adv7604.c 95.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * adv7604 - Analog Devices ADV7604 video decoder driver
 *
 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * References (c = chapter, p = page):
 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
 *		Revision 2.5, June 2010
 * REF_02 - Analog devices, Register map documentation, Documentation of
 *		the register maps, Software manual, Rev. F, June 2010
 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
 */

30
#include <linux/delay.h>
31
#include <linux/gpio/consumer.h>
H
Hans Verkuil 已提交
32
#include <linux/hdmi.h>
33
#include <linux/i2c.h>
34 35 36
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
37
#include <linux/v4l2-dv-timings.h>
38 39
#include <linux/videodev2.h>
#include <linux/workqueue.h>
40
#include <linux/regmap.h>
41

42
#include <media/i2c/adv7604.h>
43
#include <media/v4l2-ctrls.h>
44
#include <media/v4l2-device.h>
45
#include <media/v4l2-event.h>
46
#include <media/v4l2-dv-timings.h>
47
#include <media/v4l2-of.h>
48 49 50 51 52 53 54 55 56 57 58

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");

MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");

/* ADV7604 system clock frequency */
59
#define ADV76XX_FSC (28636360)
60

61
#define ADV76XX_RGB_OUT					(1 << 1)
62

63
#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
64
#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
65
#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
66

67
#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
68
#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
69
#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
70
#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
71
#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
72 73
#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)

74 75 76 77 78 79
#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
80

81
#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
82

83
enum adv76xx_type {
84 85
	ADV7604,
	ADV7611,
86
	ADV7612,
87 88
};

89
struct adv76xx_reg_seq {
90 91 92 93
	unsigned int reg;
	u8 val;
};

94
struct adv76xx_format_info {
95
	u32 code;
96 97 98 99 100 101
	u8 op_ch_sel;
	bool rgb_out;
	bool swap_cb_cr;
	u8 op_format_sel;
};

H
Hans Verkuil 已提交
102 103 104 105 106 107 108
struct adv76xx_cfg_read_infoframe {
	const char *desc;
	u8 present_mask;
	u8 head_addr;
	u8 payload_addr;
};

109 110
struct adv76xx_chip_info {
	enum adv76xx_type type;
111 112 113 114 115 116 117 118 119 120 121 122

	bool has_afe;
	unsigned int max_port;
	unsigned int num_dv_ports;

	unsigned int edid_enable_reg;
	unsigned int edid_status_reg;
	unsigned int lcf_reg;

	unsigned int cable_det_mask;
	unsigned int tdms_lock_mask;
	unsigned int fmt_change_digital_mask;
123
	unsigned int cp_csc;
124

125
	const struct adv76xx_format_info *formats;
126 127
	unsigned int nformats;

128 129 130 131 132 133
	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
	void (*setup_irqs)(struct v4l2_subdev *sd);
	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);

	/* 0 = AFE, 1 = HDMI */
134
	const struct adv76xx_reg_seq *recommended_settings[2];
135 136 137
	unsigned int num_recommended_settings[2];

	unsigned long page_mask;
138 139 140 141 142 143 144 145 146 147 148 149 150 151

	/* Masks for timings */
	unsigned int linewidth_mask;
	unsigned int field0_height_mask;
	unsigned int field1_height_mask;
	unsigned int hfrontporch_mask;
	unsigned int hsync_mask;
	unsigned int hbackporch_mask;
	unsigned int field0_vfrontporch_mask;
	unsigned int field1_vfrontporch_mask;
	unsigned int field0_vsync_mask;
	unsigned int field1_vsync_mask;
	unsigned int field0_vbackporch_mask;
	unsigned int field1_vbackporch_mask;
152 153
};

154 155 156 157 158 159 160
/*
 **********************************************************************
 *
 *  Arrays with configuration parameters for the ADV7604
 *
 **********************************************************************
 */
161

162 163 164
struct adv76xx_state {
	const struct adv76xx_chip_info *info;
	struct adv76xx_platform_data pdata;
165

166 167
	struct gpio_desc *hpd_gpio[4];

168
	struct v4l2_subdev sd;
169
	struct media_pad pads[ADV76XX_PAD_MAX];
170
	unsigned int source_pad;
171

172
	struct v4l2_ctrl_handler hdl;
173

174
	enum adv76xx_pad selected_input;
175

176
	struct v4l2_dv_timings timings;
177
	const struct adv76xx_format_info *format;
178

179 180 181 182 183
	struct {
		u8 edid[256];
		u32 present;
		unsigned blocks;
	} edid;
184
	u16 spa_port_a[2];
185 186 187
	struct v4l2_fract aspect_ratio;
	u32 rgb_quantization_range;
	struct delayed_work delayed_work_enable_hotplug;
188
	bool restart_stdi_once;
189 190

	/* i2c clients */
191
	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
192

193 194 195
	/* Regmaps */
	struct regmap *regmap[ADV76XX_PAGE_MAX];

196 197 198 199 200 201 202 203
	/* controls */
	struct v4l2_ctrl *detect_tx_5v_ctrl;
	struct v4l2_ctrl *analog_sampling_phase_ctrl;
	struct v4l2_ctrl *free_run_color_manual_ctrl;
	struct v4l2_ctrl *free_run_color_ctrl;
	struct v4l2_ctrl *rgb_quantization_range_ctrl;
};

204
static bool adv76xx_has_afe(struct adv76xx_state *state)
205 206 207 208
{
	return state->info->has_afe;
}

209 210 211 212
/* Unsupported timings. This device cannot support 720p30. */
static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
	V4L2_DV_BT_CEA_1280X720P30,
	{ }
213 214
};

215 216 217 218 219 220 221 222 223 224
static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
{
	int i;

	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
			return false;
	return true;
}

225
struct adv76xx_video_standards {
226 227 228 229 230 231
	struct v4l2_dv_timings timings;
	u8 vid_std;
	u8 v_freq;
};

/* sorted by number of lines */
232
static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
233 234 235 236 237 238 239 240 241 242 243 244 245 246
	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	/* TODO add 1920x1080P60_RB (CVT timing) */
	{ },
};

/* sorted by number of lines */
247
static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
	/* TODO add 1600X1200P60_RB (not a DMT timing) */
	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
	{ },
};

/* sorted by number of lines */
275
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
276 277 278 279 280 281 282 283 284 285 286 287 288
	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	{ },
};

/* sorted by number of lines */
289
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ },
};

308 309 310 311 312
static const struct v4l2_event adv76xx_ev_fmt = {
	.type = V4L2_EVENT_SOURCE_CHANGE,
	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};

313 314
/* ----------------------------------------------------------------------- */

315
static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
316
{
317
	return container_of(sd, struct adv76xx_state, sd);
318 319 320 321
}

static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
322
	return V4L2_DV_BT_FRAME_WIDTH(t);
323 324 325 326
}

static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
327
	return V4L2_DV_BT_FRAME_HEIGHT(t);
328 329 330 331
}

/* ----------------------------------------------------------------------- */

332 333
static int adv76xx_read_check(struct adv76xx_state *state,
			     int client_page, u8 reg)
334
{
335
	struct i2c_client *client = state->i2c_clients[client_page];
336
	int err;
337
	unsigned int val;
338

339 340 341 342 343 344
	err = regmap_read(state->regmap[client_page], reg, &val);

	if (err) {
		v4l_err(client, "error reading %02x, %02x\n",
				client->addr, reg);
		return err;
345
	}
346
	return val;
347 348
}

349 350 351 352 353 354 355 356 357
/* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
 * size to one or more registers.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
			      unsigned int init_reg, const void *val,
			      size_t val_len)
358
{
359 360 361 362
	struct regmap *regmap = state->regmap[client_page];

	if (val_len > I2C_SMBUS_BLOCK_MAX)
		val_len = I2C_SMBUS_BLOCK_MAX;
363

364
	return regmap_raw_write(regmap, init_reg, val, val_len);
365 366 367 368 369 370
}

/* ----------------------------------------------------------------------- */

static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
371
	struct adv76xx_state *state = to_state(sd);
372

373
	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
374 375 376 377
}

static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
378
	struct adv76xx_state *state = to_state(sd);
379

380
	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
381 382
}

383
static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
384
{
385
	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
386 387 388 389
}

static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
390
	struct adv76xx_state *state = to_state(sd);
391

392
	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
393 394 395 396
}

static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
397
	struct adv76xx_state *state = to_state(sd);
398

399
	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
400 401 402 403
}

static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
404
	struct adv76xx_state *state = to_state(sd);
405

406
	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
407 408 409 410
}

static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
411
	struct adv76xx_state *state = to_state(sd);
412

413
	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
414 415 416 417
}

static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
418
	struct adv76xx_state *state = to_state(sd);
419

420
	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
421 422 423 424
}

static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
425
	struct adv76xx_state *state = to_state(sd);
426

427
	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
428 429 430 431
}

static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
432
	struct adv76xx_state *state = to_state(sd);
433

434
	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
435 436 437 438
}

static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
439
	struct adv76xx_state *state = to_state(sd);
440

441
	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
442 443 444 445
}

static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
446
	struct adv76xx_state *state = to_state(sd);
447

448
	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
449 450 451 452
}

static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
453
	struct adv76xx_state *state = to_state(sd);
454

455
	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
456 457
}

458
static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
459
{
460
	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
461 462 463 464
}

static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
465
	struct adv76xx_state *state = to_state(sd);
466

467
	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
468 469 470 471
}

static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
472
	struct adv76xx_state *state = to_state(sd);
473

474
	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
475 476 477
}

static inline int edid_write_block(struct v4l2_subdev *sd,
478
					unsigned int total_len, const u8 *val)
479
{
480
	struct adv76xx_state *state = to_state(sd);
481
	int err = 0;
482 483
	int i = 0;
	int len = 0;
484

485 486 487 488 489 490 491 492 493 494 495 496
	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
				__func__, total_len);

	while (!err && i < total_len) {
		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
				I2C_SMBUS_BLOCK_MAX :
				(total_len - i);

		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
				i, val + i, len);
		i += len;
	}
497

498 499
	return err;
}
500

501
static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
502 503 504
{
	unsigned int i;

505
	for (i = 0; i < state->info->num_dv_ports; ++i)
506 507
		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));

508
	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
509 510
}

511
static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
512 513
{
	struct delayed_work *dwork = to_delayed_work(work);
514
	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
515 516
						delayed_work_enable_hotplug);
	struct v4l2_subdev *sd = &state->sd;
517

518
	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
519

520
	adv76xx_set_hpd(state, state->edid.present);
521 522 523 524
}

static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
525
	struct adv76xx_state *state = to_state(sd);
526

527
	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
528 529
}

530 531 532 533 534
static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
}

535 536
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
537
	struct adv76xx_state *state = to_state(sd);
538

539
	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
540 541
}

542
static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
543
{
544
	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
545 546
}

547 548
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
549
	struct adv76xx_state *state = to_state(sd);
550

551
	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
552 553 554 555
}

static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
556
	struct adv76xx_state *state = to_state(sd);
557

558
	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
559 560
}

561 562 563 564 565
static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
}

566 567
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
568
	struct adv76xx_state *state = to_state(sd);
569

570
	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
571 572
}

573
static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
574
{
575
	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
576 577 578 579
}

static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
580
	struct adv76xx_state *state = to_state(sd);
581

582
	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
583 584 585 586
}

static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
587
	struct adv76xx_state *state = to_state(sd);
588

589
	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
590
}
591

592 593
#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
#define ADV76XX_REG_SEQ_TERM		0xffff
594 595

#ifdef CONFIG_VIDEO_ADV_DEBUG
596
static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
597
{
598
	struct adv76xx_state *state = to_state(sd);
599
	unsigned int page = reg >> 8;
600 601
	unsigned int val;
	int err;
602 603 604 605 606

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;
607
	err = regmap_read(state->regmap[page], reg, &val);
608

609
	return err ? err : val;
610 611 612
}
#endif

613
static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
614
{
615
	struct adv76xx_state *state = to_state(sd);
616 617 618 619 620 621 622
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

623
	return regmap_write(state->regmap[page], reg, val);
624 625
}

626 627
static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
				  const struct adv76xx_reg_seq *reg_seq)
628 629 630
{
	unsigned int i;

631 632
	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
633 634
}

635 636 637 638
/* -----------------------------------------------------------------------------
 * Format helpers
 */

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
static const struct adv76xx_format_info adv7604_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
678 679
};

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
static const struct adv76xx_format_info adv7611_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
707 708
};

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
static const struct adv76xx_format_info adv7612_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
};

726 727
static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state *state, u32 code)
728 729 730 731 732 733 734 735 736 737 738
{
	unsigned int i;

	for (i = 0; i < state->info->nformats; ++i) {
		if (state->info->formats[i].code == code)
			return &state->info->formats[i];
	}

	return NULL;
}

739 740
/* ----------------------------------------------------------------------- */

741 742
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
743
	struct adv76xx_state *state = to_state(sd);
744

745 746
	return state->selected_input == ADV7604_PAD_VGA_RGB ||
	       state->selected_input == ADV7604_PAD_VGA_COMP;
747 748 749 750
}

static inline bool is_digital_input(struct v4l2_subdev *sd)
{
751
	struct adv76xx_state *state = to_state(sd);
752

753
	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
754 755 756
	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
757 758
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
	.type = V4L2_DV_BT_656_1120,
	/* keep this initialization for compatibility with GCC < 4.4.6 */
	.reserved = { 0 },
	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
			V4L2_DV_BT_CAP_CUSTOM)
};

static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
	.type = V4L2_DV_BT_656_1120,
	/* keep this initialization for compatibility with GCC < 4.4.6 */
	.reserved = { 0 },
	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
			V4L2_DV_BT_CAP_CUSTOM)
};

781 782 783 784 785 786
/*
 * Return the DV timings capabilities for the requested sink pad. As a special
 * case, pad value -1 returns the capabilities for the currently selected input.
 */
static const struct v4l2_dv_timings_cap *
adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
787
{
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	if (pad == -1) {
		struct adv76xx_state *state = to_state(sd);

		pad = state->selected_input;
	}

	switch (pad) {
	case ADV76XX_PAD_HDMI_PORT_A:
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
		return &adv76xx_timings_cap_digital;

	case ADV7604_PAD_VGA_RGB:
	case ADV7604_PAD_VGA_COMP:
	default:
		return &adv7604_timings_cap_analog;
	}
806 807 808
}


809 810
/* ----------------------------------------------------------------------- */

811
#ifdef CONFIG_VIDEO_ADV_DEBUG
812
static void adv76xx_inv_register(struct v4l2_subdev *sd)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
{
	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}

829
static int adv76xx_g_register(struct v4l2_subdev *sd,
830 831
					struct v4l2_dbg_register *reg)
{
832 833
	int ret;

834
	ret = adv76xx_read_reg(sd, reg->reg);
835
	if (ret < 0) {
836
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
837
		adv76xx_inv_register(sd);
838
		return ret;
839
	}
840 841 842 843

	reg->size = 1;
	reg->val = ret;

844 845 846
	return 0;
}

847
static int adv76xx_s_register(struct v4l2_subdev *sd,
848
					const struct v4l2_dbg_register *reg)
849
{
850
	int ret;
851

852
	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
853
	if (ret < 0) {
854
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
855
		adv76xx_inv_register(sd);
856
		return ret;
857
	}
858

859 860 861 862
	return 0;
}
#endif

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return ((value & 0x10) >> 4)
	     | ((value & 0x08) >> 2)
	     | ((value & 0x04) << 0)
	     | ((value & 0x02) << 2);
}

static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

880 881 882 883 884 885 886 887 888 889
static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
{
	/*  Reads CABLE_DET_A_RAW. For input B support, need to
	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
	 */
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

890
static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
891
{
892 893
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
894 895

	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
896
				info->read_cable_det(sd));
897 898
}

899 900
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
		u8 prim_mode,
901
		const struct adv76xx_video_standards *predef_vid_timings,
902 903 904 905 906
		const struct v4l2_dv_timings *timings)
{
	int i;

	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
907
		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
908
				is_digital_input(sd) ? 250000 : 1000000, false))
909 910 911 912 913 914 915 916 917 918 919 920
			continue;
		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
				prim_mode); /* v_freq and prim mode */
		return 0;
	}

	return -1;
}

static int configure_predefined_video_timings(struct v4l2_subdev *sd,
		struct v4l2_dv_timings *timings)
921
{
922
	struct adv76xx_state *state = to_state(sd);
923 924 925 926
	int err;

	v4l2_dbg(1, debug, sd, "%s", __func__);

927
	if (adv76xx_has_afe(state)) {
928 929 930 931
		/* reset to default values */
		io_write(sd, 0x16, 0x43);
		io_write(sd, 0x17, 0x5a);
	}
932
	/* disable embedded syncs for auto graphics mode */
933
	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
934 935 936 937 938 939 940 941 942 943 944
	cp_write(sd, 0x8f, 0x00);
	cp_write(sd, 0x90, 0x00);
	cp_write(sd, 0xa2, 0x00);
	cp_write(sd, 0xa3, 0x00);
	cp_write(sd, 0xa4, 0x00);
	cp_write(sd, 0xa5, 0x00);
	cp_write(sd, 0xa6, 0x00);
	cp_write(sd, 0xa7, 0x00);
	cp_write(sd, 0xab, 0x00);
	cp_write(sd, 0xac, 0x00);

945
	if (is_analog_input(sd)) {
946 947 948 949 950
		err = find_and_set_predefined_video_timings(sd,
				0x01, adv7604_prim_mode_comp, timings);
		if (err)
			err = find_and_set_predefined_video_timings(sd,
					0x02, adv7604_prim_mode_gr, timings);
951
	} else if (is_digital_input(sd)) {
952
		err = find_and_set_predefined_video_timings(sd,
953
				0x05, adv76xx_prim_mode_hdmi_comp, timings);
954 955
		if (err)
			err = find_and_set_predefined_video_timings(sd,
956
					0x06, adv76xx_prim_mode_hdmi_gr, timings);
957 958 959
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
960 961 962 963 964 965 966 967 968 969
		err = -1;
	}


	return err;
}

static void configure_custom_video_timings(struct v4l2_subdev *sd,
		const struct v4l2_bt_timings *bt)
{
970
	struct adv76xx_state *state = to_state(sd);
971 972 973 974 975 976 977
	u32 width = htotal(bt);
	u32 height = vtotal(bt);
	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
	u16 cp_start_eav = width - bt->hfrontporch;
	u16 cp_start_vbi = height - bt->vfrontporch;
	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
978
		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
979 980 981 982
	const u8 pll[2] = {
		0xc0 | ((width >> 8) & 0x1f),
		width & 0xff
	};
983 984 985

	v4l2_dbg(2, debug, sd, "%s\n", __func__);

986
	if (is_analog_input(sd)) {
987 988 989 990
		/* auto graphics */
		io_write(sd, 0x00, 0x07); /* video std */
		io_write(sd, 0x01, 0x02); /* prim mode */
		/* enable embedded syncs for auto graphics mode */
991
		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
992

993
		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
994 995
		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
996 997
		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
					0x16, pll, 2))
998 999 1000 1001
			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");

		/* active video - horizontal timing */
		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1002
		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1003
				   ((cp_start_eav >> 8) & 0x0f));
1004 1005 1006 1007
		cp_write(sd, 0xa4, cp_start_eav & 0xff);

		/* active video - vertical timing */
		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1008
		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1009
				   ((cp_end_vbi >> 8) & 0xf));
1010
		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1011
	} else if (is_digital_input(sd)) {
1012
		/* set default prim_mode/vid_std for HDMI
1013
		   according to [REF_03, c. 4.2] */
1014 1015
		io_write(sd, 0x00, 0x02); /* video std */
		io_write(sd, 0x01, 0x06); /* prim mode */
1016 1017 1018
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1019 1020
	}

1021 1022 1023 1024 1025
	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
	cp_write(sd, 0xab, (height >> 4) & 0xff);
	cp_write(sd, 0xac, (height & 0x0f) << 4);
}
1026

1027
static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1028
{
1029
	struct adv76xx_state *state = to_state(sd);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	u8 offset_buf[4];

	if (auto_offset) {
		offset_a = 0x3ff;
		offset_b = 0x3ff;
		offset_c = 0x3ff;
	}

	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_offset ? "Auto" : "Manual",
			offset_a, offset_b, offset_c);

	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
	offset_buf[3] = offset_c & 0x0ff;

	/* Registers must be written in this order with no i2c access in between */
1048 1049
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			0x77, offset_buf, 4))
1050 1051 1052
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}

1053
static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1054
{
1055
	struct adv76xx_state *state = to_state(sd);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	u8 gain_buf[4];
	u8 gain_man = 1;
	u8 agc_mode_man = 1;

	if (auto_gain) {
		gain_man = 0;
		agc_mode_man = 0;
		gain_a = 0x100;
		gain_b = 0x100;
		gain_c = 0x100;
	}

	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_gain ? "Auto" : "Manual",
			gain_a, gain_b, gain_c);

	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
	gain_buf[3] = ((gain_c & 0x0ff));

	/* Registers must be written in this order with no i2c access in between */
1078 1079
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			     0x73, gain_buf, 4))
1080 1081 1082
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}

1083 1084
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
1085
	struct adv76xx_state *state = to_state(sd);
1086 1087 1088 1089 1090 1091
	bool rgb_output = io_read(sd, 0x02) & 0x02;
	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;

	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
			__func__, state->rgb_quantization_range,
			rgb_output, hdmi_signal);
1092

1093 1094
	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1095

1096 1097
	switch (state->rgb_quantization_range) {
	case V4L2_DV_RGB_RANGE_AUTO:
1098
		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1099 1100
			/* Receiving analog RGB signal
			 * Set RGB full range (0-255) */
1101
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1102 1103 1104
			break;
		}

1105
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1106 1107
			/* Receiving analog YPbPr signal
			 * Set automode */
1108
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1109 1110 1111
			break;
		}

1112
		if (hdmi_signal) {
1113 1114
			/* Receiving HDMI signal
			 * Set automode */
1115
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1116 1117 1118 1119 1120 1121
			break;
		}

		/* Receiving DVI-D signal
		 * ADV7604 selects RGB limited range regardless of
		 * input format (CE/IT) in automatic mode */
1122
		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1123
			/* RGB limited range (16-235) */
1124
			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1125 1126
		} else {
			/* RGB full range (0-255) */
1127
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1128 1129

			if (is_digital_input(sd) && rgb_output) {
1130
				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1131
			} else {
1132 1133
				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1134
			}
1135 1136 1137
		}
		break;
	case V4L2_DV_RGB_RANGE_LIMITED:
1138
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1139
			/* YCrCb limited range (16-235) */
1140
			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1141
			break;
1142
		}
1143 1144

		/* RGB limited range (16-235) */
1145
		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1146

1147 1148
		break;
	case V4L2_DV_RGB_RANGE_FULL:
1149
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1150
			/* YCrCb full range (0-255) */
1151
			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1152 1153 1154 1155
			break;
		}

		/* RGB full range (0-255) */
1156
		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1157 1158 1159 1160 1161 1162

		if (is_analog_input(sd) || hdmi_signal)
			break;

		/* Adjust gain/offset for DVI-D signals only */
		if (rgb_output) {
1163
			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1164
		} else {
1165 1166
			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1167
		}
1168 1169 1170 1171
		break;
	}
}

1172
static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1173
{
1174
	struct v4l2_subdev *sd =
1175
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1176

1177
	struct adv76xx_state *state = to_state(sd);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		cp_write(sd, 0x3c, ctrl->val);
		return 0;
	case V4L2_CID_CONTRAST:
		cp_write(sd, 0x3a, ctrl->val);
		return 0;
	case V4L2_CID_SATURATION:
		cp_write(sd, 0x3b, ctrl->val);
		return 0;
	case V4L2_CID_HUE:
		cp_write(sd, 0x3d, ctrl->val);
		return 0;
	case  V4L2_CID_DV_RX_RGB_RANGE:
		state->rgb_quantization_range = ctrl->val;
		set_rgb_quantization_range(sd);
		return 0;
	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1197
		if (!adv76xx_has_afe(state))
1198
			return -EINVAL;
1199 1200 1201 1202 1203 1204 1205 1206 1207
		/* Set the analog sampling phase. This is needed to find the
		   best sampling phase for analog video: an application or
		   driver has to try a number of phases and analyze the picture
		   quality before settling on the best performing phase. */
		afe_write(sd, 0xc8, ctrl->val);
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
		/* Use the default blue color for free running mode,
		   or supply your own. */
1208
		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
		return 0;
	}
	return -EINVAL;
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
	struct v4l2_subdev *sd =
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;

	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
		return 0;
	}
	return -EINVAL;
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/* ----------------------------------------------------------------------- */

static inline bool no_power(struct v4l2_subdev *sd)
{
	/* Entire chip or CP powered off */
	return io_read(sd, 0x0c) & 0x24;
}

static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
1243
	struct adv76xx_state *state = to_state(sd);
1244 1245

	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1246 1247 1248 1249
}

static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
1250 1251
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1252 1253

	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1254 1255
}

1256 1257 1258 1259 1260
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
	return hdmi_read(sd, 0x05) & 0x80;
}

1261 1262
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
1263
	struct adv76xx_state *state = to_state(sd);
1264 1265 1266 1267 1268

	/*
	 * Chips without a AFE don't expose registers for the SSPD, so just assume
	 * that we have a lock.
	 */
1269
	if (adv76xx_has_afe(state))
1270 1271
		return false;

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	/* TODO channel 2 */
	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}

static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
	/* TODO channel 2 */
	return !(cp_read(sd, 0xb1) & 0x80);
}

static inline bool no_signal(struct v4l2_subdev *sd)
{
	bool ret;

	ret = no_power(sd);

	ret |= no_lock_stdi(sd);
	ret |= no_lock_sspd(sd);

1291
	if (is_digital_input(sd)) {
1292 1293 1294 1295 1296 1297 1298 1299 1300
		ret |= no_lock_tmds(sd);
		ret |= no_signal_tmds(sd);
	}

	return ret;
}

static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
1301
	struct adv76xx_state *state = to_state(sd);
1302

1303
	if (!adv76xx_has_afe(state))
1304 1305
		return false;

1306 1307 1308 1309 1310
	/* CP has detected a non standard number of lines on the incoming
	   video compared to what it is configured to receive by s_dv_timings */
	return io_read(sd, 0x12) & 0x01;
}

1311 1312 1313 1314 1315
static inline bool in_free_run(struct v4l2_subdev *sd)
{
	return cp_read(sd, 0xff) & 0x10;
}

1316
static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1317 1318 1319 1320
{
	*status = 0;
	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1321 1322 1323
	if (!in_free_run(sd) && no_lock_cp(sd))
		*status |= is_digital_input(sd) ?
			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);

	return 0;
}

/* ----------------------------------------------------------------------- */

struct stdi_readback {
	u16 bl, lcf, lcvs;
	u8 hs_pol, vs_pol;
	bool interlaced;
};

static int stdi2dv_timings(struct v4l2_subdev *sd,
		struct stdi_readback *stdi,
		struct v4l2_dv_timings *timings)
{
1342 1343
	struct adv76xx_state *state = to_state(sd);
	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1344 1345 1346
	u32 pix_clk;
	int i;

1347 1348 1349 1350
	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;

		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1351
					   adv76xx_get_dv_timings_cap(sd, -1),
1352
					   adv76xx_check_dv_timings, NULL))
1353
			continue;
1354 1355 1356
		if (vtotal(bt) != stdi->lcf + 1)
			continue;
		if (bt->vsync != stdi->lcvs)
1357 1358
			continue;

1359
		pix_clk = hfreq * htotal(bt);
1360

1361 1362 1363
		if ((pix_clk < bt->pixelclock + 1000000) &&
		    (pix_clk > bt->pixelclock - 1000000)) {
			*timings = v4l2_dv_timings_presets[i];
1364 1365 1366 1367
			return 0;
		}
	}

1368
	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1369 1370
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1371
			false, timings))
1372 1373 1374 1375
		return 0;
	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1376
			false, state->aspect_ratio, timings))
1377 1378
		return 0;

1379 1380 1381 1382
	v4l2_dbg(2, debug, sd,
		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
		stdi->hs_pol, stdi->vs_pol);
1383 1384 1385
	return -1;
}

1386

1387 1388
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
1389 1390
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1391 1392
	u8 polarity;

1393 1394 1395 1396 1397 1398
	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
		return -1;
	}

	/* read STDI */
1399
	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1400
	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1401 1402 1403
	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
	stdi->interlaced = io_read(sd, 0x12) & 0x10;

1404
	if (adv76xx_has_afe(state)) {
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		/* read SSPD */
		polarity = cp_read(sd, 0xb5);
		if ((polarity & 0x03) == 0x01) {
			stdi->hs_pol = polarity & 0x10
				     ? (polarity & 0x08 ? '+' : '-') : 'x';
			stdi->vs_pol = polarity & 0x40
				     ? (polarity & 0x20 ? '+' : '-') : 'x';
		} else {
			stdi->hs_pol = 'x';
			stdi->vs_pol = 'x';
		}
1416
	} else {
1417 1418 1419
		polarity = hdmi_read(sd, 0x05);
		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	}

	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd,
			"%s: signal lost during readout of STDI/SSPD\n", __func__);
		return -1;
	}

	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
		memset(stdi, 0, sizeof(struct stdi_readback));
		return -1;
	}

	v4l2_dbg(2, debug, sd,
		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
		stdi->hs_pol, stdi->vs_pol,
		stdi->interlaced ? "interlaced" : "progressive");

	return 0;
}

1443
static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1444 1445
			struct v4l2_enum_dv_timings *timings)
{
1446
	struct adv76xx_state *state = to_state(sd);
1447 1448 1449 1450

	if (timings->pad >= state->source_pad)
		return -EINVAL;

1451
	return v4l2_enum_dv_timings_cap(timings,
1452 1453
		adv76xx_get_dv_timings_cap(sd, timings->pad),
		adv76xx_check_dv_timings, NULL);
1454 1455
}

1456
static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1457
			struct v4l2_dv_timings_cap *cap)
1458
{
1459
	struct adv76xx_state *state = to_state(sd);
1460
	unsigned int pad = cap->pad;
1461 1462 1463 1464

	if (cap->pad >= state->source_pad)
		return -EINVAL;

1465 1466 1467
	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
	cap->pad = pad;

1468 1469 1470 1471
	return 0;
}

/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1472 1473
   if the format is listed in adv76xx_timings[] */
static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1474 1475
		struct v4l2_dv_timings *timings)
{
1476 1477 1478
	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
				 is_digital_input(sd) ? 250000 : 1000000,
				 adv76xx_check_dv_timings, NULL);
1479 1480
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	unsigned int freq;
	int a, b;

	a = hdmi_read(sd, 0x06);
	b = hdmi_read(sd, 0x3b);
	if (a < 0 || b < 0)
		return 0;
	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;

	if (is_hdmi(sd)) {
		/* adjust for deep color mode */
		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;

		freq = freq * 8 / bits_per_channel;
	}

	return freq;
}

static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	int a, b;

	a = hdmi_read(sd, 0x51);
	b = hdmi_read(sd, 0x52);
	if (a < 0 || b < 0)
		return 0;
	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
}

1513
static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1514 1515
			struct v4l2_dv_timings *timings)
{
1516 1517
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1518 1519 1520 1521 1522 1523 1524 1525 1526
	struct v4l2_bt_timings *bt = &timings->bt;
	struct stdi_readback stdi;

	if (!timings)
		return -EINVAL;

	memset(timings, 0, sizeof(struct v4l2_dv_timings));

	if (no_signal(sd)) {
1527
		state->restart_stdi_once = true;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
		return -ENOLINK;
	}

	/* read STDI */
	if (read_stdi(sd, &stdi)) {
		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
		return -ENOLINK;
	}
	bt->interlaced = stdi.interlaced ?
		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;

1540
	if (is_digital_input(sd)) {
1541 1542
		timings->type = V4L2_DV_BT_656_1120;

1543 1544
		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1545
		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1546 1547 1548 1549 1550 1551 1552 1553
		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
		bt->vfrontporch = hdmi_read16(sd, 0x2a,
			info->field0_vfrontporch_mask) / 2;
		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
		bt->vbackporch = hdmi_read16(sd, 0x32,
			info->field0_vbackporch_mask) / 2;
1554 1555 1556
		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
		if (bt->interlaced == V4L2_DV_INTERLACED) {
1557 1558 1559 1560 1561 1562 1563 1564
			bt->height += hdmi_read16(sd, 0x0b,
				info->field1_height_mask);
			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
				info->field1_vfrontporch_mask) / 2;
			bt->il_vsync = hdmi_read16(sd, 0x30,
				info->field1_vsync_mask) / 2;
			bt->il_vbackporch = hdmi_read16(sd, 0x34,
				info->field1_vbackporch_mask) / 2;
1565
		}
1566
		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1567 1568
	} else {
		/* find format
H
Hans Verkuil 已提交
1569
		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
		 */
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs += 1;
		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs -= 2;
		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
		if (stdi2dv_timings(sd, &stdi, timings)) {
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
			/*
			 * The STDI block may measure wrong values, especially
			 * for lcvs and lcf. If the driver can not find any
			 * valid timing, the STDI block is restarted to measure
			 * the video timings again. The function will return an
			 * error, but the restart of STDI will generate a new
			 * STDI interrupt and the format detection process will
			 * restart.
			 */
			if (state->restart_stdi_once) {
				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
				/* TODO restart STDI for Sync Channel 2 */
				/* enter one-shot mode */
1594
				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1595
				/* trigger STDI restart */
1596
				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1597
				/* reset to continuous mode */
1598
				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1599 1600 1601
				state->restart_stdi_once = false;
				return -ENOLINK;
			}
1602 1603 1604
			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
			return -ERANGE;
		}
1605
		state->restart_stdi_once = true;
1606 1607 1608 1609 1610 1611 1612 1613 1614
	}
found:

	if (no_signal(sd)) {
		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
		memset(timings, 0, sizeof(struct v4l2_dv_timings));
		return -ENOLINK;
	}

1615 1616
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1617 1618 1619 1620 1621 1622
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}

	if (debug > 1)
1623
		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1624
				      timings, true);
1625 1626 1627 1628

	return 0;
}

1629
static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1630 1631
		struct v4l2_dv_timings *timings)
{
1632
	struct adv76xx_state *state = to_state(sd);
1633
	struct v4l2_bt_timings *bt;
1634
	int err;
1635 1636 1637 1638

	if (!timings)
		return -EINVAL;

1639
	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1640 1641 1642 1643
		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
		return 0;
	}

1644 1645
	bt = &timings->bt;

1646
	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1647
				   adv76xx_check_dv_timings, NULL))
1648
		return -ERANGE;
1649

1650
	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1651 1652 1653

	state->timings = *timings;

1654
	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1655 1656 1657 1658 1659 1660 1661 1662

	/* Use prim_mode and vid_std when available */
	err = configure_predefined_video_timings(sd, timings);
	if (err) {
		/* custom settings when the video format
		 does not have prim_mode/vid_std */
		configure_custom_video_timings(sd, bt);
	}
1663 1664 1665 1666

	set_rgb_quantization_range(sd);

	if (debug > 1)
1667
		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1668
				      timings, true);
1669 1670 1671
	return 0;
}

1672
static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1673 1674
		struct v4l2_dv_timings *timings)
{
1675
	struct adv76xx_state *state = to_state(sd);
1676 1677 1678 1679 1680

	*timings = state->timings;
	return 0;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
}

static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
}

1691
static void enable_input(struct v4l2_subdev *sd)
1692
{
1693
	struct adv76xx_state *state = to_state(sd);
1694

1695
	if (is_analog_input(sd)) {
1696
		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1697
	} else if (is_digital_input(sd)) {
1698
		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1699
		state->info->set_termination(sd, true);
1700
		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1701
		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1702 1703 1704
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1705 1706 1707 1708 1709
	}
}

static void disable_input(struct v4l2_subdev *sd)
{
1710
	struct adv76xx_state *state = to_state(sd);
1711

1712
	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1713
	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1714
	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1715
	state->info->set_termination(sd, false);
1716 1717
}

1718
static void select_input(struct v4l2_subdev *sd)
1719
{
1720 1721
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1722

1723
	if (is_analog_input(sd)) {
1724
		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1725 1726 1727 1728

		afe_write(sd, 0x00, 0x08); /* power up ADC */
		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
		afe_write(sd, 0xc8, 0x00); /* phase control */
1729 1730
	} else if (is_digital_input(sd)) {
		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1731

1732
		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1733

1734
		if (adv76xx_has_afe(state)) {
1735 1736 1737 1738 1739
			afe_write(sd, 0x00, 0xff); /* power down ADC */
			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
			afe_write(sd, 0xc8, 0x40); /* phase control */
		}

1740 1741 1742
		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1743 1744 1745
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1746 1747 1748
	}
}

1749
static int adv76xx_s_routing(struct v4l2_subdev *sd,
1750 1751
		u32 input, u32 output, u32 config)
{
1752
	struct adv76xx_state *state = to_state(sd);
1753

1754 1755 1756 1757 1758
	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
			__func__, input, state->selected_input);

	if (input == state->selected_input)
		return 0;
1759

1760 1761 1762
	if (input > state->info->max_port)
		return -EINVAL;

1763
	state->selected_input = input;
1764 1765

	disable_input(sd);
1766 1767
	select_input(sd);
	enable_input(sd);
1768

1769 1770
	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);

1771 1772 1773
	return 0;
}

1774
static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1775
				  struct v4l2_subdev_pad_config *cfg,
1776
				  struct v4l2_subdev_mbus_code_enum *code)
1777
{
1778
	struct adv76xx_state *state = to_state(sd);
1779 1780

	if (code->index >= state->info->nformats)
1781
		return -EINVAL;
1782 1783 1784

	code->code = state->info->formats[code->index].code;

1785 1786 1787
	return 0;
}

1788
static void adv76xx_fill_format(struct adv76xx_state *state,
1789
				struct v4l2_mbus_framefmt *format)
1790
{
1791
	memset(format, 0, sizeof(*format));
1792

1793 1794 1795
	format->width = state->timings.bt.width;
	format->height = state->timings.bt.height;
	format->field = V4L2_FIELD_NONE;
1796
	format->colorspace = V4L2_COLORSPACE_SRGB;
1797

1798
	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1799
		format->colorspace = (state->timings.bt.height <= 576) ?
1800
			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1801 1802 1803 1804 1805 1806 1807 1808 1809
}

/*
 * Compute the op_ch_sel value required to obtain on the bus the component order
 * corresponding to the selected format taking into account bus reordering
 * applied by the board at the output of the device.
 *
 * The following table gives the op_ch_value from the format component order
 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1810
 * adv76xx_bus_order value in row).
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
 *
 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
 * ----------+-------------------------------------------------
 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
 */
1821
static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1822 1823
{
#define _SEL(a,b,c,d,e,f)	{ \
1824 1825
	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
#define _BUS(x)			[ADV7604_BUS_ORDER_##x]

	static const unsigned int op_ch_sel[6][6] = {
		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
	};

	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}

1840
static void adv76xx_setup_format(struct adv76xx_state *state)
1841 1842 1843
{
	struct v4l2_subdev *sd = &state->sd;

1844
	io_write_clr_set(sd, 0x02, 0x02,
1845
			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1846 1847
	io_write(sd, 0x03, state->format->op_format_sel |
		 state->pdata.op_format_mode_sel);
1848
	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1849
	io_write_clr_set(sd, 0x05, 0x01,
1850
			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1851 1852
}

1853 1854
static int adv76xx_get_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1855 1856
			      struct v4l2_subdev_format *format)
{
1857
	struct adv76xx_state *state = to_state(sd);
1858 1859 1860 1861

	if (format->pad != state->source_pad)
		return -EINVAL;

1862
	adv76xx_fill_format(state, &format->format);
1863 1864 1865 1866

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1867
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1868 1869 1870
		format->format.code = fmt->code;
	} else {
		format->format.code = state->format->code;
1871
	}
1872 1873 1874 1875

	return 0;
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static int adv76xx_get_selection(struct v4l2_subdev *sd,
				 struct v4l2_subdev_pad_config *cfg,
				 struct v4l2_subdev_selection *sel)
{
	struct adv76xx_state *state = to_state(sd);

	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
		return -EINVAL;
	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
		return -EINVAL;

	sel->r.left	= 0;
	sel->r.top	= 0;
	sel->r.width	= state->timings.bt.width;
	sel->r.height	= state->timings.bt.height;

	return 0;
}

1896 1897
static int adv76xx_set_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1898 1899
			      struct v4l2_subdev_format *format)
{
1900 1901
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_format_info *info;
1902 1903 1904 1905

	if (format->pad != state->source_pad)
		return -EINVAL;

1906
	info = adv76xx_format_info(state, format->format.code);
1907
	if (info == NULL)
1908
		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1909

1910
	adv76xx_fill_format(state, &format->format);
1911 1912 1913 1914 1915
	format->format.code = info->code;

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1916
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1917 1918 1919
		fmt->code = format->format.code;
	} else {
		state->format = info;
1920
		adv76xx_setup_format(state);
1921 1922
	}

1923 1924 1925
	return 0;
}

1926
static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1927
{
1928 1929
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	const u8 irq_reg_0x43 = io_read(sd, 0x43);
	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
	const u8 irq_reg_0x70 = io_read(sd, 0x70);
	u8 fmt_change_digital;
	u8 fmt_change;
	u8 tx_5v;

	if (irq_reg_0x43)
		io_write(sd, 0x44, irq_reg_0x43);
	if (irq_reg_0x70)
		io_write(sd, 0x71, irq_reg_0x70);
	if (irq_reg_0x6b)
		io_write(sd, 0x6c, irq_reg_0x6b);
1943

1944 1945
	v4l2_dbg(2, debug, sd, "%s: ", __func__);

1946
	/* format change */
1947
	fmt_change = irq_reg_0x43 & 0x98;
1948 1949 1950
	fmt_change_digital = is_digital_input(sd)
			   ? irq_reg_0x6b & info->fmt_change_digital_mask
			   : 0;
1951

1952 1953
	if (fmt_change || fmt_change_digital) {
		v4l2_dbg(1, debug, sd,
1954
			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1955
			__func__, fmt_change, fmt_change_digital);
1956

1957
		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1958

1959 1960 1961
		if (handled)
			*handled = true;
	}
1962 1963 1964 1965 1966 1967 1968 1969 1970
	/* HDMI/DVI mode */
	if (irq_reg_0x6b & 0x01) {
		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
		set_rgb_quantization_range(sd);
		if (handled)
			*handled = true;
	}

1971
	/* tx 5v detect */
1972
	tx_5v = irq_reg_0x70 & info->cable_det_mask;
1973 1974
	if (tx_5v) {
		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
1975
		adv76xx_s_detect_tx_5v_ctrl(sd);
1976 1977 1978 1979 1980 1981
		if (handled)
			*handled = true;
	}
	return 0;
}

1982
static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1983
{
1984
	struct adv76xx_state *state = to_state(sd);
1985
	u8 *data = NULL;
1986

1987
	memset(edid->reserved, 0, sizeof(edid->reserved));
1988 1989

	switch (edid->pad) {
1990
	case ADV76XX_PAD_HDMI_PORT_A:
1991 1992 1993
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1994 1995 1996 1997 1998 1999
		if (state->edid.present & (1 << edid->pad))
			data = state->edid.edid;
		break;
	default:
		return -EINVAL;
	}
2000 2001 2002 2003 2004 2005 2006

	if (edid->start_block == 0 && edid->blocks == 0) {
		edid->blocks = data ? state->edid.blocks : 0;
		return 0;
	}

	if (data == NULL)
2007 2008
		return -ENODATA;

2009 2010 2011 2012 2013 2014 2015 2016
	if (edid->start_block >= state->edid.blocks)
		return -EINVAL;

	if (edid->start_block + edid->blocks > state->edid.blocks)
		edid->blocks = state->edid.blocks - edid->start_block;

	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);

2017 2018 2019
	return 0;
}

2020
static int get_edid_spa_location(const u8 *edid)
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
{
	u8 d;

	if ((edid[0x7e] != 1) ||
	    (edid[0x80] != 0x02) ||
	    (edid[0x81] != 0x03)) {
		return -1;
	}

	/* search Vendor Specific Data Block (tag 3) */
	d = edid[0x82] & 0x7f;
	if (d > 4) {
		int i = 0x84;
		int end = 0x80 + d;

		do {
			u8 tag = edid[i] >> 5;
			u8 len = edid[i] & 0x1f;

			if ((tag == 3) && (len >= 5))
				return i + 4;
			i += len + 1;
		} while (i < end);
	}
	return -1;
}

2048
static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2049
{
2050 2051
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2052
	int spa_loc;
2053
	int err;
2054
	int i;
2055

2056 2057
	memset(edid->reserved, 0, sizeof(edid->reserved));

2058
	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2059 2060 2061 2062
		return -EINVAL;
	if (edid->start_block != 0)
		return -EINVAL;
	if (edid->blocks == 0) {
2063
		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2064
		state->edid.present &= ~(1 << edid->pad);
2065
		adv76xx_set_hpd(state, state->edid.present);
2066
		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2067

2068 2069 2070
		/* Fall back to a 16:9 aspect ratio */
		state->aspect_ratio.numerator = 16;
		state->aspect_ratio.denominator = 9;
2071 2072 2073 2074 2075 2076

		if (!state->edid.present)
			state->edid.blocks = 0;

		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
				__func__, edid->pad, state->edid.present);
2077 2078
		return 0;
	}
2079 2080
	if (edid->blocks > 2) {
		edid->blocks = 2;
2081
		return -E2BIG;
2082 2083
	}

2084 2085 2086
	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
			__func__, edid->pad, state->edid.present);

2087
	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2088
	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2089
	adv76xx_set_hpd(state, 0);
2090
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2091

2092 2093 2094 2095
	spa_loc = get_edid_spa_location(edid->edid);
	if (spa_loc < 0)
		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */

2096
	switch (edid->pad) {
2097
	case ADV76XX_PAD_HDMI_PORT_A:
2098 2099
		state->spa_port_a[0] = edid->edid[spa_loc];
		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2100
		break;
2101
	case ADV7604_PAD_HDMI_PORT_B:
2102 2103
		rep_write(sd, 0x70, edid->edid[spa_loc]);
		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2104
		break;
2105
	case ADV7604_PAD_HDMI_PORT_C:
2106 2107
		rep_write(sd, 0x72, edid->edid[spa_loc]);
		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2108
		break;
2109
	case ADV7604_PAD_HDMI_PORT_D:
2110 2111
		rep_write(sd, 0x74, edid->edid[spa_loc]);
		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2112
		break;
2113 2114
	default:
		return -EINVAL;
2115
	}
2116 2117 2118

	if (info->type == ADV7604) {
		rep_write(sd, 0x76, spa_loc & 0xff);
2119
		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2120
	} else {
2121 2122
		/* ADV7612 Software Manual Rev. A, p. 15 */
		rep_write(sd, 0x70, spa_loc & 0xff);
2123
		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2124
	}
2125

2126 2127
	edid->edid[spa_loc] = state->spa_port_a[0];
	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2128 2129 2130

	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
	state->edid.blocks = edid->blocks;
2131 2132
	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
			edid->edid[0x16]);
2133
	state->edid.present |= 1 << edid->pad;
2134 2135 2136

	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
	if (err < 0) {
2137
		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2138 2139 2140
		return err;
	}

2141
	/* adv76xx calculates the checksums and enables I2C access to internal
2142
	   EDID RAM from DDC port. */
2143
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2144 2145

	for (i = 0; i < 1000; i++) {
2146
		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2147 2148 2149 2150 2151 2152 2153 2154
			break;
		mdelay(1);
	}
	if (i == 1000) {
		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
		return -EIO;
	}

2155
	/* enable hotplug after 100 ms */
2156
	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2157
	return 0;
2158 2159 2160 2161
}

/*********** avi info frame CEA-861-E **************/

H
Hans Verkuil 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170
static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
	{ "AVI", 0x01, 0xe0, 0x00 },
	{ "Audio", 0x02, 0xe3, 0x1c },
	{ "SDP", 0x04, 0xe6, 0x2a },
	{ "Vendor", 0x10, 0xec, 0x54 }
};

static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
				  union hdmi_infoframe *frame)
2171
{
H
Hans Verkuil 已提交
2172 2173
	uint8_t buffer[32];
	u8 len;
2174 2175
	int i;

H
Hans Verkuil 已提交
2176 2177 2178 2179
	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
		v4l2_info(sd, "%s infoframe not received\n",
			  adv76xx_cri[index].desc);
		return -ENOENT;
2180
	}
H
Hans Verkuil 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

	for (i = 0; i < 3; i++)
		buffer[i] = infoframe_read(sd,
					   adv76xx_cri[index].head_addr + i);

	len = buffer[2] + 1;

	if (len + 3 > sizeof(buffer)) {
		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
			 adv76xx_cri[index].desc, len);
		return -ENOENT;
2192 2193
	}

H
Hans Verkuil 已提交
2194 2195 2196 2197 2198 2199 2200 2201
	for (i = 0; i < len; i++)
		buffer[i + 3] = infoframe_read(sd,
				       adv76xx_cri[index].payload_addr + i);

	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
			 adv76xx_cri[index].desc);
		return -ENOENT;
2202
	}
H
Hans Verkuil 已提交
2203 2204
	return 0;
}
2205

H
Hans Verkuil 已提交
2206 2207 2208
static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
{
	int i;
2209

H
Hans Verkuil 已提交
2210 2211
	if (!is_hdmi(sd)) {
		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2212
		return;
H
Hans Verkuil 已提交
2213
	}
2214

H
Hans Verkuil 已提交
2215 2216 2217
	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
		union hdmi_infoframe frame;
		struct i2c_client *client = v4l2_get_subdevdata(sd);
2218

H
Hans Verkuil 已提交
2219 2220 2221 2222
		if (adv76xx_read_infoframe(sd, i, &frame))
			return;
		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
	}
2223 2224
}

2225
static int adv76xx_log_status(struct v4l2_subdev *sd)
2226
{
2227 2228
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2229 2230 2231
	struct v4l2_dv_timings timings;
	struct stdi_readback stdi;
	u8 reg_io_0x02 = io_read(sd, 0x02);
2232 2233
	u8 edid_enabled;
	u8 cable_det;
2234

2235
	static const char * const csc_coeff_sel_rb[16] = {
2236 2237 2238 2239 2240
		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
		"reserved", "reserved", "reserved", "reserved", "manual"
	};
2241
	static const char * const input_color_space_txt[16] = {
2242 2243
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2244
		"xvYCC Bt.601", "xvYCC Bt.709",
2245 2246 2247 2248
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"invalid", "invalid", "invalid", "invalid", "invalid",
		"invalid", "invalid", "automatic"
	};
2249 2250 2251 2252 2253 2254 2255 2256
	static const char * const hdmi_color_space_txt[16] = {
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
		"xvYCC Bt.601", "xvYCC Bt.709",
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
		"invalid", "invalid", "invalid"
	};
2257
	static const char * const rgb_quantization_range_txt[] = {
2258 2259 2260 2261
		"Automatic",
		"RGB limited range (16-235)",
		"RGB full range (0-255)",
	};
2262
	static const char * const deep_color_mode_txt[4] = {
2263 2264 2265 2266 2267
		"8-bits per channel",
		"10-bits per channel",
		"12-bits per channel",
		"16-bits per channel (not supported)"
	};
2268 2269 2270

	v4l2_info(sd, "-----Chip status-----\n");
	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2271
	edid_enabled = rep_read(sd, info->edid_status_reg);
2272
	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2273 2274 2275 2276
			((edid_enabled & 0x01) ? "Yes" : "No"),
			((edid_enabled & 0x02) ? "Yes" : "No"),
			((edid_enabled & 0x04) ? "Yes" : "No"),
			((edid_enabled & 0x08) ? "Yes" : "No"));
2277 2278 2279 2280
	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
			"enabled" : "disabled");

	v4l2_info(sd, "-----Signal status-----\n");
2281
	cable_det = info->read_cable_det(sd);
2282
	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2283 2284
			((cable_det & 0x01) ? "Yes" : "No"),
			((cable_det & 0x02) ? "Yes" : "No"),
2285
			((cable_det & 0x04) ? "Yes" : "No"),
2286
			((cable_det & 0x08) ? "Yes" : "No"));
2287 2288 2289 2290 2291 2292 2293 2294
	v4l2_info(sd, "TMDS signal detected: %s\n",
			no_signal_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "TMDS signal locked: %s\n",
			no_lock_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
	v4l2_info(sd, "CP free run: %s\n",
2295
			(in_free_run(sd)) ? "on" : "off");
2296 2297 2298
	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
			(io_read(sd, 0x01) & 0x70) >> 4);
2299 2300 2301 2302 2303 2304 2305 2306 2307

	v4l2_info(sd, "-----Video Timings-----\n");
	if (read_stdi(sd, &stdi))
		v4l2_info(sd, "STDI: not locked\n");
	else
		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
				stdi.lcf, stdi.bl, stdi.lcvs,
				stdi.interlaced ? "interlaced" : "progressive",
				stdi.hs_pol, stdi.vs_pol);
2308
	if (adv76xx_query_dv_timings(sd, &timings))
2309 2310
		v4l2_info(sd, "No video detected\n");
	else
2311 2312 2313 2314
		v4l2_print_dv_timings(sd->name, "Detected format: ",
				      &timings, true);
	v4l2_print_dv_timings(sd->name, "Configured format: ",
			      &state->timings, true);
2315

2316 2317 2318
	if (no_signal(sd))
		return 0;

2319 2320 2321 2322 2323
	v4l2_info(sd, "-----Color space-----\n");
	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
			rgb_quantization_range_txt[state->rgb_quantization_range]);
	v4l2_info(sd, "Input color space: %s\n",
			input_color_space_txt[reg_io_0x02 >> 4]);
2324
	v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2325 2326
			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2327
			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2328 2329
				"enabled" : "disabled",
			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2330
	v4l2_info(sd, "Color space conversion: %s\n",
2331
			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2332

2333
	if (!is_digital_input(sd))
2334 2335 2336
		return 0;

	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2337 2338 2339 2340
	v4l2_info(sd, "Digital video port selected: %c\n",
			(hdmi_read(sd, 0x00) & 0x03) + 'A');
	v4l2_info(sd, "HDCP encrypted content: %s\n",
			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2341 2342 2343
	v4l2_info(sd, "HDCP keys read: %s%s\n",
			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2344
	if (is_hdmi(sd)) {
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
		bool audio_mute = io_read(sd, 0x65) & 0x40;

		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
				audio_pll_locked ? "locked" : "not locked",
				audio_sample_packet_detect ? "detected" : "not detected",
				audio_mute ? "muted" : "enabled");
		if (audio_pll_locked && audio_sample_packet_detect) {
			v4l2_info(sd, "Audio format: %s\n",
					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
		}
		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
				(hdmi_read(sd, 0x5c) << 8) +
				(hdmi_read(sd, 0x5d) & 0xf0));
		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
				(hdmi_read(sd, 0x5e) << 8) +
				hdmi_read(sd, 0x5f));
		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");

		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2366
		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2367

H
Hans Verkuil 已提交
2368
		adv76xx_log_infoframes(sd);
2369 2370 2371 2372 2373
	}

	return 0;
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
				   struct v4l2_fh *fh,
				   struct v4l2_event_subscription *sub)
{
	switch (sub->type) {
	case V4L2_EVENT_SOURCE_CHANGE:
		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
	case V4L2_EVENT_CTRL:
		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
	default:
		return -EINVAL;
	}
}

2388 2389
/* ----------------------------------------------------------------------- */

2390 2391
static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
	.s_ctrl = adv76xx_s_ctrl,
2392
	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2393 2394
};

2395 2396 2397
static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
	.log_status = adv76xx_log_status,
	.interrupt_service_routine = adv76xx_isr,
2398
	.subscribe_event = adv76xx_subscribe_event,
2399
	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2400
#ifdef CONFIG_VIDEO_ADV_DEBUG
2401 2402
	.g_register = adv76xx_g_register,
	.s_register = adv76xx_s_register,
2403 2404 2405
#endif
};

2406 2407 2408 2409 2410 2411
static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
	.s_routing = adv76xx_s_routing,
	.g_input_status = adv76xx_g_input_status,
	.s_dv_timings = adv76xx_s_dv_timings,
	.g_dv_timings = adv76xx_g_dv_timings,
	.query_dv_timings = adv76xx_query_dv_timings,
2412 2413
};

2414 2415
static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
	.enum_mbus_code = adv76xx_enum_mbus_code,
2416
	.get_selection = adv76xx_get_selection,
2417 2418 2419 2420 2421 2422
	.get_fmt = adv76xx_get_format,
	.set_fmt = adv76xx_set_format,
	.get_edid = adv76xx_get_edid,
	.set_edid = adv76xx_set_edid,
	.dv_timings_cap = adv76xx_dv_timings_cap,
	.enum_dv_timings = adv76xx_enum_dv_timings,
2423 2424
};

2425 2426 2427 2428
static const struct v4l2_subdev_ops adv76xx_ops = {
	.core = &adv76xx_core_ops,
	.video = &adv76xx_video_ops,
	.pad = &adv76xx_pad_ops,
2429 2430 2431 2432 2433
};

/* -------------------------- custom ctrls ---------------------------------- */

static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2434
	.ops = &adv76xx_ctrl_ops,
2435 2436 2437 2438 2439 2440 2441 2442 2443
	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
	.name = "Analog Sampling Phase",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0,
	.max = 0x1f,
	.step = 1,
	.def = 0,
};

2444 2445
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
	.ops = &adv76xx_ctrl_ops,
2446 2447 2448 2449 2450 2451 2452 2453 2454
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
	.name = "Free Running Color, Manual",
	.type = V4L2_CTRL_TYPE_BOOLEAN,
	.min = false,
	.max = true,
	.step = 1,
	.def = false,
};

2455 2456
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
	.ops = &adv76xx_ctrl_ops,
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
	.name = "Free Running Color",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0x0,
	.max = 0xffffff,
	.step = 0x1,
	.def = 0x0,
};

/* ----------------------------------------------------------------------- */

2468
static int adv76xx_core_init(struct v4l2_subdev *sd)
2469
{
2470 2471 2472
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
	struct adv76xx_platform_data *pdata = &state->pdata;
2473 2474 2475 2476 2477 2478 2479

	hdmi_write(sd, 0x48,
		(pdata->disable_pwrdnb ? 0x80 : 0) |
		(pdata->disable_cable_det_rst ? 0x40 : 0));

	disable_input(sd);

2480 2481 2482 2483 2484 2485 2486
	if (pdata->default_input >= 0 &&
	    pdata->default_input < state->source_pad) {
		state->selected_input = pdata->default_input;
		select_input(sd);
		enable_input(sd);
	}

2487 2488 2489 2490 2491 2492
	/* power */
	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */

	/* video format */
2493
	io_write_clr_set(sd, 0x02, 0x0f,
2494 2495 2496
			pdata->alt_gamma << 3 |
			pdata->op_656_range << 2 |
			pdata->alt_data_sat << 0);
2497
	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2498 2499
			pdata->insert_av_codes << 2 |
			pdata->replicate_av_codes << 1);
2500
	adv76xx_setup_format(state);
2501 2502

	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2503 2504

	/* VS, HS polarities */
2505 2506
	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2507 2508 2509 2510 2511 2512

	/* Adjust drive strength */
	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
				pdata->dr_str_clk << 2 |
				pdata->dr_str_sync);

2513 2514 2515
	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
H
Hans Verkuil 已提交
2516
				      ADI recommended setting [REF_01, c. 2.3.3] */
2517
	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
H
Hans Verkuil 已提交
2518
				      ADI recommended setting [REF_01, c. 2.3.3] */
2519 2520 2521
	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
				     for digital formats */

2522
	/* HDMI audio */
2523 2524 2525
	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2526

2527 2528 2529
	/* TODO from platform data */
	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */

2530
	if (adv76xx_has_afe(state)) {
2531
		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2532
		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2533
	}
2534 2535

	/* interrupts */
2536
	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2537
	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2538 2539 2540
	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
	info->setup_irqs(sd);
2541 2542 2543 2544

	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
static void adv7604_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
}

static void adv7611_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
}

2555 2556 2557 2558 2559
static void adv7612_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* disable INT2 */
}

2560
static void adv76xx_unregister_clients(struct adv76xx_state *state)
2561
{
2562 2563 2564 2565 2566 2567
	unsigned int i;

	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
		if (state->i2c_clients[i])
			i2c_unregister_device(state->i2c_clients[i]);
	}
2568 2569
}

2570
static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2571 2572 2573 2574 2575 2576 2577 2578 2579
							u8 addr, u8 io_reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (addr)
		io_write(sd, io_reg, addr << 1);
	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
}

2580
static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2581 2582
	/* reset ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2595 2596 2597

	/* set ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2598 2599 2600 2601 2602
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2603

2604
	{ ADV76XX_REG_SEQ_TERM, 0 },
2605 2606
};

2607
static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2608 2609
	/* set ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2621 2622 2623

	/* reset ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2624 2625
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2626

2627
	{ ADV76XX_REG_SEQ_TERM, 0 },
2628 2629
};

2630
static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2631
	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },

	{ ADV76XX_REG_SEQ_TERM, 0 },
2645 2646
};

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG_SEQ_TERM, 0 },
};

2660
static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2661 2662 2663
	[ADV7604] = {
		.type = ADV7604,
		.has_afe = true,
2664
		.max_port = ADV7604_PAD_VGA_COMP,
2665 2666 2667 2668 2669 2670 2671
		.num_dv_ports = 4,
		.edid_enable_reg = 0x77,
		.edid_status_reg = 0x7d,
		.lcf_reg = 0xb3,
		.tdms_lock_mask = 0xe0,
		.cable_det_mask = 0x1e,
		.fmt_change_digital_mask = 0xc1,
2672
		.cp_csc = 0xfc,
2673 2674
		.formats = adv7604_formats,
		.nformats = ARRAY_SIZE(adv7604_formats),
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		.set_termination = adv7604_set_termination,
		.setup_irqs = adv7604_setup_irqs,
		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
		.read_cable_det = adv7604_read_cable_det,
		.recommended_settings = {
		    [0] = adv7604_recommended_settings_afe,
		    [1] = adv7604_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
		},
2687 2688
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2689
			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2690 2691 2692
			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2693
			BIT(ADV7604_PAGE_VDP),
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		.linewidth_mask = 0xfff,
		.field0_height_mask = 0xfff,
		.field1_height_mask = 0xfff,
		.hfrontporch_mask = 0x3ff,
		.hsync_mask = 0x3ff,
		.hbackporch_mask = 0x3ff,
		.field0_vfrontporch_mask = 0x1fff,
		.field0_vsync_mask = 0x1fff,
		.field0_vbackporch_mask = 0x1fff,
		.field1_vfrontporch_mask = 0x1fff,
		.field1_vsync_mask = 0x1fff,
		.field1_vbackporch_mask = 0x1fff,
2706 2707 2708 2709
	},
	[ADV7611] = {
		.type = ADV7611,
		.has_afe = false,
2710
		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2711 2712 2713 2714 2715 2716 2717
		.num_dv_ports = 1,
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2718
		.cp_csc = 0xf4,
2719 2720
		.formats = adv7611_formats,
		.nformats = ARRAY_SIZE(adv7611_formats),
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7611_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
		.read_cable_det = adv7611_read_cable_det,
		.recommended_settings = {
		    [1] = adv7611_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
		},
2731 2732 2733 2734
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
2747
	},
2748 2749 2750
	[ADV7612] = {
		.type = ADV7612,
		.has_afe = false,
2751 2752
		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
		.num_dv_ports = 1,			/* normally 2 */
2753 2754 2755 2756 2757 2758
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2759
		.cp_csc = 0xf4,
2760 2761 2762 2763 2764
		.formats = adv7612_formats,
		.nformats = ARRAY_SIZE(adv7612_formats),
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7612_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2765
		.read_cable_det = adv7612_read_cable_det,
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
		.recommended_settings = {
		    [1] = adv7612_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
		},
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
	},
2789 2790
};

2791
static const struct i2c_device_id adv76xx_i2c_id[] = {
2792 2793
	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2794
	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
2795 2796
	{ }
};
2797
MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2798

2799
static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2800
	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2801
	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
2802 2803
	{ }
};
2804
MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2805

2806
static int adv76xx_parse_dt(struct adv76xx_state *state)
2807
{
2808 2809 2810 2811
	struct v4l2_of_endpoint bus_cfg;
	struct device_node *endpoint;
	struct device_node *np;
	unsigned int flags;
2812
	int ret;
2813
	u32 v;
2814

2815
	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2816 2817 2818 2819 2820 2821

	/* Parse the endpoint. */
	endpoint = of_graph_get_next_endpoint(np, NULL);
	if (!endpoint)
		return -EINVAL;

2822 2823 2824 2825 2826
	ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg);
	if (ret) {
		of_node_put(endpoint);
		return ret;
	}
2827 2828 2829 2830 2831 2832

	if (!of_property_read_u32(endpoint, "default-input", &v))
		state->pdata.default_input = v;
	else
		state->pdata.default_input = -1;

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	of_node_put(endpoint);

	flags = bus_cfg.bus.parallel.flags;

	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
		state->pdata.inv_hs_pol = 1;

	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
		state->pdata.inv_vs_pol = 1;

	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
		state->pdata.inv_llc_pol = 1;

	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
		state->pdata.insert_av_codes = 1;
		state->pdata.op_656_range = 1;
	}

2851
	/* Disable the interrupt for now as no DT-based board uses it. */
2852
	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2853 2854 2855

	/* Use the default I2C addresses. */
	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2856 2857
	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2858 2859
	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2860 2861 2862 2863 2864 2865
	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;

	/* Hardcode the remaining platform data fields. */
	state->pdata.disable_pwrdnb = 0;
	state->pdata.disable_cable_det_rst = 0;
	state->pdata.blank_data = 1;
	state->pdata.alt_data_sat = 1;
	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;

	return 0;
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
static const struct regmap_config adv76xx_regmap_cnf[] = {
	{
		.name			= "io",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "avlink",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cec",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "infoframe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "esdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "epp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "afe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "rep",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "edid",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},

	{
		.name			= "hdmi",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "test",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "vdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
};

static int configure_regmap(struct adv76xx_state *state, int region)
{
	int err;

	if (!state->i2c_clients[region])
		return -ENODEV;

	state->regmap[region] =
		devm_regmap_init_i2c(state->i2c_clients[region],
				     &adv76xx_regmap_cnf[region]);

	if (IS_ERR(state->regmap[region])) {
		err = PTR_ERR(state->regmap[region]);
		v4l_err(state->i2c_clients[region],
			"Error initializing regmap %d with error %d\n",
			region, err);
		return -EINVAL;
	}

	return 0;
}

static int configure_regmaps(struct adv76xx_state *state)
{
	int i, err;

	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
		err = configure_regmap(state, i);
		if (err && (err != -ENODEV))
			return err;
	}
	return 0;
}

3021
static int adv76xx_probe(struct i2c_client *client,
3022 3023
			 const struct i2c_device_id *id)
{
3024 3025
	static const struct v4l2_dv_timings cea640x480 =
		V4L2_DV_BT_CEA_640X480P59_94;
3026
	struct adv76xx_state *state;
3027
	struct v4l2_ctrl_handler *hdl;
3028
	struct v4l2_ctrl *ctrl;
3029
	struct v4l2_subdev *sd;
3030
	unsigned int i;
3031
	unsigned int val, val2;
3032 3033 3034 3035 3036
	int err;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -EIO;
3037
	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3038 3039
			client->addr << 1);

3040
	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3041
	if (!state) {
3042
		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3043 3044 3045
		return -ENOMEM;
	}

3046
	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3047

3048 3049
	/* initialize variables */
	state->restart_stdi_once = true;
3050
	state->selected_input = ~0;
3051

3052 3053 3054
	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
		const struct of_device_id *oid;

3055
		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3056 3057
		state->info = oid->data;

3058
		err = adv76xx_parse_dt(state);
3059 3060 3061 3062 3063
		if (err < 0) {
			v4l_err(client, "DT parsing error\n");
			return err;
		}
	} else if (client->dev.platform_data) {
3064
		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3065

3066
		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3067 3068
		state->pdata = *pdata;
	} else {
3069
		v4l_err(client, "No platform data!\n");
3070
		return -ENODEV;
3071
	}
3072 3073 3074 3075

	/* Request GPIOs. */
	for (i = 0; i < state->info->num_dv_ports; ++i) {
		state->hpd_gpio[i] =
3076 3077
			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
						      GPIOD_OUT_LOW);
3078
		if (IS_ERR(state->hpd_gpio[i]))
3079
			return PTR_ERR(state->hpd_gpio[i]);
3080

3081 3082
		if (state->hpd_gpio[i])
			v4l_info(client, "Handling HPD %u GPIO\n", i);
3083 3084
	}

3085
	state->timings = cea640x480;
3086
	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3087 3088

	sd = &state->sd;
3089
	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3090 3091 3092
	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
		id->name, i2c_adapter_id(client->adapter),
		client->addr);
3093
	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3094

3095 3096 3097 3098 3099 3100 3101 3102
	/* Configure IO Regmap region */
	err = configure_regmap(state, ADV76XX_PAGE_IO);

	if (err) {
		v4l2_err(sd, "Error configuring IO regmap region\n");
		return -ENODEV;
	}

3103 3104 3105 3106 3107
	/*
	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
	 * identifies the revision, while on ADV7611 it identifies the model as
	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
	 */
3108 3109
	switch (state->info->type) {
	case ADV7604:
3110 3111 3112 3113 3114
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3115
		if (val != 0x68) {
3116
			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3117 3118 3119
					client->addr << 1);
			return -ENODEV;
		}
3120 3121 3122
		break;
	case ADV7611:
	case ADV7612:
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
				0xea,
				&val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
		val2 = val << 8;
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
			    0xeb,
			    &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3138
		val |= val2;
3139 3140 3141
		if ((state->info->type == ADV7611 && val != 0x2051) ||
			(state->info->type == ADV7612 && val != 0x2041)) {
			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3142 3143 3144
					client->addr << 1);
			return -ENODEV;
		}
3145
		break;
3146 3147 3148 3149
	}

	/* control handlers */
	hdl = &state->hdl;
3150
	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3151

3152
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3153
			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3154
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3155
			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3156
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3157
			V4L2_CID_SATURATION, 0, 255, 1, 128);
3158
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3159
			V4L2_CID_HUE, 0, 128, 1, 0);
3160 3161 3162 3163 3164
	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
	if (ctrl)
		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3165 3166

	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3167 3168
			V4L2_CID_DV_RX_POWER_PRESENT, 0,
			(1 << state->info->num_dv_ports) - 1, 0, 0);
3169
	state->rgb_quantization_range_ctrl =
3170
		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3171 3172 3173 3174
			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
			0, V4L2_DV_RGB_RANGE_AUTO);

	/* custom controls */
3175
	if (adv76xx_has_afe(state))
3176 3177
		state->analog_sampling_phase_ctrl =
			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3178
	state->free_run_color_manual_ctrl =
3179
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3180
	state->free_run_color_ctrl =
3181
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3182 3183 3184 3185 3186 3187

	sd->ctrl_handler = hdl;
	if (hdl->error) {
		err = hdl->error;
		goto err_hdl;
	}
3188
	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3189 3190 3191 3192
		err = -ENODEV;
		goto err_hdl;
	}

3193
	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3194 3195
		if (!(BIT(i) & state->info->page_mask))
			continue;
3196

3197
		state->i2c_clients[i] =
3198
			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3199 3200
					     0xf2 + i);
		if (state->i2c_clients[i] == NULL) {
3201
			err = -ENOMEM;
3202
			v4l2_err(sd, "failed to create i2c client %u\n", i);
3203 3204 3205
			goto err_i2c;
		}
	}
3206

3207
	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3208
			adv76xx_delayed_work_enable_hotplug);
3209

3210 3211 3212 3213 3214 3215
	state->source_pad = state->info->num_dv_ports
			  + (state->info->has_afe ? 2 : 0);
	for (i = 0; i < state->source_pad; ++i)
		state->pads[i].flags = MEDIA_PAD_FL_SINK;
	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;

3216
	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3217
				state->pads);
3218 3219 3220
	if (err)
		goto err_work_queues;

3221 3222 3223 3224 3225
	/* Configure regmaps */
	err = configure_regmaps(state);
	if (err)
		goto err_entity;

3226
	err = adv76xx_core_init(sd);
3227 3228 3229 3230
	if (err)
		goto err_entity;
	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
			client->addr << 1, client->adapter->name);
3231 3232 3233 3234 3235

	err = v4l2_async_register_subdev(sd);
	if (err)
		goto err_entity;

3236 3237 3238 3239 3240 3241 3242
	return 0;

err_entity:
	media_entity_cleanup(&sd->entity);
err_work_queues:
	cancel_delayed_work(&state->delayed_work_enable_hotplug);
err_i2c:
3243
	adv76xx_unregister_clients(state);
3244 3245 3246 3247 3248 3249 3250
err_hdl:
	v4l2_ctrl_handler_free(hdl);
	return err;
}

/* ----------------------------------------------------------------------- */

3251
static int adv76xx_remove(struct i2c_client *client)
3252 3253
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3254
	struct adv76xx_state *state = to_state(sd);
3255 3256

	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3257
	v4l2_async_unregister_subdev(sd);
3258
	media_entity_cleanup(&sd->entity);
3259
	adv76xx_unregister_clients(to_state(sd));
3260 3261 3262 3263 3264 3265
	v4l2_ctrl_handler_free(sd->ctrl_handler);
	return 0;
}

/* ----------------------------------------------------------------------- */

3266
static struct i2c_driver adv76xx_driver = {
3267 3268
	.driver = {
		.name = "adv7604",
3269
		.of_match_table = of_match_ptr(adv76xx_of_id),
3270
	},
3271 3272 3273
	.probe = adv76xx_probe,
	.remove = adv76xx_remove,
	.id_table = adv76xx_i2c_id,
3274 3275
};

3276
module_i2c_driver(adv76xx_driver);