adv7604.c 95.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * adv7604 - Analog Devices ADV7604 video decoder driver
 *
 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * References (c = chapter, p = page):
 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
 *		Revision 2.5, June 2010
 * REF_02 - Analog devices, Register map documentation, Documentation of
 *		the register maps, Software manual, Rev. F, June 2010
 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
 */

30
#include <linux/delay.h>
31
#include <linux/gpio/consumer.h>
H
Hans Verkuil 已提交
32
#include <linux/hdmi.h>
33
#include <linux/i2c.h>
34 35 36
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
37
#include <linux/v4l2-dv-timings.h>
38 39
#include <linux/videodev2.h>
#include <linux/workqueue.h>
40
#include <linux/regmap.h>
41 42

#include <media/adv7604.h>
43
#include <media/v4l2-ctrls.h>
44
#include <media/v4l2-device.h>
45
#include <media/v4l2-event.h>
46
#include <media/v4l2-dv-timings.h>
47
#include <media/v4l2-of.h>
48 49 50 51 52 53 54 55 56 57 58

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");

MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");

/* ADV7604 system clock frequency */
59
#define ADV76XX_FSC (28636360)
60

61
#define ADV76XX_RGB_OUT					(1 << 1)
62

63
#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
64
#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
65
#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
66

67
#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
68
#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
69
#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
70
#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
71
#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
72 73
#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)

74 75 76 77 78 79
#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
80

81
#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
82

83
enum adv76xx_type {
84 85
	ADV7604,
	ADV7611,
86
	ADV7612,
87 88
};

89
struct adv76xx_reg_seq {
90 91 92 93
	unsigned int reg;
	u8 val;
};

94
struct adv76xx_format_info {
95
	u32 code;
96 97 98 99 100 101
	u8 op_ch_sel;
	bool rgb_out;
	bool swap_cb_cr;
	u8 op_format_sel;
};

H
Hans Verkuil 已提交
102 103 104 105 106 107 108
struct adv76xx_cfg_read_infoframe {
	const char *desc;
	u8 present_mask;
	u8 head_addr;
	u8 payload_addr;
};

109 110
struct adv76xx_chip_info {
	enum adv76xx_type type;
111 112 113 114 115 116 117 118 119 120 121 122

	bool has_afe;
	unsigned int max_port;
	unsigned int num_dv_ports;

	unsigned int edid_enable_reg;
	unsigned int edid_status_reg;
	unsigned int lcf_reg;

	unsigned int cable_det_mask;
	unsigned int tdms_lock_mask;
	unsigned int fmt_change_digital_mask;
123
	unsigned int cp_csc;
124

125
	const struct adv76xx_format_info *formats;
126 127
	unsigned int nformats;

128 129 130 131 132 133
	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
	void (*setup_irqs)(struct v4l2_subdev *sd);
	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);

	/* 0 = AFE, 1 = HDMI */
134
	const struct adv76xx_reg_seq *recommended_settings[2];
135 136 137
	unsigned int num_recommended_settings[2];

	unsigned long page_mask;
138 139 140 141 142 143 144 145 146 147 148 149 150 151

	/* Masks for timings */
	unsigned int linewidth_mask;
	unsigned int field0_height_mask;
	unsigned int field1_height_mask;
	unsigned int hfrontporch_mask;
	unsigned int hsync_mask;
	unsigned int hbackporch_mask;
	unsigned int field0_vfrontporch_mask;
	unsigned int field1_vfrontporch_mask;
	unsigned int field0_vsync_mask;
	unsigned int field1_vsync_mask;
	unsigned int field0_vbackporch_mask;
	unsigned int field1_vbackporch_mask;
152 153
};

154 155 156 157 158 159 160
/*
 **********************************************************************
 *
 *  Arrays with configuration parameters for the ADV7604
 *
 **********************************************************************
 */
161

162 163 164
struct adv76xx_state {
	const struct adv76xx_chip_info *info;
	struct adv76xx_platform_data pdata;
165

166 167
	struct gpio_desc *hpd_gpio[4];

168
	struct v4l2_subdev sd;
169
	struct media_pad pads[ADV76XX_PAD_MAX];
170
	unsigned int source_pad;
171

172
	struct v4l2_ctrl_handler hdl;
173

174
	enum adv76xx_pad selected_input;
175

176
	struct v4l2_dv_timings timings;
177
	const struct adv76xx_format_info *format;
178

179 180 181 182 183
	struct {
		u8 edid[256];
		u32 present;
		unsigned blocks;
	} edid;
184
	u16 spa_port_a[2];
185 186 187 188
	struct v4l2_fract aspect_ratio;
	u32 rgb_quantization_range;
	struct workqueue_struct *work_queues;
	struct delayed_work delayed_work_enable_hotplug;
189
	bool restart_stdi_once;
190 191

	/* i2c clients */
192
	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
193

194 195 196
	/* Regmaps */
	struct regmap *regmap[ADV76XX_PAGE_MAX];

197 198 199 200 201 202 203 204
	/* controls */
	struct v4l2_ctrl *detect_tx_5v_ctrl;
	struct v4l2_ctrl *analog_sampling_phase_ctrl;
	struct v4l2_ctrl *free_run_color_manual_ctrl;
	struct v4l2_ctrl *free_run_color_ctrl;
	struct v4l2_ctrl *rgb_quantization_range_ctrl;
};

205
static bool adv76xx_has_afe(struct adv76xx_state *state)
206 207 208 209
{
	return state->info->has_afe;
}

210
/* Supported CEA and DMT timings */
211
static const struct v4l2_dv_timings adv76xx_timings[] = {
212 213 214 215 216 217 218 219 220 221 222 223
	V4L2_DV_BT_CEA_720X480P59_94,
	V4L2_DV_BT_CEA_720X576P50,
	V4L2_DV_BT_CEA_1280X720P24,
	V4L2_DV_BT_CEA_1280X720P25,
	V4L2_DV_BT_CEA_1280X720P50,
	V4L2_DV_BT_CEA_1280X720P60,
	V4L2_DV_BT_CEA_1920X1080P24,
	V4L2_DV_BT_CEA_1920X1080P25,
	V4L2_DV_BT_CEA_1920X1080P30,
	V4L2_DV_BT_CEA_1920X1080P50,
	V4L2_DV_BT_CEA_1920X1080P60,

224
	/* sorted by DMT ID */
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	V4L2_DV_BT_DMT_640X350P85,
	V4L2_DV_BT_DMT_640X400P85,
	V4L2_DV_BT_DMT_720X400P85,
	V4L2_DV_BT_DMT_640X480P60,
	V4L2_DV_BT_DMT_640X480P72,
	V4L2_DV_BT_DMT_640X480P75,
	V4L2_DV_BT_DMT_640X480P85,
	V4L2_DV_BT_DMT_800X600P56,
	V4L2_DV_BT_DMT_800X600P60,
	V4L2_DV_BT_DMT_800X600P72,
	V4L2_DV_BT_DMT_800X600P75,
	V4L2_DV_BT_DMT_800X600P85,
	V4L2_DV_BT_DMT_848X480P60,
	V4L2_DV_BT_DMT_1024X768P60,
	V4L2_DV_BT_DMT_1024X768P70,
	V4L2_DV_BT_DMT_1024X768P75,
	V4L2_DV_BT_DMT_1024X768P85,
	V4L2_DV_BT_DMT_1152X864P75,
	V4L2_DV_BT_DMT_1280X768P60_RB,
	V4L2_DV_BT_DMT_1280X768P60,
	V4L2_DV_BT_DMT_1280X768P75,
	V4L2_DV_BT_DMT_1280X768P85,
	V4L2_DV_BT_DMT_1280X800P60_RB,
	V4L2_DV_BT_DMT_1280X800P60,
	V4L2_DV_BT_DMT_1280X800P75,
	V4L2_DV_BT_DMT_1280X800P85,
	V4L2_DV_BT_DMT_1280X960P60,
	V4L2_DV_BT_DMT_1280X960P85,
	V4L2_DV_BT_DMT_1280X1024P60,
	V4L2_DV_BT_DMT_1280X1024P75,
	V4L2_DV_BT_DMT_1280X1024P85,
	V4L2_DV_BT_DMT_1360X768P60,
	V4L2_DV_BT_DMT_1400X1050P60_RB,
	V4L2_DV_BT_DMT_1400X1050P60,
	V4L2_DV_BT_DMT_1400X1050P75,
	V4L2_DV_BT_DMT_1400X1050P85,
	V4L2_DV_BT_DMT_1440X900P60_RB,
	V4L2_DV_BT_DMT_1440X900P60,
	V4L2_DV_BT_DMT_1600X1200P60,
	V4L2_DV_BT_DMT_1680X1050P60_RB,
	V4L2_DV_BT_DMT_1680X1050P60,
	V4L2_DV_BT_DMT_1792X1344P60,
	V4L2_DV_BT_DMT_1856X1392P60,
	V4L2_DV_BT_DMT_1920X1200P60_RB,
269
	V4L2_DV_BT_DMT_1366X768P60_RB,
270 271 272 273 274
	V4L2_DV_BT_DMT_1366X768P60,
	V4L2_DV_BT_DMT_1920X1080P60,
	{ },
};

275
struct adv76xx_video_standards {
276 277 278 279 280 281
	struct v4l2_dv_timings timings;
	u8 vid_std;
	u8 v_freq;
};

/* sorted by number of lines */
282
static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
283 284 285 286 287 288 289 290 291 292 293 294 295 296
	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	/* TODO add 1920x1080P60_RB (CVT timing) */
	{ },
};

/* sorted by number of lines */
297
static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
	/* TODO add 1600X1200P60_RB (not a DMT timing) */
	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
	{ },
};

/* sorted by number of lines */
325
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
326 327 328 329 330 331 332 333 334 335 336 337 338
	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	{ },
};

/* sorted by number of lines */
339
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ },
};

358 359 360 361 362
static const struct v4l2_event adv76xx_ev_fmt = {
	.type = V4L2_EVENT_SOURCE_CHANGE,
	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};

363 364
/* ----------------------------------------------------------------------- */

365
static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
366
{
367
	return container_of(sd, struct adv76xx_state, sd);
368 369 370 371
}

static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
372
	return V4L2_DV_BT_FRAME_WIDTH(t);
373 374 375 376
}

static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
377
	return V4L2_DV_BT_FRAME_HEIGHT(t);
378 379 380 381
}

/* ----------------------------------------------------------------------- */

382 383
static int adv76xx_read_check(struct adv76xx_state *state,
			     int client_page, u8 reg)
384
{
385
	struct i2c_client *client = state->i2c_clients[client_page];
386
	int err;
387
	unsigned int val;
388

389 390 391 392 393 394
	err = regmap_read(state->regmap[client_page], reg, &val);

	if (err) {
		v4l_err(client, "error reading %02x, %02x\n",
				client->addr, reg);
		return err;
395
	}
396
	return val;
397 398
}

399 400 401 402 403 404 405 406 407
/* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
 * size to one or more registers.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
			      unsigned int init_reg, const void *val,
			      size_t val_len)
408
{
409 410 411 412
	struct regmap *regmap = state->regmap[client_page];

	if (val_len > I2C_SMBUS_BLOCK_MAX)
		val_len = I2C_SMBUS_BLOCK_MAX;
413

414
	return regmap_raw_write(regmap, init_reg, val, val_len);
415 416 417 418 419 420
}

/* ----------------------------------------------------------------------- */

static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
421
	struct adv76xx_state *state = to_state(sd);
422

423
	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
424 425 426 427
}

static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
428
	struct adv76xx_state *state = to_state(sd);
429

430
	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
431 432
}

433
static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
434
{
435
	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
436 437 438 439
}

static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
440
	struct adv76xx_state *state = to_state(sd);
441

442
	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
443 444 445 446
}

static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
447
	struct adv76xx_state *state = to_state(sd);
448

449
	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
450 451 452 453
}

static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
454
	struct adv76xx_state *state = to_state(sd);
455

456
	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
457 458 459 460
}

static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
461
	struct adv76xx_state *state = to_state(sd);
462

463
	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
464 465 466 467
}

static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
468
	struct adv76xx_state *state = to_state(sd);
469

470
	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
471 472 473 474
}

static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
475
	struct adv76xx_state *state = to_state(sd);
476

477
	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
478 479 480 481
}

static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
482
	struct adv76xx_state *state = to_state(sd);
483

484
	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
485 486 487 488
}

static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
489
	struct adv76xx_state *state = to_state(sd);
490

491
	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
492 493 494 495
}

static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
496
	struct adv76xx_state *state = to_state(sd);
497

498
	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
499 500 501 502
}

static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
503
	struct adv76xx_state *state = to_state(sd);
504

505
	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
506 507
}

508
static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
509
{
510
	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
511 512 513 514
}

static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
515
	struct adv76xx_state *state = to_state(sd);
516

517
	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
518 519 520 521
}

static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
522
	struct adv76xx_state *state = to_state(sd);
523

524
	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
525 526 527
}

static inline int edid_write_block(struct v4l2_subdev *sd,
528
					unsigned int total_len, const u8 *val)
529
{
530
	struct adv76xx_state *state = to_state(sd);
531
	int err = 0;
532 533
	int i = 0;
	int len = 0;
534

535 536 537 538 539 540 541 542 543 544 545 546
	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
				__func__, total_len);

	while (!err && i < total_len) {
		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
				I2C_SMBUS_BLOCK_MAX :
				(total_len - i);

		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
				i, val + i, len);
		i += len;
	}
547

548 549
	return err;
}
550

551
static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
552 553 554
{
	unsigned int i;

555
	for (i = 0; i < state->info->num_dv_ports; ++i)
556 557
		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));

558
	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
559 560
}

561
static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
562 563
{
	struct delayed_work *dwork = to_delayed_work(work);
564
	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
565 566
						delayed_work_enable_hotplug);
	struct v4l2_subdev *sd = &state->sd;
567

568
	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
569

570
	adv76xx_set_hpd(state, state->edid.present);
571 572 573 574
}

static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
575
	struct adv76xx_state *state = to_state(sd);
576

577
	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
578 579
}

580 581 582 583 584
static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
}

585 586
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
587
	struct adv76xx_state *state = to_state(sd);
588

589
	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
590 591
}

592
static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
593
{
594
	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
595 596
}

597 598
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
599
	struct adv76xx_state *state = to_state(sd);
600

601
	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
602 603 604 605
}

static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
606
	struct adv76xx_state *state = to_state(sd);
607

608
	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
609 610
}

611 612 613 614 615
static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
}

616 617
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
618
	struct adv76xx_state *state = to_state(sd);
619

620
	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
621 622
}

623
static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
624
{
625
	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
626 627 628 629
}

static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
630
	struct adv76xx_state *state = to_state(sd);
631

632
	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
633 634 635 636
}

static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
637
	struct adv76xx_state *state = to_state(sd);
638

639
	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
640
}
641

642 643
#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
#define ADV76XX_REG_SEQ_TERM		0xffff
644 645

#ifdef CONFIG_VIDEO_ADV_DEBUG
646
static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
647
{
648
	struct adv76xx_state *state = to_state(sd);
649
	unsigned int page = reg >> 8;
650 651
	unsigned int val;
	int err;
652 653 654 655 656

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;
657
	err = regmap_read(state->regmap[page], reg, &val);
658

659
	return err ? err : val;
660 661 662
}
#endif

663
static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
664
{
665
	struct adv76xx_state *state = to_state(sd);
666 667 668 669 670 671 672
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

673
	return regmap_write(state->regmap[page], reg, val);
674 675
}

676 677
static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
				  const struct adv76xx_reg_seq *reg_seq)
678 679 680
{
	unsigned int i;

681 682
	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
683 684
}

685 686 687 688
/* -----------------------------------------------------------------------------
 * Format helpers
 */

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static const struct adv76xx_format_info adv7604_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
728 729
};

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
static const struct adv76xx_format_info adv7611_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
757 758
};

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static const struct adv76xx_format_info adv7612_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
};

776 777
static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state *state, u32 code)
778 779 780 781 782 783 784 785 786 787 788
{
	unsigned int i;

	for (i = 0; i < state->info->nformats; ++i) {
		if (state->info->formats[i].code == code)
			return &state->info->formats[i];
	}

	return NULL;
}

789 790
/* ----------------------------------------------------------------------- */

791 792
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
793
	struct adv76xx_state *state = to_state(sd);
794

795 796
	return state->selected_input == ADV7604_PAD_VGA_RGB ||
	       state->selected_input == ADV7604_PAD_VGA_COMP;
797 798 799 800
}

static inline bool is_digital_input(struct v4l2_subdev *sd)
{
801
	struct adv76xx_state *state = to_state(sd);
802

803
	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
804 805 806
	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
807 808 809 810
}

/* ----------------------------------------------------------------------- */

811
#ifdef CONFIG_VIDEO_ADV_DEBUG
812
static void adv76xx_inv_register(struct v4l2_subdev *sd)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
{
	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}

829
static int adv76xx_g_register(struct v4l2_subdev *sd,
830 831
					struct v4l2_dbg_register *reg)
{
832 833
	int ret;

834
	ret = adv76xx_read_reg(sd, reg->reg);
835
	if (ret < 0) {
836
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
837
		adv76xx_inv_register(sd);
838
		return ret;
839
	}
840 841 842 843

	reg->size = 1;
	reg->val = ret;

844 845 846
	return 0;
}

847
static int adv76xx_s_register(struct v4l2_subdev *sd,
848
					const struct v4l2_dbg_register *reg)
849
{
850
	int ret;
851

852
	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
853
	if (ret < 0) {
854
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
855
		adv76xx_inv_register(sd);
856
		return ret;
857
	}
858

859 860 861 862
	return 0;
}
#endif

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return ((value & 0x10) >> 4)
	     | ((value & 0x08) >> 2)
	     | ((value & 0x04) << 0)
	     | ((value & 0x02) << 2);
}

static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

880
static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
881
{
882 883
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
884 885

	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
886
				info->read_cable_det(sd));
887 888
}

889 890
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
		u8 prim_mode,
891
		const struct adv76xx_video_standards *predef_vid_timings,
892 893 894 895 896
		const struct v4l2_dv_timings *timings)
{
	int i;

	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
897
		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
898
					is_digital_input(sd) ? 250000 : 1000000))
899 900 901 902 903 904 905 906 907 908 909 910
			continue;
		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
				prim_mode); /* v_freq and prim mode */
		return 0;
	}

	return -1;
}

static int configure_predefined_video_timings(struct v4l2_subdev *sd,
		struct v4l2_dv_timings *timings)
911
{
912
	struct adv76xx_state *state = to_state(sd);
913 914 915 916
	int err;

	v4l2_dbg(1, debug, sd, "%s", __func__);

917
	if (adv76xx_has_afe(state)) {
918 919 920 921
		/* reset to default values */
		io_write(sd, 0x16, 0x43);
		io_write(sd, 0x17, 0x5a);
	}
922
	/* disable embedded syncs for auto graphics mode */
923
	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
924 925 926 927 928 929 930 931 932 933 934
	cp_write(sd, 0x8f, 0x00);
	cp_write(sd, 0x90, 0x00);
	cp_write(sd, 0xa2, 0x00);
	cp_write(sd, 0xa3, 0x00);
	cp_write(sd, 0xa4, 0x00);
	cp_write(sd, 0xa5, 0x00);
	cp_write(sd, 0xa6, 0x00);
	cp_write(sd, 0xa7, 0x00);
	cp_write(sd, 0xab, 0x00);
	cp_write(sd, 0xac, 0x00);

935
	if (is_analog_input(sd)) {
936 937 938 939 940
		err = find_and_set_predefined_video_timings(sd,
				0x01, adv7604_prim_mode_comp, timings);
		if (err)
			err = find_and_set_predefined_video_timings(sd,
					0x02, adv7604_prim_mode_gr, timings);
941
	} else if (is_digital_input(sd)) {
942
		err = find_and_set_predefined_video_timings(sd,
943
				0x05, adv76xx_prim_mode_hdmi_comp, timings);
944 945
		if (err)
			err = find_and_set_predefined_video_timings(sd,
946
					0x06, adv76xx_prim_mode_hdmi_gr, timings);
947 948 949
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
950 951 952 953 954 955 956 957 958 959
		err = -1;
	}


	return err;
}

static void configure_custom_video_timings(struct v4l2_subdev *sd,
		const struct v4l2_bt_timings *bt)
{
960
	struct adv76xx_state *state = to_state(sd);
961 962 963 964 965 966 967
	u32 width = htotal(bt);
	u32 height = vtotal(bt);
	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
	u16 cp_start_eav = width - bt->hfrontporch;
	u16 cp_start_vbi = height - bt->vfrontporch;
	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
968
		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
969 970 971 972
	const u8 pll[2] = {
		0xc0 | ((width >> 8) & 0x1f),
		width & 0xff
	};
973 974 975

	v4l2_dbg(2, debug, sd, "%s\n", __func__);

976
	if (is_analog_input(sd)) {
977 978 979 980
		/* auto graphics */
		io_write(sd, 0x00, 0x07); /* video std */
		io_write(sd, 0x01, 0x02); /* prim mode */
		/* enable embedded syncs for auto graphics mode */
981
		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
982

983
		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
984 985
		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
986 987
		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
					0x16, pll, 2))
988 989 990 991
			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");

		/* active video - horizontal timing */
		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
992
		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
993
				   ((cp_start_eav >> 8) & 0x0f));
994 995 996 997
		cp_write(sd, 0xa4, cp_start_eav & 0xff);

		/* active video - vertical timing */
		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
998
		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
999
				   ((cp_end_vbi >> 8) & 0xf));
1000
		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1001
	} else if (is_digital_input(sd)) {
1002
		/* set default prim_mode/vid_std for HDMI
1003
		   according to [REF_03, c. 4.2] */
1004 1005
		io_write(sd, 0x00, 0x02); /* video std */
		io_write(sd, 0x01, 0x06); /* prim mode */
1006 1007 1008
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1009 1010
	}

1011 1012 1013 1014 1015
	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
	cp_write(sd, 0xab, (height >> 4) & 0xff);
	cp_write(sd, 0xac, (height & 0x0f) << 4);
}
1016

1017
static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1018
{
1019
	struct adv76xx_state *state = to_state(sd);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	u8 offset_buf[4];

	if (auto_offset) {
		offset_a = 0x3ff;
		offset_b = 0x3ff;
		offset_c = 0x3ff;
	}

	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_offset ? "Auto" : "Manual",
			offset_a, offset_b, offset_c);

	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
	offset_buf[3] = offset_c & 0x0ff;

	/* Registers must be written in this order with no i2c access in between */
1038 1039
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			0x77, offset_buf, 4))
1040 1041 1042
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}

1043
static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1044
{
1045
	struct adv76xx_state *state = to_state(sd);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	u8 gain_buf[4];
	u8 gain_man = 1;
	u8 agc_mode_man = 1;

	if (auto_gain) {
		gain_man = 0;
		agc_mode_man = 0;
		gain_a = 0x100;
		gain_b = 0x100;
		gain_c = 0x100;
	}

	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_gain ? "Auto" : "Manual",
			gain_a, gain_b, gain_c);

	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
	gain_buf[3] = ((gain_c & 0x0ff));

	/* Registers must be written in this order with no i2c access in between */
1068 1069
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			     0x73, gain_buf, 4))
1070 1071 1072
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}

1073 1074
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
1075
	struct adv76xx_state *state = to_state(sd);
1076 1077 1078 1079 1080 1081
	bool rgb_output = io_read(sd, 0x02) & 0x02;
	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;

	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
			__func__, state->rgb_quantization_range,
			rgb_output, hdmi_signal);
1082

1083 1084
	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1085

1086 1087
	switch (state->rgb_quantization_range) {
	case V4L2_DV_RGB_RANGE_AUTO:
1088
		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1089 1090
			/* Receiving analog RGB signal
			 * Set RGB full range (0-255) */
1091
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1092 1093 1094
			break;
		}

1095
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1096 1097
			/* Receiving analog YPbPr signal
			 * Set automode */
1098
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1099 1100 1101
			break;
		}

1102
		if (hdmi_signal) {
1103 1104
			/* Receiving HDMI signal
			 * Set automode */
1105
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1106 1107 1108 1109 1110 1111
			break;
		}

		/* Receiving DVI-D signal
		 * ADV7604 selects RGB limited range regardless of
		 * input format (CE/IT) in automatic mode */
1112
		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1113
			/* RGB limited range (16-235) */
1114
			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1115 1116
		} else {
			/* RGB full range (0-255) */
1117
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1118 1119

			if (is_digital_input(sd) && rgb_output) {
1120
				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1121
			} else {
1122 1123
				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1124
			}
1125 1126 1127
		}
		break;
	case V4L2_DV_RGB_RANGE_LIMITED:
1128
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1129
			/* YCrCb limited range (16-235) */
1130
			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1131
			break;
1132
		}
1133 1134

		/* RGB limited range (16-235) */
1135
		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1136

1137 1138
		break;
	case V4L2_DV_RGB_RANGE_FULL:
1139
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1140
			/* YCrCb full range (0-255) */
1141
			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1142 1143 1144 1145
			break;
		}

		/* RGB full range (0-255) */
1146
		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1147 1148 1149 1150 1151 1152

		if (is_analog_input(sd) || hdmi_signal)
			break;

		/* Adjust gain/offset for DVI-D signals only */
		if (rgb_output) {
1153
			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1154
		} else {
1155 1156
			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1157
		}
1158 1159 1160 1161
		break;
	}
}

1162
static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1163
{
1164
	struct v4l2_subdev *sd =
1165
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1166

1167
	struct adv76xx_state *state = to_state(sd);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		cp_write(sd, 0x3c, ctrl->val);
		return 0;
	case V4L2_CID_CONTRAST:
		cp_write(sd, 0x3a, ctrl->val);
		return 0;
	case V4L2_CID_SATURATION:
		cp_write(sd, 0x3b, ctrl->val);
		return 0;
	case V4L2_CID_HUE:
		cp_write(sd, 0x3d, ctrl->val);
		return 0;
	case  V4L2_CID_DV_RX_RGB_RANGE:
		state->rgb_quantization_range = ctrl->val;
		set_rgb_quantization_range(sd);
		return 0;
	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1187
		if (!adv76xx_has_afe(state))
1188
			return -EINVAL;
1189 1190 1191 1192 1193 1194 1195 1196 1197
		/* Set the analog sampling phase. This is needed to find the
		   best sampling phase for analog video: an application or
		   driver has to try a number of phases and analyze the picture
		   quality before settling on the best performing phase. */
		afe_write(sd, 0xc8, ctrl->val);
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
		/* Use the default blue color for free running mode,
		   or supply your own. */
1198
		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
		return 0;
	}
	return -EINVAL;
}

/* ----------------------------------------------------------------------- */

static inline bool no_power(struct v4l2_subdev *sd)
{
	/* Entire chip or CP powered off */
	return io_read(sd, 0x0c) & 0x24;
}

static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
1219
	struct adv76xx_state *state = to_state(sd);
1220 1221

	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1222 1223 1224 1225
}

static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
1226 1227
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1228 1229

	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1230 1231
}

1232 1233 1234 1235 1236
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
	return hdmi_read(sd, 0x05) & 0x80;
}

1237 1238
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
1239
	struct adv76xx_state *state = to_state(sd);
1240 1241 1242 1243 1244

	/*
	 * Chips without a AFE don't expose registers for the SSPD, so just assume
	 * that we have a lock.
	 */
1245
	if (adv76xx_has_afe(state))
1246 1247
		return false;

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	/* TODO channel 2 */
	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}

static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
	/* TODO channel 2 */
	return !(cp_read(sd, 0xb1) & 0x80);
}

static inline bool no_signal(struct v4l2_subdev *sd)
{
	bool ret;

	ret = no_power(sd);

	ret |= no_lock_stdi(sd);
	ret |= no_lock_sspd(sd);

1267
	if (is_digital_input(sd)) {
1268 1269 1270 1271 1272 1273 1274 1275 1276
		ret |= no_lock_tmds(sd);
		ret |= no_signal_tmds(sd);
	}

	return ret;
}

static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
1277
	struct adv76xx_state *state = to_state(sd);
1278

1279
	if (!adv76xx_has_afe(state))
1280 1281
		return false;

1282 1283 1284 1285 1286
	/* CP has detected a non standard number of lines on the incoming
	   video compared to what it is configured to receive by s_dv_timings */
	return io_read(sd, 0x12) & 0x01;
}

1287 1288 1289 1290 1291
static inline bool in_free_run(struct v4l2_subdev *sd)
{
	return cp_read(sd, 0xff) & 0x10;
}

1292
static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1293 1294 1295 1296
{
	*status = 0;
	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1297 1298 1299
	if (!in_free_run(sd) && no_lock_cp(sd))
		*status |= is_digital_input(sd) ?
			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);

	return 0;
}

/* ----------------------------------------------------------------------- */

struct stdi_readback {
	u16 bl, lcf, lcvs;
	u8 hs_pol, vs_pol;
	bool interlaced;
};

static int stdi2dv_timings(struct v4l2_subdev *sd,
		struct stdi_readback *stdi,
		struct v4l2_dv_timings *timings)
{
1318 1319
	struct adv76xx_state *state = to_state(sd);
	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1320 1321 1322
	u32 pix_clk;
	int i;

1323 1324
	for (i = 0; adv76xx_timings[i].bt.height; i++) {
		if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1)
1325
			continue;
1326
		if (adv76xx_timings[i].bt.vsync != stdi->lcvs)
1327 1328
			continue;

1329
		pix_clk = hfreq * htotal(&adv76xx_timings[i].bt);
1330

1331 1332 1333
		if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) &&
		    (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) {
			*timings = adv76xx_timings[i];
1334 1335 1336 1337
			return 0;
		}
	}

1338
	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1339 1340
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1341
			false, timings))
1342 1343 1344 1345
		return 0;
	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1346
			false, state->aspect_ratio, timings))
1347 1348
		return 0;

1349 1350 1351 1352
	v4l2_dbg(2, debug, sd,
		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
		stdi->hs_pol, stdi->vs_pol);
1353 1354 1355
	return -1;
}

1356

1357 1358
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
1359 1360
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1361 1362
	u8 polarity;

1363 1364 1365 1366 1367 1368
	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
		return -1;
	}

	/* read STDI */
1369
	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1370
	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1371 1372 1373
	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
	stdi->interlaced = io_read(sd, 0x12) & 0x10;

1374
	if (adv76xx_has_afe(state)) {
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
		/* read SSPD */
		polarity = cp_read(sd, 0xb5);
		if ((polarity & 0x03) == 0x01) {
			stdi->hs_pol = polarity & 0x10
				     ? (polarity & 0x08 ? '+' : '-') : 'x';
			stdi->vs_pol = polarity & 0x40
				     ? (polarity & 0x20 ? '+' : '-') : 'x';
		} else {
			stdi->hs_pol = 'x';
			stdi->vs_pol = 'x';
		}
1386
	} else {
1387 1388 1389
		polarity = hdmi_read(sd, 0x05);
		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	}

	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd,
			"%s: signal lost during readout of STDI/SSPD\n", __func__);
		return -1;
	}

	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
		memset(stdi, 0, sizeof(struct stdi_readback));
		return -1;
	}

	v4l2_dbg(2, debug, sd,
		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
		stdi->hs_pol, stdi->vs_pol,
		stdi->interlaced ? "interlaced" : "progressive");

	return 0;
}

1413
static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1414 1415
			struct v4l2_enum_dv_timings *timings)
{
1416
	struct adv76xx_state *state = to_state(sd);
1417

1418
	if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1)
1419
		return -EINVAL;
1420 1421 1422 1423

	if (timings->pad >= state->source_pad)
		return -EINVAL;

1424
	memset(timings->reserved, 0, sizeof(timings->reserved));
1425
	timings->timings = adv76xx_timings[timings->index];
1426 1427 1428
	return 0;
}

1429
static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1430
			struct v4l2_dv_timings_cap *cap)
1431
{
1432
	struct adv76xx_state *state = to_state(sd);
1433 1434 1435 1436

	if (cap->pad >= state->source_pad)
		return -EINVAL;

1437 1438 1439
	cap->type = V4L2_DV_BT_656_1120;
	cap->bt.max_width = 1920;
	cap->bt.max_height = 1200;
1440
	cap->bt.min_pixelclock = 25000000;
1441

1442
	switch (cap->pad) {
1443
	case ADV76XX_PAD_HDMI_PORT_A:
1444 1445 1446
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1447
		cap->bt.max_pixelclock = 225000000;
1448 1449 1450 1451
		break;
	case ADV7604_PAD_VGA_RGB:
	case ADV7604_PAD_VGA_COMP:
	default:
1452
		cap->bt.max_pixelclock = 170000000;
1453 1454 1455
		break;
	}

1456 1457 1458 1459 1460 1461 1462 1463
	cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
	cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
		V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
	return 0;
}

/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1464 1465
   if the format is listed in adv76xx_timings[] */
static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1466 1467 1468 1469
		struct v4l2_dv_timings *timings)
{
	int i;

1470 1471
	for (i = 0; adv76xx_timings[i].bt.width; i++) {
		if (v4l2_match_dv_timings(timings, &adv76xx_timings[i],
1472
					is_digital_input(sd) ? 250000 : 1000000)) {
1473
			*timings = adv76xx_timings[i];
1474 1475 1476 1477 1478
			break;
		}
	}
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	unsigned int freq;
	int a, b;

	a = hdmi_read(sd, 0x06);
	b = hdmi_read(sd, 0x3b);
	if (a < 0 || b < 0)
		return 0;
	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;

	if (is_hdmi(sd)) {
		/* adjust for deep color mode */
		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;

		freq = freq * 8 / bits_per_channel;
	}

	return freq;
}

static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	int a, b;

	a = hdmi_read(sd, 0x51);
	b = hdmi_read(sd, 0x52);
	if (a < 0 || b < 0)
		return 0;
	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
}

1511
static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1512 1513
			struct v4l2_dv_timings *timings)
{
1514 1515
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1516 1517 1518 1519 1520 1521 1522 1523 1524
	struct v4l2_bt_timings *bt = &timings->bt;
	struct stdi_readback stdi;

	if (!timings)
		return -EINVAL;

	memset(timings, 0, sizeof(struct v4l2_dv_timings));

	if (no_signal(sd)) {
1525
		state->restart_stdi_once = true;
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
		return -ENOLINK;
	}

	/* read STDI */
	if (read_stdi(sd, &stdi)) {
		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
		return -ENOLINK;
	}
	bt->interlaced = stdi.interlaced ?
		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;

1538
	if (is_digital_input(sd)) {
1539 1540
		timings->type = V4L2_DV_BT_656_1120;

1541 1542
		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1543
		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1544 1545 1546 1547 1548 1549 1550 1551
		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
		bt->vfrontporch = hdmi_read16(sd, 0x2a,
			info->field0_vfrontporch_mask) / 2;
		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
		bt->vbackporch = hdmi_read16(sd, 0x32,
			info->field0_vbackporch_mask) / 2;
1552 1553 1554
		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
		if (bt->interlaced == V4L2_DV_INTERLACED) {
1555 1556 1557 1558 1559 1560 1561 1562
			bt->height += hdmi_read16(sd, 0x0b,
				info->field1_height_mask);
			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
				info->field1_vfrontporch_mask) / 2;
			bt->il_vsync = hdmi_read16(sd, 0x30,
				info->field1_vsync_mask) / 2;
			bt->il_vbackporch = hdmi_read16(sd, 0x34,
				info->field1_vbackporch_mask) / 2;
1563
		}
1564
		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1565 1566
	} else {
		/* find format
H
Hans Verkuil 已提交
1567
		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
		 */
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs += 1;
		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs -= 2;
		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
		if (stdi2dv_timings(sd, &stdi, timings)) {
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
			/*
			 * The STDI block may measure wrong values, especially
			 * for lcvs and lcf. If the driver can not find any
			 * valid timing, the STDI block is restarted to measure
			 * the video timings again. The function will return an
			 * error, but the restart of STDI will generate a new
			 * STDI interrupt and the format detection process will
			 * restart.
			 */
			if (state->restart_stdi_once) {
				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
				/* TODO restart STDI for Sync Channel 2 */
				/* enter one-shot mode */
1592
				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1593
				/* trigger STDI restart */
1594
				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1595
				/* reset to continuous mode */
1596
				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1597 1598 1599
				state->restart_stdi_once = false;
				return -ENOLINK;
			}
1600 1601 1602
			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
			return -ERANGE;
		}
1603
		state->restart_stdi_once = true;
1604 1605 1606 1607 1608 1609 1610 1611 1612
	}
found:

	if (no_signal(sd)) {
		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
		memset(timings, 0, sizeof(struct v4l2_dv_timings));
		return -ENOLINK;
	}

1613 1614
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1615 1616 1617 1618 1619 1620
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}

	if (debug > 1)
1621
		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1622
				      timings, true);
1623 1624 1625 1626

	return 0;
}

1627
static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1628 1629
		struct v4l2_dv_timings *timings)
{
1630
	struct adv76xx_state *state = to_state(sd);
1631
	struct v4l2_bt_timings *bt;
1632
	int err;
1633 1634 1635 1636

	if (!timings)
		return -EINVAL;

1637 1638 1639 1640 1641
	if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
		return 0;
	}

1642 1643
	bt = &timings->bt;

1644 1645
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1646 1647 1648 1649
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}
1650

1651
	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1652 1653 1654

	state->timings = *timings;

1655
	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1656 1657 1658 1659 1660 1661 1662 1663

	/* Use prim_mode and vid_std when available */
	err = configure_predefined_video_timings(sd, timings);
	if (err) {
		/* custom settings when the video format
		 does not have prim_mode/vid_std */
		configure_custom_video_timings(sd, bt);
	}
1664 1665 1666 1667

	set_rgb_quantization_range(sd);

	if (debug > 1)
1668
		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1669
				      timings, true);
1670 1671 1672
	return 0;
}

1673
static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1674 1675
		struct v4l2_dv_timings *timings)
{
1676
	struct adv76xx_state *state = to_state(sd);
1677 1678 1679 1680 1681

	*timings = state->timings;
	return 0;
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
}

static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
}

1692
static void enable_input(struct v4l2_subdev *sd)
1693
{
1694
	struct adv76xx_state *state = to_state(sd);
1695

1696
	if (is_analog_input(sd)) {
1697
		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1698
	} else if (is_digital_input(sd)) {
1699
		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1700
		state->info->set_termination(sd, true);
1701
		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1702
		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1703 1704 1705
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1706 1707 1708 1709 1710
	}
}

static void disable_input(struct v4l2_subdev *sd)
{
1711
	struct adv76xx_state *state = to_state(sd);
1712

1713
	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1714
	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1715
	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1716
	state->info->set_termination(sd, false);
1717 1718
}

1719
static void select_input(struct v4l2_subdev *sd)
1720
{
1721 1722
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1723

1724
	if (is_analog_input(sd)) {
1725
		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1726 1727 1728 1729

		afe_write(sd, 0x00, 0x08); /* power up ADC */
		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
		afe_write(sd, 0xc8, 0x00); /* phase control */
1730 1731
	} else if (is_digital_input(sd)) {
		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1732

1733
		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1734

1735
		if (adv76xx_has_afe(state)) {
1736 1737 1738 1739 1740
			afe_write(sd, 0x00, 0xff); /* power down ADC */
			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
			afe_write(sd, 0xc8, 0x40); /* phase control */
		}

1741 1742 1743
		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1744 1745 1746
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1747 1748 1749
	}
}

1750
static int adv76xx_s_routing(struct v4l2_subdev *sd,
1751 1752
		u32 input, u32 output, u32 config)
{
1753
	struct adv76xx_state *state = to_state(sd);
1754

1755 1756 1757 1758 1759
	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
			__func__, input, state->selected_input);

	if (input == state->selected_input)
		return 0;
1760

1761 1762 1763
	if (input > state->info->max_port)
		return -EINVAL;

1764
	state->selected_input = input;
1765 1766

	disable_input(sd);
1767 1768
	select_input(sd);
	enable_input(sd);
1769

1770 1771
	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);

1772 1773 1774
	return 0;
}

1775
static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1776
				  struct v4l2_subdev_pad_config *cfg,
1777
				  struct v4l2_subdev_mbus_code_enum *code)
1778
{
1779
	struct adv76xx_state *state = to_state(sd);
1780 1781

	if (code->index >= state->info->nformats)
1782
		return -EINVAL;
1783 1784 1785

	code->code = state->info->formats[code->index].code;

1786 1787 1788
	return 0;
}

1789
static void adv76xx_fill_format(struct adv76xx_state *state,
1790
				struct v4l2_mbus_framefmt *format)
1791
{
1792
	memset(format, 0, sizeof(*format));
1793

1794 1795 1796
	format->width = state->timings.bt.width;
	format->height = state->timings.bt.height;
	format->field = V4L2_FIELD_NONE;
1797
	format->colorspace = V4L2_COLORSPACE_SRGB;
1798

1799
	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1800
		format->colorspace = (state->timings.bt.height <= 576) ?
1801
			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1802 1803 1804 1805 1806 1807 1808 1809 1810
}

/*
 * Compute the op_ch_sel value required to obtain on the bus the component order
 * corresponding to the selected format taking into account bus reordering
 * applied by the board at the output of the device.
 *
 * The following table gives the op_ch_value from the format component order
 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1811
 * adv76xx_bus_order value in row).
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
 *
 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
 * ----------+-------------------------------------------------
 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
 */
1822
static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1823 1824
{
#define _SEL(a,b,c,d,e,f)	{ \
1825 1826
	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
#define _BUS(x)			[ADV7604_BUS_ORDER_##x]

	static const unsigned int op_ch_sel[6][6] = {
		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
	};

	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}

1841
static void adv76xx_setup_format(struct adv76xx_state *state)
1842 1843 1844
{
	struct v4l2_subdev *sd = &state->sd;

1845
	io_write_clr_set(sd, 0x02, 0x02,
1846
			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1847 1848
	io_write(sd, 0x03, state->format->op_format_sel |
		 state->pdata.op_format_mode_sel);
1849
	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1850
	io_write_clr_set(sd, 0x05, 0x01,
1851
			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1852 1853
}

1854 1855
static int adv76xx_get_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1856 1857
			      struct v4l2_subdev_format *format)
{
1858
	struct adv76xx_state *state = to_state(sd);
1859 1860 1861 1862

	if (format->pad != state->source_pad)
		return -EINVAL;

1863
	adv76xx_fill_format(state, &format->format);
1864 1865 1866 1867

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1868
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1869 1870 1871
		format->format.code = fmt->code;
	} else {
		format->format.code = state->format->code;
1872
	}
1873 1874 1875 1876

	return 0;
}

1877 1878
static int adv76xx_set_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1879 1880
			      struct v4l2_subdev_format *format)
{
1881 1882
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_format_info *info;
1883 1884 1885 1886

	if (format->pad != state->source_pad)
		return -EINVAL;

1887
	info = adv76xx_format_info(state, format->format.code);
1888
	if (info == NULL)
1889
		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1890

1891
	adv76xx_fill_format(state, &format->format);
1892 1893 1894 1895 1896
	format->format.code = info->code;

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1897
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1898 1899 1900
		fmt->code = format->format.code;
	} else {
		state->format = info;
1901
		adv76xx_setup_format(state);
1902 1903
	}

1904 1905 1906
	return 0;
}

1907
static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1908
{
1909 1910
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	const u8 irq_reg_0x43 = io_read(sd, 0x43);
	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
	const u8 irq_reg_0x70 = io_read(sd, 0x70);
	u8 fmt_change_digital;
	u8 fmt_change;
	u8 tx_5v;

	if (irq_reg_0x43)
		io_write(sd, 0x44, irq_reg_0x43);
	if (irq_reg_0x70)
		io_write(sd, 0x71, irq_reg_0x70);
	if (irq_reg_0x6b)
		io_write(sd, 0x6c, irq_reg_0x6b);
1924

1925 1926
	v4l2_dbg(2, debug, sd, "%s: ", __func__);

1927
	/* format change */
1928
	fmt_change = irq_reg_0x43 & 0x98;
1929 1930 1931
	fmt_change_digital = is_digital_input(sd)
			   ? irq_reg_0x6b & info->fmt_change_digital_mask
			   : 0;
1932

1933 1934
	if (fmt_change || fmt_change_digital) {
		v4l2_dbg(1, debug, sd,
1935
			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1936
			__func__, fmt_change, fmt_change_digital);
1937

1938
		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1939

1940 1941 1942
		if (handled)
			*handled = true;
	}
1943 1944 1945 1946 1947 1948 1949 1950 1951
	/* HDMI/DVI mode */
	if (irq_reg_0x6b & 0x01) {
		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
		set_rgb_quantization_range(sd);
		if (handled)
			*handled = true;
	}

1952
	/* tx 5v detect */
1953
	tx_5v = io_read(sd, 0x70) & info->cable_det_mask;
1954 1955 1956
	if (tx_5v) {
		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
		io_write(sd, 0x71, tx_5v);
1957
		adv76xx_s_detect_tx_5v_ctrl(sd);
1958 1959 1960 1961 1962 1963
		if (handled)
			*handled = true;
	}
	return 0;
}

1964
static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1965
{
1966
	struct adv76xx_state *state = to_state(sd);
1967
	u8 *data = NULL;
1968

1969
	memset(edid->reserved, 0, sizeof(edid->reserved));
1970 1971

	switch (edid->pad) {
1972
	case ADV76XX_PAD_HDMI_PORT_A:
1973 1974 1975
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1976 1977 1978 1979 1980 1981
		if (state->edid.present & (1 << edid->pad))
			data = state->edid.edid;
		break;
	default:
		return -EINVAL;
	}
1982 1983 1984 1985 1986 1987 1988

	if (edid->start_block == 0 && edid->blocks == 0) {
		edid->blocks = data ? state->edid.blocks : 0;
		return 0;
	}

	if (data == NULL)
1989 1990
		return -ENODATA;

1991 1992 1993 1994 1995 1996 1997 1998
	if (edid->start_block >= state->edid.blocks)
		return -EINVAL;

	if (edid->start_block + edid->blocks > state->edid.blocks)
		edid->blocks = state->edid.blocks - edid->start_block;

	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);

1999 2000 2001
	return 0;
}

2002
static int get_edid_spa_location(const u8 *edid)
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
{
	u8 d;

	if ((edid[0x7e] != 1) ||
	    (edid[0x80] != 0x02) ||
	    (edid[0x81] != 0x03)) {
		return -1;
	}

	/* search Vendor Specific Data Block (tag 3) */
	d = edid[0x82] & 0x7f;
	if (d > 4) {
		int i = 0x84;
		int end = 0x80 + d;

		do {
			u8 tag = edid[i] >> 5;
			u8 len = edid[i] & 0x1f;

			if ((tag == 3) && (len >= 5))
				return i + 4;
			i += len + 1;
		} while (i < end);
	}
	return -1;
}

2030
static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2031
{
2032 2033
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2034
	int spa_loc;
2035
	int err;
2036
	int i;
2037

2038 2039
	memset(edid->reserved, 0, sizeof(edid->reserved));

2040
	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2041 2042 2043 2044
		return -EINVAL;
	if (edid->start_block != 0)
		return -EINVAL;
	if (edid->blocks == 0) {
2045
		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2046
		state->edid.present &= ~(1 << edid->pad);
2047
		adv76xx_set_hpd(state, state->edid.present);
2048
		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2049

2050 2051 2052
		/* Fall back to a 16:9 aspect ratio */
		state->aspect_ratio.numerator = 16;
		state->aspect_ratio.denominator = 9;
2053 2054 2055 2056 2057 2058

		if (!state->edid.present)
			state->edid.blocks = 0;

		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
				__func__, edid->pad, state->edid.present);
2059 2060
		return 0;
	}
2061 2062
	if (edid->blocks > 2) {
		edid->blocks = 2;
2063
		return -E2BIG;
2064 2065
	}

2066 2067 2068
	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
			__func__, edid->pad, state->edid.present);

2069
	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2070
	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2071
	adv76xx_set_hpd(state, 0);
2072
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2073

2074 2075 2076 2077
	spa_loc = get_edid_spa_location(edid->edid);
	if (spa_loc < 0)
		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */

2078
	switch (edid->pad) {
2079
	case ADV76XX_PAD_HDMI_PORT_A:
2080 2081
		state->spa_port_a[0] = edid->edid[spa_loc];
		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2082
		break;
2083
	case ADV7604_PAD_HDMI_PORT_B:
2084 2085
		rep_write(sd, 0x70, edid->edid[spa_loc]);
		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2086
		break;
2087
	case ADV7604_PAD_HDMI_PORT_C:
2088 2089
		rep_write(sd, 0x72, edid->edid[spa_loc]);
		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2090
		break;
2091
	case ADV7604_PAD_HDMI_PORT_D:
2092 2093
		rep_write(sd, 0x74, edid->edid[spa_loc]);
		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2094
		break;
2095 2096
	default:
		return -EINVAL;
2097
	}
2098 2099 2100

	if (info->type == ADV7604) {
		rep_write(sd, 0x76, spa_loc & 0xff);
2101
		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2102 2103
	} else {
		/* FIXME: Where is the SPA location LSB register ? */
2104
		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2105
	}
2106

2107 2108
	edid->edid[spa_loc] = state->spa_port_a[0];
	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2109 2110 2111

	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
	state->edid.blocks = edid->blocks;
2112 2113
	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
			edid->edid[0x16]);
2114
	state->edid.present |= 1 << edid->pad;
2115 2116 2117

	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
	if (err < 0) {
2118
		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2119 2120 2121
		return err;
	}

2122
	/* adv76xx calculates the checksums and enables I2C access to internal
2123
	   EDID RAM from DDC port. */
2124
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2125 2126

	for (i = 0; i < 1000; i++) {
2127
		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2128 2129 2130 2131 2132 2133 2134 2135
			break;
		mdelay(1);
	}
	if (i == 1000) {
		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
		return -EIO;
	}

2136 2137 2138 2139
	/* enable hotplug after 100 ms */
	queue_delayed_work(state->work_queues,
			&state->delayed_work_enable_hotplug, HZ / 10);
	return 0;
2140 2141 2142 2143
}

/*********** avi info frame CEA-861-E **************/

H
Hans Verkuil 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152
static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
	{ "AVI", 0x01, 0xe0, 0x00 },
	{ "Audio", 0x02, 0xe3, 0x1c },
	{ "SDP", 0x04, 0xe6, 0x2a },
	{ "Vendor", 0x10, 0xec, 0x54 }
};

static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
				  union hdmi_infoframe *frame)
2153
{
H
Hans Verkuil 已提交
2154 2155
	uint8_t buffer[32];
	u8 len;
2156 2157
	int i;

H
Hans Verkuil 已提交
2158 2159 2160 2161
	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
		v4l2_info(sd, "%s infoframe not received\n",
			  adv76xx_cri[index].desc);
		return -ENOENT;
2162
	}
H
Hans Verkuil 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

	for (i = 0; i < 3; i++)
		buffer[i] = infoframe_read(sd,
					   adv76xx_cri[index].head_addr + i);

	len = buffer[2] + 1;

	if (len + 3 > sizeof(buffer)) {
		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
			 adv76xx_cri[index].desc, len);
		return -ENOENT;
2174 2175
	}

H
Hans Verkuil 已提交
2176 2177 2178 2179 2180 2181 2182 2183
	for (i = 0; i < len; i++)
		buffer[i + 3] = infoframe_read(sd,
				       adv76xx_cri[index].payload_addr + i);

	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
			 adv76xx_cri[index].desc);
		return -ENOENT;
2184
	}
H
Hans Verkuil 已提交
2185 2186
	return 0;
}
2187

H
Hans Verkuil 已提交
2188 2189 2190
static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
{
	int i;
2191

H
Hans Verkuil 已提交
2192 2193
	if (!is_hdmi(sd)) {
		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2194
		return;
H
Hans Verkuil 已提交
2195
	}
2196

H
Hans Verkuil 已提交
2197 2198 2199
	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
		union hdmi_infoframe frame;
		struct i2c_client *client = v4l2_get_subdevdata(sd);
2200

H
Hans Verkuil 已提交
2201 2202 2203 2204
		if (adv76xx_read_infoframe(sd, i, &frame))
			return;
		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
	}
2205 2206
}

2207
static int adv76xx_log_status(struct v4l2_subdev *sd)
2208
{
2209 2210
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2211 2212 2213
	struct v4l2_dv_timings timings;
	struct stdi_readback stdi;
	u8 reg_io_0x02 = io_read(sd, 0x02);
2214 2215
	u8 edid_enabled;
	u8 cable_det;
2216

2217
	static const char * const csc_coeff_sel_rb[16] = {
2218 2219 2220 2221 2222
		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
		"reserved", "reserved", "reserved", "reserved", "manual"
	};
2223
	static const char * const input_color_space_txt[16] = {
2224 2225
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2226
		"xvYCC Bt.601", "xvYCC Bt.709",
2227 2228 2229 2230
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"invalid", "invalid", "invalid", "invalid", "invalid",
		"invalid", "invalid", "automatic"
	};
2231 2232 2233 2234 2235 2236 2237 2238
	static const char * const hdmi_color_space_txt[16] = {
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
		"xvYCC Bt.601", "xvYCC Bt.709",
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
		"invalid", "invalid", "invalid"
	};
2239
	static const char * const rgb_quantization_range_txt[] = {
2240 2241 2242 2243
		"Automatic",
		"RGB limited range (16-235)",
		"RGB full range (0-255)",
	};
2244
	static const char * const deep_color_mode_txt[4] = {
2245 2246 2247 2248 2249
		"8-bits per channel",
		"10-bits per channel",
		"12-bits per channel",
		"16-bits per channel (not supported)"
	};
2250 2251 2252

	v4l2_info(sd, "-----Chip status-----\n");
	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2253
	edid_enabled = rep_read(sd, info->edid_status_reg);
2254
	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2255 2256 2257 2258
			((edid_enabled & 0x01) ? "Yes" : "No"),
			((edid_enabled & 0x02) ? "Yes" : "No"),
			((edid_enabled & 0x04) ? "Yes" : "No"),
			((edid_enabled & 0x08) ? "Yes" : "No"));
2259 2260 2261 2262
	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
			"enabled" : "disabled");

	v4l2_info(sd, "-----Signal status-----\n");
2263
	cable_det = info->read_cable_det(sd);
2264
	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2265 2266
			((cable_det & 0x01) ? "Yes" : "No"),
			((cable_det & 0x02) ? "Yes" : "No"),
2267
			((cable_det & 0x04) ? "Yes" : "No"),
2268
			((cable_det & 0x08) ? "Yes" : "No"));
2269 2270 2271 2272 2273 2274 2275 2276
	v4l2_info(sd, "TMDS signal detected: %s\n",
			no_signal_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "TMDS signal locked: %s\n",
			no_lock_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
	v4l2_info(sd, "CP free run: %s\n",
2277
			(in_free_run(sd)) ? "on" : "off");
2278 2279 2280
	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
			(io_read(sd, 0x01) & 0x70) >> 4);
2281 2282 2283 2284 2285 2286 2287 2288 2289

	v4l2_info(sd, "-----Video Timings-----\n");
	if (read_stdi(sd, &stdi))
		v4l2_info(sd, "STDI: not locked\n");
	else
		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
				stdi.lcf, stdi.bl, stdi.lcvs,
				stdi.interlaced ? "interlaced" : "progressive",
				stdi.hs_pol, stdi.vs_pol);
2290
	if (adv76xx_query_dv_timings(sd, &timings))
2291 2292
		v4l2_info(sd, "No video detected\n");
	else
2293 2294 2295 2296
		v4l2_print_dv_timings(sd->name, "Detected format: ",
				      &timings, true);
	v4l2_print_dv_timings(sd->name, "Configured format: ",
			      &state->timings, true);
2297

2298 2299 2300
	if (no_signal(sd))
		return 0;

2301 2302 2303 2304 2305
	v4l2_info(sd, "-----Color space-----\n");
	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
			rgb_quantization_range_txt[state->rgb_quantization_range]);
	v4l2_info(sd, "Input color space: %s\n",
			input_color_space_txt[reg_io_0x02 >> 4]);
2306
	v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2307 2308
			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2309
			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2310 2311
				"enabled" : "disabled",
			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2312
	v4l2_info(sd, "Color space conversion: %s\n",
2313
			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2314

2315
	if (!is_digital_input(sd))
2316 2317 2318
		return 0;

	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2319 2320 2321 2322
	v4l2_info(sd, "Digital video port selected: %c\n",
			(hdmi_read(sd, 0x00) & 0x03) + 'A');
	v4l2_info(sd, "HDCP encrypted content: %s\n",
			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2323 2324 2325
	v4l2_info(sd, "HDCP keys read: %s%s\n",
			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2326
	if (is_hdmi(sd)) {
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
		bool audio_mute = io_read(sd, 0x65) & 0x40;

		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
				audio_pll_locked ? "locked" : "not locked",
				audio_sample_packet_detect ? "detected" : "not detected",
				audio_mute ? "muted" : "enabled");
		if (audio_pll_locked && audio_sample_packet_detect) {
			v4l2_info(sd, "Audio format: %s\n",
					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
		}
		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
				(hdmi_read(sd, 0x5c) << 8) +
				(hdmi_read(sd, 0x5d) & 0xf0));
		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
				(hdmi_read(sd, 0x5e) << 8) +
				hdmi_read(sd, 0x5f));
		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");

		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2348
		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2349

H
Hans Verkuil 已提交
2350
		adv76xx_log_infoframes(sd);
2351 2352 2353 2354 2355
	}

	return 0;
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
				   struct v4l2_fh *fh,
				   struct v4l2_event_subscription *sub)
{
	switch (sub->type) {
	case V4L2_EVENT_SOURCE_CHANGE:
		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
	case V4L2_EVENT_CTRL:
		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
	default:
		return -EINVAL;
	}
}

2370 2371
/* ----------------------------------------------------------------------- */

2372 2373
static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
	.s_ctrl = adv76xx_s_ctrl,
2374 2375
};

2376 2377 2378
static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
	.log_status = adv76xx_log_status,
	.interrupt_service_routine = adv76xx_isr,
2379
	.subscribe_event = adv76xx_subscribe_event,
2380
	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2381
#ifdef CONFIG_VIDEO_ADV_DEBUG
2382 2383
	.g_register = adv76xx_g_register,
	.s_register = adv76xx_s_register,
2384 2385 2386
#endif
};

2387 2388 2389 2390 2391 2392
static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
	.s_routing = adv76xx_s_routing,
	.g_input_status = adv76xx_g_input_status,
	.s_dv_timings = adv76xx_s_dv_timings,
	.g_dv_timings = adv76xx_g_dv_timings,
	.query_dv_timings = adv76xx_query_dv_timings,
2393 2394
};

2395 2396 2397 2398 2399 2400 2401 2402
static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
	.enum_mbus_code = adv76xx_enum_mbus_code,
	.get_fmt = adv76xx_get_format,
	.set_fmt = adv76xx_set_format,
	.get_edid = adv76xx_get_edid,
	.set_edid = adv76xx_set_edid,
	.dv_timings_cap = adv76xx_dv_timings_cap,
	.enum_dv_timings = adv76xx_enum_dv_timings,
2403 2404
};

2405 2406 2407 2408
static const struct v4l2_subdev_ops adv76xx_ops = {
	.core = &adv76xx_core_ops,
	.video = &adv76xx_video_ops,
	.pad = &adv76xx_pad_ops,
2409 2410 2411 2412 2413
};

/* -------------------------- custom ctrls ---------------------------------- */

static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2414
	.ops = &adv76xx_ctrl_ops,
2415 2416 2417 2418 2419 2420 2421 2422 2423
	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
	.name = "Analog Sampling Phase",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0,
	.max = 0x1f,
	.step = 1,
	.def = 0,
};

2424 2425
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
	.ops = &adv76xx_ctrl_ops,
2426 2427 2428 2429 2430 2431 2432 2433 2434
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
	.name = "Free Running Color, Manual",
	.type = V4L2_CTRL_TYPE_BOOLEAN,
	.min = false,
	.max = true,
	.step = 1,
	.def = false,
};

2435 2436
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
	.ops = &adv76xx_ctrl_ops,
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
	.name = "Free Running Color",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0x0,
	.max = 0xffffff,
	.step = 0x1,
	.def = 0x0,
};

/* ----------------------------------------------------------------------- */

2448
static int adv76xx_core_init(struct v4l2_subdev *sd)
2449
{
2450 2451 2452
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
	struct adv76xx_platform_data *pdata = &state->pdata;
2453 2454 2455 2456 2457 2458 2459

	hdmi_write(sd, 0x48,
		(pdata->disable_pwrdnb ? 0x80 : 0) |
		(pdata->disable_cable_det_rst ? 0x40 : 0));

	disable_input(sd);

2460 2461 2462 2463 2464 2465 2466
	if (pdata->default_input >= 0 &&
	    pdata->default_input < state->source_pad) {
		state->selected_input = pdata->default_input;
		select_input(sd);
		enable_input(sd);
	}

2467 2468 2469 2470 2471 2472
	/* power */
	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */

	/* video format */
2473
	io_write_clr_set(sd, 0x02, 0x0f,
2474 2475 2476
			pdata->alt_gamma << 3 |
			pdata->op_656_range << 2 |
			pdata->alt_data_sat << 0);
2477
	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2478 2479
			pdata->insert_av_codes << 2 |
			pdata->replicate_av_codes << 1);
2480
	adv76xx_setup_format(state);
2481 2482

	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2483 2484

	/* VS, HS polarities */
2485 2486
	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2487 2488 2489 2490 2491 2492

	/* Adjust drive strength */
	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
				pdata->dr_str_clk << 2 |
				pdata->dr_str_sync);

2493 2494 2495
	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
H
Hans Verkuil 已提交
2496
				      ADI recommended setting [REF_01, c. 2.3.3] */
2497
	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
H
Hans Verkuil 已提交
2498
				      ADI recommended setting [REF_01, c. 2.3.3] */
2499 2500 2501
	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
				     for digital formats */

2502
	/* HDMI audio */
2503 2504 2505
	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2506

2507 2508 2509
	/* TODO from platform data */
	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */

2510
	if (adv76xx_has_afe(state)) {
2511
		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2512
		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2513
	}
2514 2515

	/* interrupts */
2516
	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2517
	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2518 2519 2520
	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
	info->setup_irqs(sd);
2521 2522 2523 2524

	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
static void adv7604_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
}

static void adv7611_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
}

2535 2536 2537 2538 2539
static void adv7612_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* disable INT2 */
}

2540
static void adv76xx_unregister_clients(struct adv76xx_state *state)
2541
{
2542 2543 2544 2545 2546 2547
	unsigned int i;

	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
		if (state->i2c_clients[i])
			i2c_unregister_device(state->i2c_clients[i]);
	}
2548 2549
}

2550
static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2551 2552 2553 2554 2555 2556 2557 2558 2559
							u8 addr, u8 io_reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (addr)
		io_write(sd, io_reg, addr << 1);
	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
}

2560
static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2561 2562
	/* reset ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2575 2576 2577

	/* set ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2578 2579 2580 2581 2582
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2583

2584
	{ ADV76XX_REG_SEQ_TERM, 0 },
2585 2586
};

2587
static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2588 2589
	/* set ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2601 2602 2603

	/* reset ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2604 2605
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2606

2607
	{ ADV76XX_REG_SEQ_TERM, 0 },
2608 2609
};

2610
static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2611
	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },

	{ ADV76XX_REG_SEQ_TERM, 0 },
2625 2626
};

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG_SEQ_TERM, 0 },
};

2640
static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2641 2642 2643
	[ADV7604] = {
		.type = ADV7604,
		.has_afe = true,
2644
		.max_port = ADV7604_PAD_VGA_COMP,
2645 2646 2647 2648 2649 2650 2651
		.num_dv_ports = 4,
		.edid_enable_reg = 0x77,
		.edid_status_reg = 0x7d,
		.lcf_reg = 0xb3,
		.tdms_lock_mask = 0xe0,
		.cable_det_mask = 0x1e,
		.fmt_change_digital_mask = 0xc1,
2652
		.cp_csc = 0xfc,
2653 2654
		.formats = adv7604_formats,
		.nformats = ARRAY_SIZE(adv7604_formats),
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		.set_termination = adv7604_set_termination,
		.setup_irqs = adv7604_setup_irqs,
		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
		.read_cable_det = adv7604_read_cable_det,
		.recommended_settings = {
		    [0] = adv7604_recommended_settings_afe,
		    [1] = adv7604_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
		},
2667 2668
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2669
			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2670 2671 2672
			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2673
			BIT(ADV7604_PAGE_VDP),
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
		.linewidth_mask = 0xfff,
		.field0_height_mask = 0xfff,
		.field1_height_mask = 0xfff,
		.hfrontporch_mask = 0x3ff,
		.hsync_mask = 0x3ff,
		.hbackporch_mask = 0x3ff,
		.field0_vfrontporch_mask = 0x1fff,
		.field0_vsync_mask = 0x1fff,
		.field0_vbackporch_mask = 0x1fff,
		.field1_vfrontporch_mask = 0x1fff,
		.field1_vsync_mask = 0x1fff,
		.field1_vbackporch_mask = 0x1fff,
2686 2687 2688 2689
	},
	[ADV7611] = {
		.type = ADV7611,
		.has_afe = false,
2690
		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2691 2692 2693 2694 2695 2696 2697
		.num_dv_ports = 1,
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2698
		.cp_csc = 0xf4,
2699 2700
		.formats = adv7611_formats,
		.nformats = ARRAY_SIZE(adv7611_formats),
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7611_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
		.read_cable_det = adv7611_read_cable_det,
		.recommended_settings = {
		    [1] = adv7611_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
		},
2711 2712 2713 2714
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
2727
	},
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	[ADV7612] = {
		.type = ADV7612,
		.has_afe = false,
		.max_port = ADV7604_PAD_HDMI_PORT_B,
		.num_dv_ports = 2,
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
		.formats = adv7612_formats,
		.nformats = ARRAY_SIZE(adv7612_formats),
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7612_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
		.read_cable_det = adv7611_read_cable_det,
		.recommended_settings = {
		    [1] = adv7612_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
		},
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
	},
2768 2769
};

2770
static const struct i2c_device_id adv76xx_i2c_id[] = {
2771 2772
	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2773
	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
2774 2775
	{ }
};
2776
MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2777

2778
static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2779
	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2780
	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
2781 2782
	{ }
};
2783
MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2784

2785
static int adv76xx_parse_dt(struct adv76xx_state *state)
2786
{
2787 2788 2789 2790
	struct v4l2_of_endpoint bus_cfg;
	struct device_node *endpoint;
	struct device_node *np;
	unsigned int flags;
2791
	u32 v;
2792

2793
	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2794 2795 2796 2797 2798 2799 2800

	/* Parse the endpoint. */
	endpoint = of_graph_get_next_endpoint(np, NULL);
	if (!endpoint)
		return -EINVAL;

	v4l2_of_parse_endpoint(endpoint, &bus_cfg);
2801 2802 2803 2804 2805 2806

	if (!of_property_read_u32(endpoint, "default-input", &v))
		state->pdata.default_input = v;
	else
		state->pdata.default_input = -1;

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	of_node_put(endpoint);

	flags = bus_cfg.bus.parallel.flags;

	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
		state->pdata.inv_hs_pol = 1;

	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
		state->pdata.inv_vs_pol = 1;

	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
		state->pdata.inv_llc_pol = 1;

	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
		state->pdata.insert_av_codes = 1;
		state->pdata.op_656_range = 1;
	}

2825
	/* Disable the interrupt for now as no DT-based board uses it. */
2826
	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2827 2828 2829

	/* Use the default I2C addresses. */
	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2830 2831
	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2832 2833
	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2834 2835 2836 2837 2838 2839
	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;

	/* Hardcode the remaining platform data fields. */
	state->pdata.disable_pwrdnb = 0;
	state->pdata.disable_cable_det_rst = 0;
	state->pdata.blank_data = 1;
	state->pdata.alt_data_sat = 1;
	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;

	return 0;
}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
static const struct regmap_config adv76xx_regmap_cnf[] = {
	{
		.name			= "io",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "avlink",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cec",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "infoframe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "esdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "epp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "afe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "rep",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "edid",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},

	{
		.name			= "hdmi",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "test",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "vdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
};

static int configure_regmap(struct adv76xx_state *state, int region)
{
	int err;

	if (!state->i2c_clients[region])
		return -ENODEV;

	state->regmap[region] =
		devm_regmap_init_i2c(state->i2c_clients[region],
				     &adv76xx_regmap_cnf[region]);

	if (IS_ERR(state->regmap[region])) {
		err = PTR_ERR(state->regmap[region]);
		v4l_err(state->i2c_clients[region],
			"Error initializing regmap %d with error %d\n",
			region, err);
		return -EINVAL;
	}

	return 0;
}

static int configure_regmaps(struct adv76xx_state *state)
{
	int i, err;

	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
		err = configure_regmap(state, i);
		if (err && (err != -ENODEV))
			return err;
	}
	return 0;
}

2995
static int adv76xx_probe(struct i2c_client *client,
2996 2997
			 const struct i2c_device_id *id)
{
2998 2999
	static const struct v4l2_dv_timings cea640x480 =
		V4L2_DV_BT_CEA_640X480P59_94;
3000
	struct adv76xx_state *state;
3001 3002
	struct v4l2_ctrl_handler *hdl;
	struct v4l2_subdev *sd;
3003
	unsigned int i;
3004
	unsigned int val, val2;
3005 3006 3007 3008 3009
	int err;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -EIO;
3010
	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3011 3012
			client->addr << 1);

3013
	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3014
	if (!state) {
3015
		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3016 3017 3018
		return -ENOMEM;
	}

3019
	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3020

3021 3022
	/* initialize variables */
	state->restart_stdi_once = true;
3023
	state->selected_input = ~0;
3024

3025 3026 3027
	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
		const struct of_device_id *oid;

3028
		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3029 3030
		state->info = oid->data;

3031
		err = adv76xx_parse_dt(state);
3032 3033 3034 3035 3036
		if (err < 0) {
			v4l_err(client, "DT parsing error\n");
			return err;
		}
	} else if (client->dev.platform_data) {
3037
		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3038

3039
		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3040 3041
		state->pdata = *pdata;
	} else {
3042
		v4l_err(client, "No platform data!\n");
3043
		return -ENODEV;
3044
	}
3045 3046 3047 3048

	/* Request GPIOs. */
	for (i = 0; i < state->info->num_dv_ports; ++i) {
		state->hpd_gpio[i] =
3049 3050
			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
						      GPIOD_OUT_LOW);
3051
		if (IS_ERR(state->hpd_gpio[i]))
3052
			return PTR_ERR(state->hpd_gpio[i]);
3053

3054 3055
		if (state->hpd_gpio[i])
			v4l_info(client, "Handling HPD %u GPIO\n", i);
3056 3057
	}

3058
	state->timings = cea640x480;
3059
	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3060 3061

	sd = &state->sd;
3062
	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3063 3064 3065
	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
		id->name, i2c_adapter_id(client->adapter),
		client->addr);
3066
	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3067

3068 3069 3070 3071 3072 3073 3074 3075
	/* Configure IO Regmap region */
	err = configure_regmap(state, ADV76XX_PAGE_IO);

	if (err) {
		v4l2_err(sd, "Error configuring IO regmap region\n");
		return -ENODEV;
	}

3076 3077 3078 3079 3080
	/*
	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
	 * identifies the revision, while on ADV7611 it identifies the model as
	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
	 */
3081 3082
	switch (state->info->type) {
	case ADV7604:
3083 3084 3085 3086 3087
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3088
		if (val != 0x68) {
3089
			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3090 3091 3092
					client->addr << 1);
			return -ENODEV;
		}
3093 3094 3095
		break;
	case ADV7611:
	case ADV7612:
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
				0xea,
				&val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
		val2 = val << 8;
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
			    0xeb,
			    &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
		val2 |= val;
3112 3113 3114
		if ((state->info->type == ADV7611 && val != 0x2051) ||
			(state->info->type == ADV7612 && val != 0x2041)) {
			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3115 3116 3117
					client->addr << 1);
			return -ENODEV;
		}
3118
		break;
3119 3120 3121 3122
	}

	/* control handlers */
	hdl = &state->hdl;
3123
	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3124

3125
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3126
			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3127
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3128
			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3129
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3130
			V4L2_CID_SATURATION, 0, 255, 1, 128);
3131
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3132 3133 3134 3135
			V4L2_CID_HUE, 0, 128, 1, 0);

	/* private controls */
	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3136 3137
			V4L2_CID_DV_RX_POWER_PRESENT, 0,
			(1 << state->info->num_dv_ports) - 1, 0, 0);
3138
	state->rgb_quantization_range_ctrl =
3139
		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3140 3141 3142 3143
			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
			0, V4L2_DV_RGB_RANGE_AUTO);

	/* custom controls */
3144
	if (adv76xx_has_afe(state))
3145 3146
		state->analog_sampling_phase_ctrl =
			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3147
	state->free_run_color_manual_ctrl =
3148
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3149
	state->free_run_color_ctrl =
3150
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3151 3152 3153 3154 3155 3156

	sd->ctrl_handler = hdl;
	if (hdl->error) {
		err = hdl->error;
		goto err_hdl;
	}
3157 3158
	state->detect_tx_5v_ctrl->is_private = true;
	state->rgb_quantization_range_ctrl->is_private = true;
3159
	if (adv76xx_has_afe(state))
3160
		state->analog_sampling_phase_ctrl->is_private = true;
3161 3162 3163
	state->free_run_color_manual_ctrl->is_private = true;
	state->free_run_color_ctrl->is_private = true;

3164
	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3165 3166 3167 3168
		err = -ENODEV;
		goto err_hdl;
	}

3169
	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3170 3171
		if (!(BIT(i) & state->info->page_mask))
			continue;
3172

3173
		state->i2c_clients[i] =
3174
			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3175 3176
					     0xf2 + i);
		if (state->i2c_clients[i] == NULL) {
3177
			err = -ENOMEM;
3178
			v4l2_err(sd, "failed to create i2c client %u\n", i);
3179 3180 3181
			goto err_i2c;
		}
	}
3182

3183 3184 3185 3186 3187 3188 3189 3190 3191
	/* work queues */
	state->work_queues = create_singlethread_workqueue(client->name);
	if (!state->work_queues) {
		v4l2_err(sd, "Could not create work queue\n");
		err = -ENOMEM;
		goto err_i2c;
	}

	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3192
			adv76xx_delayed_work_enable_hotplug);
3193

3194 3195 3196 3197 3198 3199 3200 3201
	state->source_pad = state->info->num_dv_ports
			  + (state->info->has_afe ? 2 : 0);
	for (i = 0; i < state->source_pad; ++i)
		state->pads[i].flags = MEDIA_PAD_FL_SINK;
	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;

	err = media_entity_init(&sd->entity, state->source_pad + 1,
				state->pads, 0);
3202 3203 3204
	if (err)
		goto err_work_queues;

3205 3206 3207 3208 3209
	/* Configure regmaps */
	err = configure_regmaps(state);
	if (err)
		goto err_entity;

3210
	err = adv76xx_core_init(sd);
3211 3212 3213 3214
	if (err)
		goto err_entity;
	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
			client->addr << 1, client->adapter->name);
3215 3216 3217 3218 3219

	err = v4l2_async_register_subdev(sd);
	if (err)
		goto err_entity;

3220 3221 3222 3223 3224 3225 3226 3227
	return 0;

err_entity:
	media_entity_cleanup(&sd->entity);
err_work_queues:
	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
err_i2c:
3228
	adv76xx_unregister_clients(state);
3229 3230 3231 3232 3233 3234 3235
err_hdl:
	v4l2_ctrl_handler_free(hdl);
	return err;
}

/* ----------------------------------------------------------------------- */

3236
static int adv76xx_remove(struct i2c_client *client)
3237 3238
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3239
	struct adv76xx_state *state = to_state(sd);
3240 3241 3242

	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
3243
	v4l2_async_unregister_subdev(sd);
3244
	media_entity_cleanup(&sd->entity);
3245
	adv76xx_unregister_clients(to_state(sd));
3246 3247 3248 3249 3250 3251
	v4l2_ctrl_handler_free(sd->ctrl_handler);
	return 0;
}

/* ----------------------------------------------------------------------- */

3252
static struct i2c_driver adv76xx_driver = {
3253 3254 3255
	.driver = {
		.owner = THIS_MODULE,
		.name = "adv7604",
3256
		.of_match_table = of_match_ptr(adv76xx_of_id),
3257
	},
3258 3259 3260
	.probe = adv76xx_probe,
	.remove = adv76xx_remove,
	.id_table = adv76xx_i2c_id,
3261 3262
};

3263
module_i2c_driver(adv76xx_driver);