
			err = find_and_set_predefined_video_timings(sd,
973
					0x06, adv76xx_prim_mode_hdmi_gr, timings);
974 975 976
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
977 978 979 980 981 982 983 984 985 986
		err = -1;
	}


	return err;
}

static void configure_custom_video_timings(struct v4l2_subdev *sd,
		const struct v4l2_bt_timings *bt)
{
987
	struct adv76xx_state *state = to_state(sd);
988 989 990 991 992 993 994
	u32 width = htotal(bt);
	u32 height = vtotal(bt);
	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
	u16 cp_start_eav = width - bt->hfrontporch;
	u16 cp_start_vbi = height - bt->vfrontporch;
	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
995
		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
996 997 998 999
	const u8 pll[2] = {
		0xc0 | ((width >> 8) & 0x1f),
		width & 0xff
	};
1000 1001 1002

	v4l2_dbg(2, debug, sd, "%s\n", __func__);

1003
	if (is_analog_input(sd)) {
1004 1005 1006 1007
		/* auto graphics */
		io_write(sd, 0x00, 0x07); /* video std */
		io_write(sd, 0x01, 0x02); /* prim mode */
		/* enable embedded syncs for auto graphics mode */
1008
		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1009

1010
		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1011 1012
		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1013 1014
		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
					0x16, pll, 2))
1015 1016 1017 1018
			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");

		/* active video - horizontal timing */
		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1019
		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1020
				   ((cp_start_eav >> 8) & 0x0f));
1021 1022 1023 1024
		cp_write(sd, 0xa4, cp_start_eav & 0xff);

		/* active video - vertical timing */
		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1025
		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1026
				   ((cp_end_vbi >> 8) & 0xf));
1027
		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1028
	} else if (is_digital_input(sd)) {
1029
		/* set default prim_mode/vid_std for HDMI
1030
		   according to [REF_03, c. 4.2] */
1031 1032
		io_write(sd, 0x00, 0x02); /* video std */
		io_write(sd, 0x01, 0x06); /* prim mode */
1033 1034 1035
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1036 1037
	}

1038 1039 1040 1041 1042
	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
	cp_write(sd, 0xab, (height >> 4) & 0xff);
	cp_write(sd, 0xac, (height & 0x0f) << 4);
}
1043

1044
static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1045
{
1046
	struct adv76xx_state *state = to_state(sd);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	u8 offset_buf[4];

	if (auto_offset) {
		offset_a = 0x3ff;
		offset_b = 0x3ff;
		offset_c = 0x3ff;
	}

	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_offset ? "Auto" : "Manual",
			offset_a, offset_b, offset_c);

	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
	offset_buf[3] = offset_c & 0x0ff;

	/* Registers must be written in this order with no i2c access in between */
1065 1066
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			0x77, offset_buf, 4))
1067 1068 1069
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}

1070
static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1071
{
1072
	struct adv76xx_state *state = to_state(sd);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	u8 gain_buf[4];
	u8 gain_man = 1;
	u8 agc_mode_man = 1;

	if (auto_gain) {
		gain_man = 0;
		agc_mode_man = 0;
		gain_a = 0x100;
		gain_b = 0x100;
		gain_c = 0x100;
	}

	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_gain ? "Auto" : "Manual",
			gain_a, gain_b, gain_c);

	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
	gain_buf[3] = ((gain_c & 0x0ff));

	/* Registers must be written in this order with no i2c access in between */
1095 1096
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			     0x73, gain_buf, 4))
1097 1098 1099
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}

1100 1101
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
1102
	struct adv76xx_state *state = to_state(sd);
1103 1104
	bool rgb_output = io_read(sd, 0x02) & 0x02;
	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1105 1106 1107 1108
	u8 y = HDMI_COLORSPACE_RGB;

	if (hdmi_signal && (io_read(sd, 0x60) & 1))
		y = infoframe_read(sd, 0x01) >> 5;
1109 1110 1111 1112

	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
			__func__, state->rgb_quantization_range,
			rgb_output, hdmi_signal);
1113

1114 1115
	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1116
	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1117

1118 1119
	switch (state->rgb_quantization_range) {
	case V4L2_DV_RGB_RANGE_AUTO:
1120
		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1121 1122
			/* Receiving analog RGB signal
			 * Set RGB full range (0-255) */
1123
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1124 1125 1126
			break;
		}

1127
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1128 1129
			/* Receiving analog YPbPr signal
			 * Set automode */
1130
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1131 1132 1133
			break;
		}

1134
		if (hdmi_signal) {
1135 1136
			/* Receiving HDMI signal
			 * Set automode */
1137
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1138 1139 1140 1141 1142 1143
			break;
		}

		/* Receiving DVI-D signal
		 * ADV7604 selects RGB limited range regardless of
		 * input format (CE/IT) in automatic mode */
1144
		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1145
			/* RGB limited range (16-235) */
1146
			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1147 1148
		} else {
			/* RGB full range (0-255) */
1149
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1150 1151

			if (is_digital_input(sd) && rgb_output) {
1152
				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1153
			} else {
1154 1155
				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1156
			}
1157 1158 1159
		}
		break;
	case V4L2_DV_RGB_RANGE_LIMITED:
1160
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1161
			/* YCrCb limited range (16-235) */
1162
			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1163
			break;
1164
		}
1165

1166 1167 1168
		if (y != HDMI_COLORSPACE_RGB)
			break;

1169
		/* RGB limited range (16-235) */
1170
		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1171

1172 1173
		break;
	case V4L2_DV_RGB_RANGE_FULL:
1174
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1175
			/* YCrCb full range (0-255) */
1176
			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1177 1178 1179
			break;
		}

1180 1181 1182
		if (y != HDMI_COLORSPACE_RGB)
			break;

1183
		/* RGB full range (0-255) */
1184
		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1185 1186 1187 1188 1189 1190

		if (is_analog_input(sd) || hdmi_signal)
			break;

		/* Adjust gain/offset for DVI-D signals only */
		if (rgb_output) {
1191
			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1192
		} else {
1193 1194
			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1195
		}
1196 1197 1198 1199
		break;
	}
}

1200
static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1201
{
1202
	struct v4l2_subdev *sd =
1203
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1204

1205
	struct adv76xx_state *state = to_state(sd);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		cp_write(sd, 0x3c, ctrl->val);
		return 0;
	case V4L2_CID_CONTRAST:
		cp_write(sd, 0x3a, ctrl->val);
		return 0;
	case V4L2_CID_SATURATION:
		cp_write(sd, 0x3b, ctrl->val);
		return 0;
	case V4L2_CID_HUE:
		cp_write(sd, 0x3d, ctrl->val);
		return 0;
	case  V4L2_CID_DV_RX_RGB_RANGE:
		state->rgb_quantization_range = ctrl->val;
		set_rgb_quantization_range(sd);
		return 0;
	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1225
		if (!adv76xx_has_afe(state))
1226
			return -EINVAL;
1227 1228 1229 1230 1231 1232 1233 1234 1235
		/* Set the analog sampling phase. This is needed to find the
		   best sampling phase for analog video: an application or
		   driver has to try a number of phases and analyze the picture
		   quality before settling on the best performing phase. */
		afe_write(sd, 0xc8, ctrl->val);
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
		/* Use the default blue color for free running mode,
		   or supply your own. */
1236
		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
		return 0;
	}
	return -EINVAL;
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
	struct v4l2_subdev *sd =
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;

	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
		return 0;
	}
	return -EINVAL;
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
/* ----------------------------------------------------------------------- */

static inline bool no_power(struct v4l2_subdev *sd)
{
	/* Entire chip or CP powered off */
	return io_read(sd, 0x0c) & 0x24;
}

static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
1271
	struct adv76xx_state *state = to_state(sd);
1272 1273

	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1274 1275 1276 1277
}

static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
1278 1279
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1280 1281

	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1282 1283
}

1284 1285 1286 1287 1288
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
	return hdmi_read(sd, 0x05) & 0x80;
}

1289 1290
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
1291
	struct adv76xx_state *state = to_state(sd);
1292 1293 1294 1295 1296

	/*
	 * Chips without a AFE don't expose registers for the SSPD, so just assume
	 * that we have a lock.
	 */
1297
	if (adv76xx_has_afe(state))
1298 1299
		return false;

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	/* TODO channel 2 */
	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}

static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
	/* TODO channel 2 */
	return !(cp_read(sd, 0xb1) & 0x80);
}

static inline bool no_signal(struct v4l2_subdev *sd)
{
	bool ret;

	ret = no_power(sd);

	ret |= no_lock_stdi(sd);
	ret |= no_lock_sspd(sd);

1319
	if (is_digital_input(sd)) {
1320 1321 1322 1323 1324 1325 1326 1327 1328
		ret |= no_lock_tmds(sd);
		ret |= no_signal_tmds(sd);
	}

	return ret;
}

static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
1329
	struct adv76xx_state *state = to_state(sd);
1330

1331
	if (!adv76xx_has_afe(state))
1332 1333
		return false;

1334 1335 1336 1337 1338
	/* CP has detected a non standard number of lines on the incoming
	   video compared to what it is configured to receive by s_dv_timings */
	return io_read(sd, 0x12) & 0x01;
}

1339 1340 1341 1342 1343
static inline bool in_free_run(struct v4l2_subdev *sd)
{
	return cp_read(sd, 0xff) & 0x10;
}

1344
static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1345 1346 1347 1348
{
	*status = 0;
	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1349 1350 1351
	if (!in_free_run(sd) && no_lock_cp(sd))
		*status |= is_digital_input(sd) ?
			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);

	return 0;
}

/* ----------------------------------------------------------------------- */

struct stdi_readback {
	u16 bl, lcf, lcvs;
	u8 hs_pol, vs_pol;
	bool interlaced;
};

static int stdi2dv_timings(struct v4l2_subdev *sd,
		struct stdi_readback *stdi,
		struct v4l2_dv_timings *timings)
{
1370 1371
	struct adv76xx_state *state = to_state(sd);
	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1372 1373 1374
	u32 pix_clk;
	int i;

1375 1376 1377 1378
	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;

		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1379
					   adv76xx_get_dv_timings_cap(sd, -1),
1380
					   adv76xx_check_dv_timings, NULL))
1381
			continue;
1382 1383 1384
		if (vtotal(bt) != stdi->lcf + 1)
			continue;
		if (bt->vsync != stdi->lcvs)
1385 1386
			continue;

1387
		pix_clk = hfreq * htotal(bt);
1388

1389 1390 1391
		if ((pix_clk < bt->pixelclock + 1000000) &&
		    (pix_clk > bt->pixelclock - 1000000)) {
			*timings = v4l2_dv_timings_presets[i];
1392 1393 1394 1395
			return 0;
		}
	}

1396
	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1397 1398
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1399
			false, timings))
1400 1401 1402 1403
		return 0;
	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1404
			false, state->aspect_ratio, timings))
1405 1406
		return 0;

1407 1408 1409 1410
	v4l2_dbg(2, debug, sd,
		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
		stdi->hs_pol, stdi->vs_pol);
1411 1412 1413
	return -1;
}

1414

1415 1416
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
1417 1418
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1419 1420
	u8 polarity;

1421 1422 1423 1424 1425 1426
	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
		return -1;
	}

	/* read STDI */
1427
	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1428
	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1429 1430 1431
	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
	stdi->interlaced = io_read(sd, 0x12) & 0x10;

1432
	if (adv76xx_has_afe(state)) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
		/* read SSPD */
		polarity = cp_read(sd, 0xb5);
		if ((polarity & 0x03) == 0x01) {
			stdi->hs_pol = polarity & 0x10
				     ? (polarity & 0x08 ? '+' : '-') : 'x';
			stdi->vs_pol = polarity & 0x40
				     ? (polarity & 0x20 ? '+' : '-') : 'x';
		} else {
			stdi->hs_pol = 'x';
			stdi->vs_pol = 'x';
		}
1444
	} else {
1445 1446 1447
		polarity = hdmi_read(sd, 0x05);
		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	}

	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd,
			"%s: signal lost during readout of STDI/SSPD\n", __func__);
		return -1;
	}

	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
		memset(stdi, 0, sizeof(struct stdi_readback));
		return -1;
	}

	v4l2_dbg(2, debug, sd,
		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
		stdi->hs_pol, stdi->vs_pol,
		stdi->interlaced ? "interlaced" : "progressive");

	return 0;
}

1471
static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1472 1473
			struct v4l2_enum_dv_timings *timings)
{
1474
	struct adv76xx_state *state = to_state(sd);
1475 1476 1477 1478

	if (timings->pad >= state->source_pad)
		return -EINVAL;

1479
	return v4l2_enum_dv_timings_cap(timings,
1480 1481
		adv76xx_get_dv_timings_cap(sd, timings->pad),
		adv76xx_check_dv_timings, NULL);
1482 1483
}

1484
static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1485
			struct v4l2_dv_timings_cap *cap)
1486
{
1487
	struct adv76xx_state *state = to_state(sd);
1488
	unsigned int pad = cap->pad;
1489 1490 1491 1492

	if (cap->pad >= state->source_pad)
		return -EINVAL;

1493 1494 1495
	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
	cap->pad = pad;

1496 1497 1498 1499
	return 0;
}

/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1500 1501
   if the format is listed in adv76xx_timings[] */
static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1502 1503
		struct v4l2_dv_timings *timings)
{
1504 1505 1506
	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
				 is_digital_input(sd) ? 250000 : 1000000,
				 adv76xx_check_dv_timings, NULL);
1507 1508
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	unsigned int freq;
	int a, b;

	a = hdmi_read(sd, 0x06);
	b = hdmi_read(sd, 0x3b);
	if (a < 0 || b < 0)
		return 0;
	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;

	if (is_hdmi(sd)) {
		/* adjust for deep color mode */
		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;

		freq = freq * 8 / bits_per_channel;
	}

	return freq;
}

static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	int a, b;

	a = hdmi_read(sd, 0x51);
	b = hdmi_read(sd, 0x52);
	if (a < 0 || b < 0)
		return 0;
	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
}

1541
static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1542 1543
			struct v4l2_dv_timings *timings)
{
1544 1545
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1546 1547 1548 1549 1550 1551 1552 1553 1554
	struct v4l2_bt_timings *bt = &timings->bt;
	struct stdi_readback stdi;

	if (!timings)
		return -EINVAL;

	memset(timings, 0, sizeof(struct v4l2_dv_timings));

	if (no_signal(sd)) {
1555
		state->restart_stdi_once = true;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
		return -ENOLINK;
	}

	/* read STDI */
	if (read_stdi(sd, &stdi)) {
		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
		return -ENOLINK;
	}
	bt->interlaced = stdi.interlaced ?
		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;

1568
	if (is_digital_input(sd)) {
1569 1570
		timings->type = V4L2_DV_BT_656_1120;

1571 1572
		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1573
		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1574 1575 1576 1577 1578 1579 1580 1581
		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
		bt->vfrontporch = hdmi_read16(sd, 0x2a,
			info->field0_vfrontporch_mask) / 2;
		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
		bt->vbackporch = hdmi_read16(sd, 0x32,
			info->field0_vbackporch_mask) / 2;
1582 1583 1584
		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
		if (bt->interlaced == V4L2_DV_INTERLACED) {
1585 1586 1587 1588 1589 1590 1591 1592
			bt->height += hdmi_read16(sd, 0x0b,
				info->field1_height_mask);
			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
				info->field1_vfrontporch_mask) / 2;
			bt->il_vsync = hdmi_read16(sd, 0x30,
				info->field1_vsync_mask) / 2;
			bt->il_vbackporch = hdmi_read16(sd, 0x34,
				info->field1_vbackporch_mask) / 2;
1593
		}
1594
		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1595 1596
	} else {
		/* find format
H
Hans Verkuil 已提交
1597
		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
		 */
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs += 1;
		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs -= 2;
		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
		if (stdi2dv_timings(sd, &stdi, timings)) {
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
			/*
			 * The STDI block may measure wrong values, especially
			 * for lcvs and lcf. If the driver can not find any
			 * valid timing, the STDI block is restarted to measure
			 * the video timings again. The function will return an
			 * error, but the restart of STDI will generate a new
			 * STDI interrupt and the format detection process will
			 * restart.
			 */
			if (state->restart_stdi_once) {
				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
				/* TODO restart STDI for Sync Channel 2 */
				/* enter one-shot mode */
1622
				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1623
				/* trigger STDI restart */
1624
				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1625
				/* reset to continuous mode */
1626
				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1627 1628 1629
				state->restart_stdi_once = false;
				return -ENOLINK;
			}
1630 1631 1632
			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
			return -ERANGE;
		}
1633
		state->restart_stdi_once = true;
1634 1635 1636 1637 1638 1639 1640 1641 1642
	}
found:

	if (no_signal(sd)) {
		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
		memset(timings, 0, sizeof(struct v4l2_dv_timings));
		return -ENOLINK;
	}

1643 1644
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1645 1646 1647 1648 1649 1650
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}

	if (debug > 1)
1651
		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1652
				      timings, true);
1653 1654 1655 1656

	return 0;
}

1657
static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1658 1659
		struct v4l2_dv_timings *timings)
{
1660
	struct adv76xx_state *state = to_state(sd);
1661
	struct v4l2_bt_timings *bt;
1662
	int err;
1663 1664 1665 1666

	if (!timings)
		return -EINVAL;

1667
	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1668 1669 1670 1671
		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
		return 0;
	}

1672 1673
	bt = &timings->bt;

1674
	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1675
				   adv76xx_check_dv_timings, NULL))
1676
		return -ERANGE;
1677

1678
	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1679 1680 1681

	state->timings = *timings;

1682
	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1683 1684 1685 1686 1687 1688 1689 1690

	/* Use prim_mode and vid_std when available */
	err = configure_predefined_video_timings(sd, timings);
	if (err) {
		/* custom settings when the video format
		 does not have prim_mode/vid_std */
		configure_custom_video_timings(sd, bt);
	}
1691 1692 1693 1694

	set_rgb_quantization_range(sd);

	if (debug > 1)
1695
		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1696
				      timings, true);
1697 1698 1699
	return 0;
}

1700
static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1701 1702
		struct v4l2_dv_timings *timings)
{
1703
	struct adv76xx_state *state = to_state(sd);
1704 1705 1706 1707 1708

	*timings = state->timings;
	return 0;
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
}

static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
}

1719
static void enable_input(struct v4l2_subdev *sd)
1720
{
1721
	struct adv76xx_state *state = to_state(sd);
1722

1723
	if (is_analog_input(sd)) {
1724
		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1725
	} else if (is_digital_input(sd)) {
1726
		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1727
		state->info->set_termination(sd, true);
1728
		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1729
		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1730 1731 1732
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1733 1734 1735 1736 1737
	}
}

static void disable_input(struct v4l2_subdev *sd)
{
1738
	struct adv76xx_state *state = to_state(sd);
1739

1740
	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1741
	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1742
	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1743
	state->info->set_termination(sd, false);
1744 1745
}

1746
static void select_input(struct v4l2_subdev *sd)
1747
{
1748 1749
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1750

1751
	if (is_analog_input(sd)) {
1752
		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1753 1754 1755 1756

		afe_write(sd, 0x00, 0x08); /* power up ADC */
		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
		afe_write(sd, 0xc8, 0x00); /* phase control */
1757 1758
	} else if (is_digital_input(sd)) {
		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1759

1760
		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1761

1762
		if (adv76xx_has_afe(state)) {
1763 1764 1765 1766 1767
			afe_write(sd, 0x00, 0xff); /* power down ADC */
			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
			afe_write(sd, 0xc8, 0x40); /* phase control */
		}

1768 1769 1770
		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1771 1772 1773
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1774 1775 1776
	}
}

1777
static int adv76xx_s_routing(struct v4l2_subdev *sd,
1778 1779
		u32 input, u32 output, u32 config)
{
1780
	struct adv76xx_state *state = to_state(sd);
1781

1782 1783 1784 1785 1786
	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
			__func__, input, state->selected_input);

	if (input == state->selected_input)
		return 0;
1787

1788 1789 1790
	if (input > state->info->max_port)
		return -EINVAL;

1791
	state->selected_input = input;
1792 1793

	disable_input(sd);
1794 1795
	select_input(sd);
	enable_input(sd);
1796

1797 1798
	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);

1799 1800 1801
	return 0;
}

1802
static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1803
				  struct v4l2_subdev_pad_config *cfg,
1804
				  struct v4l2_subdev_mbus_code_enum *code)
1805
{
1806
	struct adv76xx_state *state = to_state(sd);
1807 1808

	if (code->index >= state->info->nformats)
1809
		return -EINVAL;
1810 1811 1812

	code->code = state->info->formats[code->index].code;

1813 1814 1815
	return 0;
}

1816
static void adv76xx_fill_format(struct adv76xx_state *state,
1817
				struct v4l2_mbus_framefmt *format)
1818
{
1819
	memset(format, 0, sizeof(*format));
1820

1821 1822 1823
	format->width = state->timings.bt.width;
	format->height = state->timings.bt.height;
	format->field = V4L2_FIELD_NONE;
1824
	format->colorspace = V4L2_COLORSPACE_SRGB;
1825

1826
	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1827
		format->colorspace = (state->timings.bt.height <= 576) ?
1828
			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1829 1830 1831 1832 1833 1834 1835 1836 1837
}

/*
 * Compute the op_ch_sel value required to obtain on the bus the component order
 * corresponding to the selected format taking into account bus reordering
 * applied by the board at the output of the device.
 *
 * The following table gives the op_ch_value from the format component order
 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1838
 * adv76xx_bus_order value in row).
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
 *
 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
 * ----------+-------------------------------------------------
 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
 */
1849
static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1850 1851
{
#define _SEL(a,b,c,d,e,f)	{ \
1852 1853
	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
#define _BUS(x)			[ADV7604_BUS_ORDER_##x]

	static const unsigned int op_ch_sel[6][6] = {
		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
	};

	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}

1868
static void adv76xx_setup_format(struct adv76xx_state *state)
1869 1870 1871
{
	struct v4l2_subdev *sd = &state->sd;

1872
	io_write_clr_set(sd, 0x02, 0x02,
1873
			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1874 1875
	io_write(sd, 0x03, state->format->op_format_sel |
		 state->pdata.op_format_mode_sel);
1876
	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1877
	io_write_clr_set(sd, 0x05, 0x01,
1878
			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1879
	set_rgb_quantization_range(sd);
1880 1881
}

1882 1883
static int adv76xx_get_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1884 1885
			      struct v4l2_subdev_format *format)
{
1886
	struct adv76xx_state *state = to_state(sd);
1887 1888 1889 1890

	if (format->pad != state->source_pad)
		return -EINVAL;

1891
	adv76xx_fill_format(state, &format->format);
1892 1893 1894 1895

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1896
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1897 1898 1899
		format->format.code = fmt->code;
	} else {
		format->format.code = state->format->code;
1900
	}
1901 1902 1903 1904

	return 0;
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static int adv76xx_get_selection(struct v4l2_subdev *sd,
				 struct v4l2_subdev_pad_config *cfg,
				 struct v4l2_subdev_selection *sel)
{
	struct adv76xx_state *state = to_state(sd);

	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
		return -EINVAL;
	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
		return -EINVAL;

	sel->r.left	= 0;
	sel->r.top	= 0;
	sel->r.width	= state->timings.bt.width;
	sel->r.height	= state->timings.bt.height;

	return 0;
}

1925 1926
static int adv76xx_set_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1927 1928
			      struct v4l2_subdev_format *format)
{
1929 1930
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_format_info *info;
1931 1932 1933 1934

	if (format->pad != state->source_pad)
		return -EINVAL;

1935
	info = adv76xx_format_info(state, format->format.code);
1936
	if (info == NULL)
1937
		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1938

1939
	adv76xx_fill_format(state, &format->format);
1940 1941 1942 1943 1944
	format->format.code = info->code;

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1945
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1946 1947 1948
		fmt->code = format->format.code;
	} else {
		state->format = info;
1949
		adv76xx_setup_format(state);
1950 1951
	}

1952 1953 1954
	return 0;
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
{
	struct adv76xx_state *state = to_state(sd);

	if ((cec_read(sd, 0x11) & 0x01) == 0) {
		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
		return;
	}

	if (tx_raw_status & 0x02) {
		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
			 __func__);
		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
				  1, 0, 0, 0);
	}
	if (tx_raw_status & 0x04) {
		u8 status;
		u8 nack_cnt;
		u8 low_drive_cnt;

		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
		/*
		 * We set this status bit since this hardware performs
		 * retransmissions.
		 */
		status = CEC_TX_STATUS_MAX_RETRIES;
		nack_cnt = cec_read(sd, 0x14) & 0xf;
		if (nack_cnt)
			status |= CEC_TX_STATUS_NACK;
		low_drive_cnt = cec_read(sd, 0x14) >> 4;
		if (low_drive_cnt)
			status |= CEC_TX_STATUS_LOW_DRIVE;
		cec_transmit_done(state->cec_adap, status,
				  0, nack_cnt, low_drive_cnt, 0);
		return;
	}
	if (tx_raw_status & 0x01) {
		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
		return;
	}
}

static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
{
	struct adv76xx_state *state = to_state(sd);
	u8 cec_irq;

	/* cec controller */
	cec_irq = io_read(sd, 0x4d) & 0x0f;
	if (!cec_irq)
		return;

	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
	adv76xx_cec_tx_raw_status(sd, cec_irq);
	if (cec_irq & 0x08) {
		struct cec_msg msg;

		msg.len = cec_read(sd, 0x25) & 0x1f;
		if (msg.len > 16)
			msg.len = 16;

		if (msg.len) {
			u8 i;

			for (i = 0; i < msg.len; i++)
				msg.msg[i] = cec_read(sd, i + 0x15);
			cec_write(sd, 0x26, 0x01); /* re-enable rx */
			cec_received_msg(state->cec_adap, &msg);
		}
	}

	/* note: the bit order is swapped between 0x4d and 0x4e */
	cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
		  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
	io_write(sd, 0x4e, cec_irq);

	if (handled)
		*handled = true;
}

static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
	struct adv76xx_state *state = adap->priv;
	struct v4l2_subdev *sd = &state->sd;

	if (!state->cec_enabled_adap && enable) {
		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
		/* enabled irqs: */
		/* tx: ready */
		/* tx: arbitration lost */
		/* tx: retry timeout */
		/* rx: ready */
		io_write_clr_set(sd, 0x50, 0x0f, 0x0f);
		cec_write(sd, 0x26, 0x01);            /* enable rx */
	} else if (state->cec_enabled_adap && !enable) {
		/* disable cec interrupts */
		io_write_clr_set(sd, 0x50, 0x0f, 0x00);
		/* disable address mask 1-3 */
		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
		/* power down cec section */
		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
		state->cec_valid_addrs = 0;
	}
	state->cec_enabled_adap = enable;
	adv76xx_s_detect_tx_5v_ctrl(sd);
	return 0;
}

static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
{
	struct adv76xx_state *state = adap->priv;
	struct v4l2_subdev *sd = &state->sd;
	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;

	if (!state->cec_enabled_adap)
		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;

	if (addr == CEC_LOG_ADDR_INVALID) {
		cec_write_clr_set(sd, 0x27, 0x70, 0);
		state->cec_valid_addrs = 0;
		return 0;
	}

	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
		bool is_valid = state->cec_valid_addrs & (1 << i);

		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
			free_idx = i;
		if (is_valid && state->cec_addr[i] == addr)
			return 0;
	}
	if (i == ADV76XX_MAX_ADDRS) {
		i = free_idx;
		if (i == ADV76XX_MAX_ADDRS)
			return -ENXIO;
	}
	state->cec_addr[i] = addr;
	state->cec_valid_addrs |= 1 << i;

	switch (i) {
	case 0:
		/* enable address mask 0 */
		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
		/* set address for mask 0 */
		cec_write_clr_set(sd, 0x28, 0x0f, addr);
		break;
	case 1:
		/* enable address mask 1 */
		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
		/* set address for mask 1 */
		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
		break;
	case 2:
		/* enable address mask 2 */
		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
		/* set address for mask 1 */
		cec_write_clr_set(sd, 0x29, 0x0f, addr);
		break;
	}
	return 0;
}

static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
				     u32 signal_free_time, struct cec_msg *msg)
{
	struct adv76xx_state *state = adap->priv;
	struct v4l2_subdev *sd = &state->sd;
	u8 len = msg->len;
	unsigned int i;

	/*
	 * The number of retries is the number of attempts - 1, but retry
	 * at least once. It's not clear if a value of 0 is allowed, so
	 * let's do at least one retry.
	 */
	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);

	if (len > 16) {
		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
		return -EINVAL;
	}

	/* write data */
	for (i = 0; i < len; i++)
		cec_write(sd, i, msg->msg[i]);

	/* set length (data + header) */
	cec_write(sd, 0x10, len);
	/* start transmit, enable tx */
	cec_write(sd, 0x11, 0x01);
	return 0;
}

static const struct cec_adap_ops adv76xx_cec_adap_ops = {
	.adap_enable = adv76xx_cec_adap_enable,
	.adap_log_addr = adv76xx_cec_adap_log_addr,
	.adap_transmit = adv76xx_cec_adap_transmit,
};
#endif

2159
static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2160
{
2161 2162
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	const u8 irq_reg_0x43 = io_read(sd, 0x43);
	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
	const u8 irq_reg_0x70 = io_read(sd, 0x70);
	u8 fmt_change_digital;
	u8 fmt_change;
	u8 tx_5v;

	if (irq_reg_0x43)
		io_write(sd, 0x44, irq_reg_0x43);
	if (irq_reg_0x70)
		io_write(sd, 0x71, irq_reg_0x70);
	if (irq_reg_0x6b)
		io_write(sd, 0x6c, irq_reg_0x6b);
2176

2177 2178
	v4l2_dbg(2, debug, sd, "%s: ", __func__);

2179
	/* format change */
2180
	fmt_change = irq_reg_0x43 & 0x98;
2181 2182 2183
	fmt_change_digital = is_digital_input(sd)
			   ? irq_reg_0x6b & info->fmt_change_digital_mask
			   : 0;
2184

2185 2186
	if (fmt_change || fmt_change_digital) {
		v4l2_dbg(1, debug, sd,
2187
			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2188
			__func__, fmt_change, fmt_change_digital);
2189

2190
		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2191

2192 2193 2194
		if (handled)
			*handled = true;
	}
2195 2196 2197 2198 2199 2200 2201 2202 2203
	/* HDMI/DVI mode */
	if (irq_reg_0x6b & 0x01) {
		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
		set_rgb_quantization_range(sd);
		if (handled)
			*handled = true;
	}

2204 2205 2206 2207 2208
#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
	/* cec */
	adv76xx_cec_isr(sd, handled);
#endif

2209
	/* tx 5v detect */
2210
	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2211 2212
	if (tx_5v) {
		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2213
		adv76xx_s_detect_tx_5v_ctrl(sd);
2214 2215 2216 2217 2218 2219
		if (handled)
			*handled = true;
	}
	return 0;
}

2220
static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2221
{
2222
	struct adv76xx_state *state = to_state(sd);
2223
	u8 *data = NULL;
2224

2225
	memset(edid->reserved, 0, sizeof(edid->reserved));
2226 2227

	switch (edid->pad) {
2228
	case ADV76XX_PAD_HDMI_PORT_A:
2229 2230 2231
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
2232 2233 2234 2235 2236 2237
		if (state->edid.present & (1 << edid->pad))
			data = state->edid.edid;
		break;
	default:
		return -EINVAL;
	}
2238 2239 2240 2241 2242 2243 2244

	if (edid->start_block == 0 && edid->blocks == 0) {
		edid->blocks = data ? state->edid.blocks : 0;
		return 0;
	}

	if (data == NULL)
2245 2246
		return -ENODATA;

2247 2248 2249 2250 2251 2252 2253 2254
	if (edid->start_block >= state->edid.blocks)
		return -EINVAL;

	if (edid->start_block + edid->blocks > state->edid.blocks)
		edid->blocks = state->edid.blocks - edid->start_block;

	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);

2255 2256 2257
	return 0;
}

2258
static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2259
{
2260 2261
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2262 2263
	unsigned int spa_loc;
	u16 pa;
2264
	int err;
2265
	int i;
2266

2267 2268
	memset(edid->reserved, 0, sizeof(edid->reserved));

2269
	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2270 2271 2272 2273
		return -EINVAL;
	if (edid->start_block != 0)
		return -EINVAL;
	if (edid->blocks == 0) {
2274
		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2275
		state->edid.present &= ~(1 << edid->pad);
2276
		adv76xx_set_hpd(state, state->edid.present);
2277
		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2278

2279 2280 2281
		/* Fall back to a 16:9 aspect ratio */
		state->aspect_ratio.numerator = 16;
		state->aspect_ratio.denominator = 9;
2282 2283 2284 2285 2286 2287

		if (!state->edid.present)
			state->edid.blocks = 0;

		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
				__func__, edid->pad, state->edid.present);
2288 2289
		return 0;
	}
2290 2291
	if (edid->blocks > 2) {
		edid->blocks = 2;
2292
		return -E2BIG;
2293
	}
2294 2295 2296 2297
	pa = cec_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
	err = cec_phys_addr_validate(pa, &pa, NULL);
	if (err)
		return err;
2298

2299 2300 2301
	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
			__func__, edid->pad, state->edid.present);

2302
	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2303
	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2304
	adv76xx_set_hpd(state, 0);
2305
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2306

2307 2308 2309 2310 2311 2312
	/*
	 * Return an error if no location of the source physical address
	 * was found.
	 */
	if (spa_loc == 0)
		return -EINVAL;
2313

2314
	switch (edid->pad) {
2315
	case ADV76XX_PAD_HDMI_PORT_A:
2316 2317
		state->spa_port_a[0] = edid->edid[spa_loc];
		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2318
		break;
2319
	case ADV7604_PAD_HDMI_PORT_B:
2320 2321
		rep_write(sd, 0x70, edid->edid[spa_loc]);
		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2322
		break;
2323
	case ADV7604_PAD_HDMI_PORT_C:
2324 2325
		rep_write(sd, 0x72, edid->edid[spa_loc]);
		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2326
		break;
2327
	case ADV7604_PAD_HDMI_PORT_D:
2328 2329
		rep_write(sd, 0x74, edid->edid[spa_loc]);
		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2330
		break;
2331 2332
	default:
		return -EINVAL;
2333
	}
2334 2335 2336

	if (info->type == ADV7604) {
		rep_write(sd, 0x76, spa_loc & 0xff);
2337
		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2338
	} else {
2339 2340
		/* ADV7612 Software Manual Rev. A, p. 15 */
		rep_write(sd, 0x70, spa_loc & 0xff);
2341
		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2342
	}
2343

2344 2345
	edid->edid[spa_loc] = state->spa_port_a[0];
	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2346 2347 2348

	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
	state->edid.blocks = edid->blocks;
2349 2350
	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
			edid->edid[0x16]);
2351
	state->edid.present |= 1 << edid->pad;
2352 2353 2354

	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
	if (err < 0) {
2355
		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2356 2357 2358
		return err;
	}

2359
	/* adv76xx calculates the checksums and enables I2C access to internal
2360
	   EDID RAM from DDC port. */
2361
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2362 2363

	for (i = 0; i < 1000; i++) {
2364
		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2365 2366 2367 2368 2369 2370 2371
			break;
		mdelay(1);
	}
	if (i == 1000) {
		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
		return -EIO;
	}
2372
	cec_s_phys_addr(state->cec_adap, pa, false);
2373

2374
	/* enable hotplug after 100 ms */
2375
	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2376
	return 0;
2377 2378 2379 2380
}

/*********** avi info frame CEA-861-E **************/

H
Hans Verkuil 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389
static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
	{ "AVI", 0x01, 0xe0, 0x00 },
	{ "Audio", 0x02, 0xe3, 0x1c },
	{ "SDP", 0x04, 0xe6, 0x2a },
	{ "Vendor", 0x10, 0xec, 0x54 }
};

static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
				  union hdmi_infoframe *frame)
2390
{
H
Hans Verkuil 已提交
2391 2392
	uint8_t buffer[32];
	u8 len;
2393 2394
	int i;

H
Hans Verkuil 已提交
2395 2396 2397 2398
	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
		v4l2_info(sd, "%s infoframe not received\n",
			  adv76xx_cri[index].desc);
		return -ENOENT;
2399
	}
H
Hans Verkuil 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410

	for (i = 0; i < 3; i++)
		buffer[i] = infoframe_read(sd,
					   adv76xx_cri[index].head_addr + i);

	len = buffer[2] + 1;

	if (len + 3 > sizeof(buffer)) {
		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
			 adv76xx_cri[index].desc, len);
		return -ENOENT;
2411 2412
	}

H
Hans Verkuil 已提交
2413 2414 2415 2416 2417 2418 2419 2420
	for (i = 0; i < len; i++)
		buffer[i + 3] = infoframe_read(sd,
				       adv76xx_cri[index].payload_addr + i);

	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
			 adv76xx_cri[index].desc);
		return -ENOENT;
2421
	}
H
Hans Verkuil 已提交
2422 2423
	return 0;
}
2424

H
Hans Verkuil 已提交
2425 2426 2427
static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
{
	int i;
2428

H
Hans Verkuil 已提交
2429 2430
	if (!is_hdmi(sd)) {
		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2431
		return;
H
Hans Verkuil 已提交
2432
	}
2433

H
Hans Verkuil 已提交
2434 2435 2436
	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
		union hdmi_infoframe frame;
		struct i2c_client *client = v4l2_get_subdevdata(sd);
2437

H
Hans Verkuil 已提交
2438 2439 2440 2441
		if (adv76xx_read_infoframe(sd, i, &frame))
			return;
		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
	}
2442 2443
}

2444
static int adv76xx_log_status(struct v4l2_subdev *sd)
2445
{
2446 2447
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2448 2449 2450
	struct v4l2_dv_timings timings;
	struct stdi_readback stdi;
	u8 reg_io_0x02 = io_read(sd, 0x02);
2451 2452
	u8 edid_enabled;
	u8 cable_det;
2453

2454
	static const char * const csc_coeff_sel_rb[16] = {
2455 2456 2457 2458 2459
		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
		"reserved", "reserved", "reserved", "reserved", "manual"
	};
2460
	static const char * const input_color_space_txt[16] = {
2461 2462
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2463
		"xvYCC Bt.601", "xvYCC Bt.709",
2464 2465 2466 2467
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"invalid", "invalid", "invalid", "invalid", "invalid",
		"invalid", "invalid", "automatic"
	};
2468 2469 2470 2471 2472 2473 2474 2475
	static const char * const hdmi_color_space_txt[16] = {
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
		"xvYCC Bt.601", "xvYCC Bt.709",
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
		"invalid", "invalid", "invalid"
	};
2476
	static const char * const rgb_quantization_range_txt[] = {
2477 2478 2479 2480
		"Automatic",
		"RGB limited range (16-235)",
		"RGB full range (0-255)",
	};
2481
	static const char * const deep_color_mode_txt[4] = {
2482 2483 2484 2485 2486
		"8-bits per channel",
		"10-bits per channel",
		"12-bits per channel",
		"16-bits per channel (not supported)"
	};
2487 2488 2489

	v4l2_info(sd, "-----Chip status-----\n");
	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2490
	edid_enabled = rep_read(sd, info->edid_status_reg);
2491
	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2492 2493 2494 2495
			((edid_enabled & 0x01) ? "Yes" : "No"),
			((edid_enabled & 0x02) ? "Yes" : "No"),
			((edid_enabled & 0x04) ? "Yes" : "No"),
			((edid_enabled & 0x08) ? "Yes" : "No"));
2496
	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2497
			"enabled" : "disabled");
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	if (state->cec_enabled_adap) {
		int i;

		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
			bool is_valid = state->cec_valid_addrs & (1 << i);

			if (is_valid)
				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
					  state->cec_addr[i]);
		}
	}
2509 2510

	v4l2_info(sd, "-----Signal status-----\n");
2511
	cable_det = info->read_cable_det(sd);
2512
	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2513 2514
			((cable_det & 0x01) ? "Yes" : "No"),
			((cable_det & 0x02) ? "Yes" : "No"),
2515
			((cable_det & 0x04) ? "Yes" : "No"),
2516
			((cable_det & 0x08) ? "Yes" : "No"));
2517 2518 2519 2520 2521 2522 2523 2524
	v4l2_info(sd, "TMDS signal detected: %s\n",
			no_signal_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "TMDS signal locked: %s\n",
			no_lock_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
	v4l2_info(sd, "CP free run: %s\n",
2525
			(in_free_run(sd)) ? "on" : "off");
2526 2527 2528
	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
			(io_read(sd, 0x01) & 0x70) >> 4);
2529 2530 2531 2532 2533 2534 2535 2536 2537

	v4l2_info(sd, "-----Video Timings-----\n");
	if (read_stdi(sd, &stdi))
		v4l2_info(sd, "STDI: not locked\n");
	else
		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
				stdi.lcf, stdi.bl, stdi.lcvs,
				stdi.interlaced ? "interlaced" : "progressive",
				stdi.hs_pol, stdi.vs_pol);
2538
	if (adv76xx_query_dv_timings(sd, &timings))
2539 2540
		v4l2_info(sd, "No video detected\n");
	else
2541 2542 2543 2544
		v4l2_print_dv_timings(sd->name, "Detected format: ",
				      &timings, true);
	v4l2_print_dv_timings(sd->name, "Configured format: ",
			      &state->timings, true);
2545

2546 2547 2548
	if (no_signal(sd))
		return 0;

2549 2550 2551 2552 2553
	v4l2_info(sd, "-----Color space-----\n");
	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
			rgb_quantization_range_txt[state->rgb_quantization_range]);
	v4l2_info(sd, "Input color space: %s\n",
			input_color_space_txt[reg_io_0x02 >> 4]);
2554
	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2555
			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2556
			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2557
				"(16-235)" : "(0-255)",
2558
			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2559
	v4l2_info(sd, "Color space conversion: %s\n",
2560
			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2561

2562
	if (!is_digital_input(sd))
2563 2564 2565
		return 0;

	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2566 2567 2568 2569
	v4l2_info(sd, "Digital video port selected: %c\n",
			(hdmi_read(sd, 0x00) & 0x03) + 'A');
	v4l2_info(sd, "HDCP encrypted content: %s\n",
			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2570 2571 2572
	v4l2_info(sd, "HDCP keys read: %s%s\n",
			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2573
	if (is_hdmi(sd)) {
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
		bool audio_mute = io_read(sd, 0x65) & 0x40;

		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
				audio_pll_locked ? "locked" : "not locked",
				audio_sample_packet_detect ? "detected" : "not detected",
				audio_mute ? "muted" : "enabled");
		if (audio_pll_locked && audio_sample_packet_detect) {
			v4l2_info(sd, "Audio format: %s\n",
					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
		}
		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
				(hdmi_read(sd, 0x5c) << 8) +
				(hdmi_read(sd, 0x5d) & 0xf0));
		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
				(hdmi_read(sd, 0x5e) << 8) +
				hdmi_read(sd, 0x5f));
		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");

		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2595
		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2596

H
Hans Verkuil 已提交
2597
		adv76xx_log_infoframes(sd);
2598 2599 2600 2601 2602
	}

	return 0;
}

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
				   struct v4l2_fh *fh,
				   struct v4l2_event_subscription *sub)
{
	switch (sub->type) {
	case V4L2_EVENT_SOURCE_CHANGE:
		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
	case V4L2_EVENT_CTRL:
		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
	default:
		return -EINVAL;
	}
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
static int adv76xx_registered(struct v4l2_subdev *sd)
{
	struct adv76xx_state *state = to_state(sd);
	int err;

	err = cec_register_adapter(state->cec_adap);
	if (err)
		cec_delete_adapter(state->cec_adap);
	return err;
}

static void adv76xx_unregistered(struct v4l2_subdev *sd)
{
	struct adv76xx_state *state = to_state(sd);

	cec_unregister_adapter(state->cec_adap);
}

2635 2636
/* ----------------------------------------------------------------------- */

2637 2638
static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
	.s_ctrl = adv76xx_s_ctrl,
2639
	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2640 2641
};

2642 2643 2644
static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
	.log_status = adv76xx_log_status,
	.interrupt_service_routine = adv76xx_isr,
2645
	.subscribe_event = adv76xx_subscribe_event,
2646
	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2647
#ifdef CONFIG_VIDEO_ADV_DEBUG
2648 2649
	.g_register = adv76xx_g_register,
	.s_register = adv76xx_s_register,
2650 2651 2652
#endif
};

2653 2654 2655 2656 2657 2658
static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
	.s_routing = adv76xx_s_routing,
	.g_input_status = adv76xx_g_input_status,
	.s_dv_timings = adv76xx_s_dv_timings,
	.g_dv_timings = adv76xx_g_dv_timings,
	.query_dv_timings = adv76xx_query_dv_timings,
2659 2660
};

2661 2662
static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
	.enum_mbus_code = adv76xx_enum_mbus_code,
2663
	.get_selection = adv76xx_get_selection,
2664 2665 2666 2667 2668 2669
	.get_fmt = adv76xx_get_format,
	.set_fmt = adv76xx_set_format,
	.get_edid = adv76xx_get_edid,
	.set_edid = adv76xx_set_edid,
	.dv_timings_cap = adv76xx_dv_timings_cap,
	.enum_dv_timings = adv76xx_enum_dv_timings,
2670 2671
};

2672 2673 2674 2675
static const struct v4l2_subdev_ops adv76xx_ops = {
	.core = &adv76xx_core_ops,
	.video = &adv76xx_video_ops,
	.pad = &adv76xx_pad_ops,
2676 2677
};

2678 2679 2680 2681 2682
static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
	.registered = adv76xx_registered,
	.unregistered = adv76xx_unregistered,
};

2683 2684 2685
/* -------------------------- custom ctrls ---------------------------------- */

static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2686
	.ops = &adv76xx_ctrl_ops,
2687 2688 2689 2690 2691 2692 2693 2694 2695
	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
	.name = "Analog Sampling Phase",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0,
	.max = 0x1f,
	.step = 1,
	.def = 0,
};

2696 2697
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
	.ops = &adv76xx_ctrl_ops,
2698 2699 2700 2701 2702 2703 2704 2705 2706
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
	.name = "Free Running Color, Manual",
	.type = V4L2_CTRL_TYPE_BOOLEAN,
	.min = false,
	.max = true,
	.step = 1,
	.def = false,
};

2707 2708
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
	.ops = &adv76xx_ctrl_ops,
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
	.name = "Free Running Color",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0x0,
	.max = 0xffffff,
	.step = 0x1,
	.def = 0x0,
};

/* ----------------------------------------------------------------------- */

2720
static int adv76xx_core_init(struct v4l2_subdev *sd)
2721
{
2722 2723 2724
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
	struct adv76xx_platform_data *pdata = &state->pdata;
2725 2726 2727 2728 2729 2730 2731

	hdmi_write(sd, 0x48,
		(pdata->disable_pwrdnb ? 0x80 : 0) |
		(pdata->disable_cable_det_rst ? 0x40 : 0));

	disable_input(sd);

2732 2733 2734 2735 2736 2737 2738
	if (pdata->default_input >= 0 &&
	    pdata->default_input < state->source_pad) {
		state->selected_input = pdata->default_input;
		select_input(sd);
		enable_input(sd);
	}

2739 2740 2741 2742 2743 2744
	/* power */
	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */

	/* video format */
2745
	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2746
	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2747 2748
			pdata->insert_av_codes << 2 |
			pdata->replicate_av_codes << 1);
2749
	adv76xx_setup_format(state);
2750 2751

	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2752 2753

	/* VS, HS polarities */
2754 2755
	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2756 2757 2758 2759 2760 2761

	/* Adjust drive strength */
	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
				pdata->dr_str_clk << 2 |
				pdata->dr_str_sync);

2762 2763 2764
	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
H
Hans Verkuil 已提交
2765
				      ADI recommended setting [REF_01, c. 2.3.3] */
2766
	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
H
Hans Verkuil 已提交
2767
				      ADI recommended setting [REF_01, c. 2.3.3] */
2768 2769 2770
	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
				     for digital formats */

2771
	/* HDMI audio */
2772 2773 2774
	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2775

2776 2777 2778
	/* TODO from platform data */
	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */

2779
	if (adv76xx_has_afe(state)) {
2780
		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2781
		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2782
	}
2783 2784

	/* interrupts */
2785
	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2786
	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2787 2788 2789
	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
	info->setup_irqs(sd);
2790 2791 2792 2793

	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
static void adv7604_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
}

static void adv7611_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
}

2804 2805 2806 2807 2808
static void adv7612_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* disable INT2 */
}

2809
static void adv76xx_unregister_clients(struct adv76xx_state *state)
2810
{
2811 2812 2813 2814 2815 2816
	unsigned int i;

	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
		if (state->i2c_clients[i])
			i2c_unregister_device(state->i2c_clients[i]);
	}
2817 2818
}

2819
static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2820 2821 2822 2823 2824 2825 2826 2827 2828
							u8 addr, u8 io_reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (addr)
		io_write(sd, io_reg, addr << 1);
	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
}

2829
static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2830 2831
	/* reset ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2844 2845 2846

	/* set ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2847 2848 2849 2850 2851
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2852

2853
	{ ADV76XX_REG_SEQ_TERM, 0 },
2854 2855
};

2856
static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2857 2858
	/* set ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2870 2871 2872

	/* reset ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2873 2874
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2875

2876
	{ ADV76XX_REG_SEQ_TERM, 0 },
2877 2878
};

2879
static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2880
	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },

	{ ADV76XX_REG_SEQ_TERM, 0 },
2894 2895
};

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG_SEQ_TERM, 0 },
};

2909
static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2910 2911 2912
	[ADV7604] = {
		.type = ADV7604,
		.has_afe = true,
2913
		.max_port = ADV7604_PAD_VGA_COMP,
2914 2915 2916 2917 2918 2919 2920
		.num_dv_ports = 4,
		.edid_enable_reg = 0x77,
		.edid_status_reg = 0x7d,
		.lcf_reg = 0xb3,
		.tdms_lock_mask = 0xe0,
		.cable_det_mask = 0x1e,
		.fmt_change_digital_mask = 0xc1,
2921
		.cp_csc = 0xfc,
2922 2923
		.formats = adv7604_formats,
		.nformats = ARRAY_SIZE(adv7604_formats),
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
		.set_termination = adv7604_set_termination,
		.setup_irqs = adv7604_setup_irqs,
		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
		.read_cable_det = adv7604_read_cable_det,
		.recommended_settings = {
		    [0] = adv7604_recommended_settings_afe,
		    [1] = adv7604_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
		},
2936 2937
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2938
			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2939 2940 2941
			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2942
			BIT(ADV7604_PAGE_VDP),
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
		.linewidth_mask = 0xfff,
		.field0_height_mask = 0xfff,
		.field1_height_mask = 0xfff,
		.hfrontporch_mask = 0x3ff,
		.hsync_mask = 0x3ff,
		.hbackporch_mask = 0x3ff,
		.field0_vfrontporch_mask = 0x1fff,
		.field0_vsync_mask = 0x1fff,
		.field0_vbackporch_mask = 0x1fff,
		.field1_vfrontporch_mask = 0x1fff,
		.field1_vsync_mask = 0x1fff,
		.field1_vbackporch_mask = 0x1fff,
2955 2956 2957 2958
	},
	[ADV7611] = {
		.type = ADV7611,
		.has_afe = false,
2959
		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2960 2961 2962 2963 2964 2965 2966
		.num_dv_ports = 1,
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2967
		.cp_csc = 0xf4,
2968 2969
		.formats = adv7611_formats,
		.nformats = ARRAY_SIZE(adv7611_formats),
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7611_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
		.read_cable_det = adv7611_read_cable_det,
		.recommended_settings = {
		    [1] = adv7611_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
		},
2980 2981 2982 2983
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
2996
	},
2997 2998 2999
	[ADV7612] = {
		.type = ADV7612,
		.has_afe = false,
3000 3001
		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
		.num_dv_ports = 1,			/* normally 2 */
3002 3003 3004 3005 3006 3007
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
3008
		.cp_csc = 0xf4,
3009 3010 3011 3012 3013
		.formats = adv7612_formats,
		.nformats = ARRAY_SIZE(adv7612_formats),
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7612_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3014
		.read_cable_det = adv7612_read_cable_det,
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
		.recommended_settings = {
		    [1] = adv7612_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
		},
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
	},
3038 3039
};

3040
static const struct i2c_device_id adv76xx_i2c_id[] = {
3041 3042
	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3043
	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3044 3045
	{ }
};
3046
MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3047

3048
static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3049
	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3050
	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3051 3052
	{ }
};
3053
MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3054

3055
static int adv76xx_parse_dt(struct adv76xx_state *state)
3056
{
3057 3058 3059 3060
	struct v4l2_of_endpoint bus_cfg;
	struct device_node *endpoint;
	struct device_node *np;
	unsigned int flags;
3061
	int ret;
3062
	u32 v;
3063

3064
	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3065 3066 3067 3068 3069 3070

	/* Parse the endpoint. */
	endpoint = of_graph_get_next_endpoint(np, NULL);
	if (!endpoint)
		return -EINVAL;

3071 3072 3073 3074 3075
	ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg);
	if (ret) {
		of_node_put(endpoint);
		return ret;
	}
3076

3077 3078 3079
	of_node_put(endpoint);

	if (!of_property_read_u32(np, "default-input", &v))
3080 3081 3082 3083
		state->pdata.default_input = v;
	else
		state->pdata.default_input = -1;

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	flags = bus_cfg.bus.parallel.flags;

	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
		state->pdata.inv_hs_pol = 1;

	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
		state->pdata.inv_vs_pol = 1;

	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
		state->pdata.inv_llc_pol = 1;

3095
	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3096 3097
		state->pdata.insert_av_codes = 1;

3098
	/* Disable the interrupt for now as no DT-based board uses it. */
3099
	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
3100 3101 3102

	/* Use the default I2C addresses. */
	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
3103 3104
	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
3105 3106
	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
3107 3108 3109 3110 3111 3112
	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;

	/* Hardcode the remaining platform data fields. */
	state->pdata.disable_pwrdnb = 0;
	state->pdata.disable_cable_det_rst = 0;
	state->pdata.blank_data = 1;
	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;

	return 0;
}

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
static const struct regmap_config adv76xx_regmap_cnf[] = {
	{
		.name			= "io",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "avlink",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cec",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "infoframe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "esdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "epp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "afe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "rep",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "edid",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},

	{
		.name			= "hdmi",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "test",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "vdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
};

static int configure_regmap(struct adv76xx_state *state, int region)
{
	int err;

	if (!state->i2c_clients[region])
		return -ENODEV;

	state->regmap[region] =
		devm_regmap_init_i2c(state->i2c_clients[region],
				     &adv76xx_regmap_cnf[region]);

	if (IS_ERR(state->regmap[region])) {
		err = PTR_ERR(state->regmap[region]);
		v4l_err(state->i2c_clients[region],
			"Error initializing regmap %d with error %d\n",
			region, err);
		return -EINVAL;
	}

	return 0;
}

static int configure_regmaps(struct adv76xx_state *state)
{
	int i, err;

	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
		err = configure_regmap(state, i);
		if (err && (err != -ENODEV))
			return err;
	}
	return 0;
}

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
static void adv76xx_reset(struct adv76xx_state *state)
{
	if (state->reset_gpio) {
		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
		gpiod_set_value_cansleep(state->reset_gpio, 0);
		usleep_range(5000, 10000);
		gpiod_set_value_cansleep(state->reset_gpio, 1);
		/* It is recommended to wait 5 ms after the low pulse before */
		/* an I2C write is performed to the ADV76XX. */
		usleep_range(5000, 10000);
	}
}

3280
static int adv76xx_probe(struct i2c_client *client,
3281 3282
			 const struct i2c_device_id *id)
{
3283 3284
	static const struct v4l2_dv_timings cea640x480 =
		V4L2_DV_BT_CEA_640X480P59_94;
3285
	struct adv76xx_state *state;
3286
	struct v4l2_ctrl_handler *hdl;
3287
	struct v4l2_ctrl *ctrl;
3288
	struct v4l2_subdev *sd;
3289
	unsigned int i;
3290
	unsigned int val, val2;
3291 3292 3293 3294 3295
	int err;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -EIO;
3296
	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3297 3298
			client->addr << 1);

3299
	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3300
	if (!state) {
3301
		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3302 3303 3304
		return -ENOMEM;
	}

3305
	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3306

3307 3308
	/* initialize variables */
	state->restart_stdi_once = true;
3309
	state->selected_input = ~0;
3310

3311 3312 3313
	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
		const struct of_device_id *oid;

3314
		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3315 3316
		state->info = oid->data;

3317
		err = adv76xx_parse_dt(state);
3318 3319 3320 3321 3322
		if (err < 0) {
			v4l_err(client, "DT parsing error\n");
			return err;
		}
	} else if (client->dev.platform_data) {
3323
		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3324

3325
		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3326 3327
		state->pdata = *pdata;
	} else {
3328
		v4l_err(client, "No platform data!\n");
3329
		return -ENODEV;
3330
	}
3331 3332 3333 3334

	/* Request GPIOs. */
	for (i = 0; i < state->info->num_dv_ports; ++i) {
		state->hpd_gpio[i] =
3335 3336
			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
						      GPIOD_OUT_LOW);
3337
		if (IS_ERR(state->hpd_gpio[i]))
3338
			return PTR_ERR(state->hpd_gpio[i]);
3339

3340 3341
		if (state->hpd_gpio[i])
			v4l_info(client, "Handling HPD %u GPIO\n", i);
3342
	}
3343 3344 3345 3346 3347 3348
	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
								GPIOD_OUT_HIGH);
	if (IS_ERR(state->reset_gpio))
		return PTR_ERR(state->reset_gpio);

	adv76xx_reset(state);
3349

3350
	state->timings = cea640x480;
3351
	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3352 3353

	sd = &state->sd;
3354
	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3355 3356 3357
	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
		id->name, i2c_adapter_id(client->adapter),
		client->addr);
3358
	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3359
	sd->internal_ops = &adv76xx_int_ops;
3360

3361 3362 3363 3364 3365 3366 3367 3368
	/* Configure IO Regmap region */
	err = configure_regmap(state, ADV76XX_PAGE_IO);

	if (err) {
		v4l2_err(sd, "Error configuring IO regmap region\n");
		return -ENODEV;
	}

3369 3370 3371 3372 3373
	/*
	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
	 * identifies the revision, while on ADV7611 it identifies the model as
	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
	 */
3374 3375
	switch (state->info->type) {
	case ADV7604:
3376 3377 3378 3379 3380
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3381
		if (val != 0x68) {
3382
			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3383 3384 3385
					client->addr << 1);
			return -ENODEV;
		}
3386 3387 3388
		break;
	case ADV7611:
	case ADV7612:
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
				0xea,
				&val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
		val2 = val << 8;
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
			    0xeb,
			    &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3404
		val |= val2;
3405 3406 3407
		if ((state->info->type == ADV7611 && val != 0x2051) ||
			(state->info->type == ADV7612 && val != 0x2041)) {
			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3408 3409 3410
					client->addr << 1);
			return -ENODEV;
		}
3411
		break;
3412 3413 3414 3415
	}

	/* control handlers */
	hdl = &state->hdl;
3416
	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3417

3418
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3419
			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3420
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3421
			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3422
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3423
			V4L2_CID_SATURATION, 0, 255, 1, 128);
3424
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3425
			V4L2_CID_HUE, 0, 128, 1, 0);
3426 3427 3428 3429 3430
	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
	if (ctrl)
		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3431 3432

	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3433 3434
			V4L2_CID_DV_RX_POWER_PRESENT, 0,
			(1 << state->info->num_dv_ports) - 1, 0, 0);
3435
	state->rgb_quantization_range_ctrl =
3436
		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3437 3438 3439 3440
			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
			0, V4L2_DV_RGB_RANGE_AUTO);

	/* custom controls */
3441
	if (adv76xx_has_afe(state))
3442 3443
		state->analog_sampling_phase_ctrl =
			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3444
	state->free_run_color_manual_ctrl =
3445
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3446
	state->free_run_color_ctrl =
3447
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3448 3449 3450 3451 3452 3453

	sd->ctrl_handler = hdl;
	if (hdl->error) {
		err = hdl->error;
		goto err_hdl;
	}
3454
	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3455 3456 3457 3458
		err = -ENODEV;
		goto err_hdl;
	}

3459
	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3460 3461
		if (!(BIT(i) & state->info->page_mask))
			continue;
3462

3463
		state->i2c_clients[i] =
3464
			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3465 3466
					     0xf2 + i);
		if (state->i2c_clients[i] == NULL) {
3467
			err = -ENOMEM;
3468
			v4l2_err(sd, "failed to create i2c client %u\n", i);
3469 3470 3471
			goto err_i2c;
		}
	}
3472

3473
	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3474
			adv76xx_delayed_work_enable_hotplug);
3475

3476 3477 3478 3479 3480 3481
	state->source_pad = state->info->num_dv_ports
			  + (state->info->has_afe ? 2 : 0);
	for (i = 0; i < state->source_pad; ++i)
		state->pads[i].flags = MEDIA_PAD_FL_SINK;
	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;

3482
	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3483
				state->pads);
3484 3485 3486
	if (err)
		goto err_work_queues;

3487 3488 3489 3490 3491
	/* Configure regmaps */
	err = configure_regmaps(state);
	if (err)
		goto err_entity;

3492
	err = adv76xx_core_init(sd);
3493 3494
	if (err)
		goto err_entity;
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506

#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
		state, dev_name(&client->dev),
		CEC_CAP_TRANSMIT | CEC_CAP_LOG_ADDRS |
		CEC_CAP_PASSTHROUGH | CEC_CAP_RC, ADV76XX_MAX_ADDRS,
		&client->dev);
	err = PTR_ERR_OR_ZERO(state->cec_adap);
	if (err)
		goto err_entity;
#endif

3507 3508
	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
			client->addr << 1, client->adapter->name);
3509 3510 3511 3512 3513

	err = v4l2_async_register_subdev(sd);
	if (err)
		goto err_entity;

3514 3515 3516 3517 3518 3519 3520
	return 0;

err_entity:
	media_entity_cleanup(&sd->entity);
err_work_queues:
	cancel_delayed_work(&state->delayed_work_enable_hotplug);
err_i2c:
3521
	adv76xx_unregister_clients(state);
3522 3523 3524 3525 3526 3527 3528
err_hdl:
	v4l2_ctrl_handler_free(hdl);
	return err;
}

/* ----------------------------------------------------------------------- */

3529
static int adv76xx_remove(struct i2c_client *client)
3530 3531
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3532
	struct adv76xx_state *state = to_state(sd);
3533

3534 3535 3536 3537 3538 3539 3540
	/* disable interrupts */
	io_write(sd, 0x40, 0);
	io_write(sd, 0x41, 0);
	io_write(sd, 0x46, 0);
	io_write(sd, 0x6e, 0);
	io_write(sd, 0x73, 0);

3541
	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3542
	v4l2_async_unregister_subdev(sd);
3543
	media_entity_cleanup(&sd->entity);
3544
	adv76xx_unregister_clients(to_state(sd));
3545 3546 3547 3548 3549 3550
	v4l2_ctrl_handler_free(sd->ctrl_handler);
	return 0;
}

/* ----------------------------------------------------------------------- */

3551
static struct i2c_driver adv76xx_driver = {
3552 3553
	.driver = {
		.name = "adv7604",
3554
		.of_match_table = of_match_ptr(adv76xx_of_id),
3555
	},
3556 3557 3558
	.probe = adv76xx_probe,
	.remove = adv76xx_remove,
	.id_table = adv76xx_i2c_id,
3559 3560
};

3561
module_i2c_driver(adv76xx_driver);